1932

Abstract

Human noroviruses (NoVs) are the leading cause of foodborne illness in the United States, and they exact a considerable human and economic burden worldwide. In fact, the many challenging aspects of human NoV have caused some to call it the nearly perfect foodborne pathogen. In this review, a brief overview of NoVs and their genetic structure is provided. Additionally, the challenges and recent developments related to human NoVs regarding viral evolution, transmission, epidemiology, outbreak identification, cultivation, animal and human models, and detection are presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022814-015643
2015-04-10
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-022814-015643.html?itemId=/content/journals/10.1146/annurev-food-022814-015643&mimeType=html&fmt=ahah

Literature Cited

  1. Atmar RL, Opekun AR, Gilger MA, Estes MK, Crawford SE. et al. 2013. Determination of the human infectious dose-50% for Norwalk virus. J. Infect. Dis. 209:71016–22 [Google Scholar]
  2. Bae J, Schwab KJ. 2008. Evaluation of murine norovirus, feline calicivirus, poliovirus, and MS2 as surrogates for human norovirus in a model of viral persistence in surface water and groundwater. Appl. Environ. Microbiol. 74:2477–84 [Google Scholar]
  3. Baert L, Debevere J, Uyttendaele M. 2009a. The efficacy of preservation methods to inactivate foodborne viruses. Int. J. Food Microbiol. 131:83–94 [Google Scholar]
  4. Baert L, Uyttendaele M, Stals A, Van Coillie E, Dierick K. et al. 2009b. Reported foodborne outbreaks due to noroviruses in Belgium: the link between food and patient investigations in an international context. Epidemiol. Infect. 137:3316–25 [Google Scholar]
  5. Batz MB, Hoffmann S, Morris JG. 2012. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75:71278–91 [Google Scholar]
  6. Belliot G, Sosnovtsev SV, Chang K-O, McPhie P, Green KY. 2008. Nucleotidylylation of the VPg protein of a human norovirus by its proteinase-polymerase precursor protein. Virology 374:133–49 [Google Scholar]
  7. Blakeney SJ, Cahill A, Reilly PA. 2003. Processing of Norwalk virus nonstructural proteins by a 3C-like cysteine proteinase. Virology 308:2216–24 [Google Scholar]
  8. Bok K, Parra GI, Mitra T, Abente E, Shaver CK. et al. 2011. Chimpanzees as an animal model for human norovirus infection and vaccine development. PNAS 108:1325–30 [Google Scholar]
  9. Bosch A, Guix S, Sano D, Pintó RM. 2008. New tools for the study and direct surveillance of viral pathogens in water. Curr. Opin. Biotechnol. 19:3295–301 [Google Scholar]
  10. Boxman ILA, Verhoef L, Dijkman R, Hägele G, te Loeke NAJM, Koopmans M. 2011. Year-round prevalence of norovirus in the environment of catering companies without a recently reported outbreak of gastroenteritis. Appl. Environ. Microbiol. 77:92968–74 [Google Scholar]
  11. Bull RA, Eden J-S, Luciani F, McElroy K, Rawlinson WD, White PA. 2012. Contribution of intra- and interhost dynamics to norovirus evolution. J. Virol. 86:63219–29 [Google Scholar]
  12. Bull RA, Eden J-S, Rawlinson WD, White PA. 2010. Rapid evolution of pandemic noroviruses of the GII.4 lineage. PLOS Pathog. 6:3e1000831 [Google Scholar]
  13. Bull RA, Hansman GS, Clancy LE, Tanaka MM, Rawlinson WD, White PA. 2005. Norovirus recombination in orf1/orf2 overlap. Emerg. Infect. Dis. 11:71079–85 [Google Scholar]
  14. Butot S, Zuber S, Baert L. 2014. Sample preparation prior to molecular amplification: complexities and opportunities. Curr. Opin. Virol. 4:66–70 [Google Scholar]
  15. Cannon JL, Papafragkou E, Park GW, Osborne J, Jaykus L-A, Vinjé J. 2006. Surrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J. Food Prot. 69:112761–65 [Google Scholar]
  16. Ceuppens S, Li D, Uyttendaele M, Renault P, Ross P. et al. 2014. Molecular methods in food safety microbiology: interpretation and implications of nucleic acid detection. Compr. Rev. Food Sci. Food Saf. 13:4551–77 [Google Scholar]
  17. Cheetham S, Souza M, McGregor R, Meulia T, Wang Q, Saif LJ. 2007. Binding patterns of human norovirus-like particles to buccal and intestinal tissues of gnotobiotic pigs in relation to A/H histo-blood group antigen expression. J. Virol. 81:73535–44 [Google Scholar]
  18. Cheetham S, Souza M, Meulia T, Grimes S, Han MG, Saif LJ. 2006. Pathogenesis of a genogroup II human norovirus in gnotobiotic pigs. J. Virol. 80:2110372–81 [Google Scholar]
  19. Dancho BA, Chen H, Kingsley DH. 2012. Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. Int. J. Food Microbiol. 155:3222–26 [Google Scholar]
  20. Daughenbaugh KF, Fraser CS, Hershey JWB, Hardy ME. 2003. The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J. 22:112852–59 [Google Scholar]
  21. de Abreu Corrêa A, Carratala A, Barardi CRM, Calvo M, Girones R, Bofill-Mas S. 2012. Comparative inactivation of murine norovirus, human adenovirus, and human JC polyomavirus by chlorine in seawater. Appl. Environ. Microbiol. 78:186450–57 [Google Scholar]
  22. Debbink K, Donaldson EF, Lindesmith LC, Baric RS. 2012. Genetic mapping of a highly variable norovirus GII.4 blockade epitope: potential role in escape from human herd immunity. J. Virol. 86:21214–26 [Google Scholar]
  23. Debbink K, Lindesmith LC, Donaldson EF, Costantini V, Beltramello M. et al. 2013. Emergence of new pandemic GII.4 Sydney norovirus strain correlates with escape from herd immunity. J. Infect. Dis. 208:111877–87 [Google Scholar]
  24. DePaola A, Jones JL, Woods J, Burkhardt W, Calci KR. et al. 2010. Bacterial and viral pathogens in live oysters: 2007 United States market survey. Appl. Environ. Microbiol. 76:92754–68 [Google Scholar]
  25. Diez-Valcarce M, Kovač K, Raspor P, Rodríguez-Lázaro D, Hernández M. 2011. Virus genome quantification does not predict norovirus infectivity after application of food inactivation processing technologies. Food Environ. Virol. 3:3–4141–46 [Google Scholar]
  26. Dolin R, Blacklow NR, DuPont H, Buscho RF, Wyatt RG. et al. 1972. Biological properties of Norwalk agent of acute infectious nonbacterial gastroenteritis. Exp. Biol. Med. 140:2578–83 [Google Scholar]
  27. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. 2008. Norovirus pathogenesis: mechanisms of persistence and immune evasion in human populations. Immunol. Rev. 225:190–211 [Google Scholar]
  28. Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. 2010. Viral shape-shifting: norovirus evasion of the human immune system. Nat. Rev. Microbiol. 8:3231–41 [Google Scholar]
  29. Doultree JC, Druce JD, Birch CJ, Bowden DS, Marshall JA. 1999. Inactivation of feline calicivirus, a Norwalk virus surrogate. J. Hosp. Infect. 41:151–57 [Google Scholar]
  30. Duizer E, Schwab KJ, Neill FH, Atmar RL, Koopmans MP, Estes MK. 2004. Laboratory efforts to cultivate noroviruses. J. Gen. Virol. 85:179–87 [Google Scholar]
  31. Eden J-S, Tanaka MM, Boni MF, Rawlinson WD, White PA. 2013. Recombination within the pandemic norovirus GII.4 lineage. J. Virol. 87:116270–82 [Google Scholar]
  32. Escudero-Abarca BI, Rawsthorne H, Goulter RM, Suh SH, Jaykus L-A. 2014. Molecular methods used to estimate thermal inactivation of a prototype human norovirus: more heat resistant than previously believed?. Food Microbiol. 41:91–95 [Google Scholar]
  33. Farkas T, Cross RW, Hargitt E, Lerche NW, Morrow AL, Sestak K. 2010. Genetic diversity and histo-blood group antigen interactions of rhesus enteric caliciviruses. J. Virol. 84:178617–25 [Google Scholar]
  34. Farkas T, Sestak K, Wei C, Jiang X. 2008. Characterization of a rhesus monkey calicivirus representing a new genus of caliciviridae. J. Virol. 82:115408–16 [Google Scholar]
  35. Flynn WT, Saif LJ. 1988. Serial propagation of porcine enteric calicivirus-like virus in primary porcine kidney cell cultures. J. Clin. Microbiol. 26:2206–12 [Google Scholar]
  36. Fukushi S, Kojima S, Takai R, Hoshino FB, Oka T. et al. 2004. Poly (A)- and primer-independent RNA polymerase of norovirus. J. Virol. 78:83889–96 [Google Scholar]
  37. Giammanco GM, Rotolo V, Medici MC, Tummolo F, Bonura F. et al. 2012. Recombinant norovirus GII.g/GII.12 gastroenteritis in children.. Infect. Genet. Evol. 12:1169–74 [Google Scholar]
  38. Gilling DH, Kitajima M, Torrey JR, Bright KR. 2014. Antiviral efficacy and mechanisms of action of oregano essential oil and its primary component carvacrol against murine norovirus. J. Appl. Microbiol. 116:51149–63 [Google Scholar]
  39. Glass PJ, White LJ, Ball JM, Leparc-Goffart I, Hardy ME, Estes MK. 2000. Norwalk virus open reading frame 3 encodes a minor structural protein. J. Virol. 74:146581–91 [Google Scholar]
  40. Glass RI, Parashar UD, Estes MK. 2009. Norovirus gastroenteritis. N. Engl. J. Med. 361:11776–85 [Google Scholar]
  41. Goodfellow I, Chaudhry Y, Gioldasi I, Gerondopoulos A, Natoni A. et al. 2005. Calicivirus translation initiation requires an interaction between VPg and eIF4E. EMBO Rep. 6:10968–72 [Google Scholar]
  42. Gould LH, Walsh KA, Vieira AR, Herman K, Williams IT. et al. 2013. Surveillance for foodborne disease outbreaks – United States, 1998-2008. MMWR Surveill. Summ. 62:SS21–34 [Google Scholar]
  43. Greig JD, Ravel A. 2009. Analysis of foodborne outbreak data reported internationally for source attribution. Int. J. Food Microbiol. 130:277–87 [Google Scholar]
  44. Guix S, Asanaka M, Katayama K, Crawford SE, Neill FH. et al. 2007. Norwalk virus RNA is infectious in mammalian cells. J. Virol. 81:2212238–48 [Google Scholar]
  45. Hall AJ, Curns AT, McDonald LC, Parashar UD, Lopman BA. 2012a. The roles of Clostridium difficile and norovirus among gastroenteritis-associated deaths in the United States, 1999–2007. Clin. Infect. Dis. 55:2216–23 [Google Scholar]
  46. Hall AJ, Eisenbart VG, Etingüe AL, Gould LH, Lopman BA, Parashar UD. 2012b. Epidemiology of foodborne norovirus outbreaks, United States, 2001–2008. Emerg. Infect. Dis. 18:102001–8 [Google Scholar]
  47. Hall AJ, Lopman BA, Payne DC, Patel MM, Gastañaduy PA. et al. 2013. Norovirus disease in the United States. Emerg. Infect. Dis. 19:81198–205 [Google Scholar]
  48. Hall AJ, Wikswo ME, Pringle K, Gould LH, Parashar UD. 2014. Vital signs: foodborne norovirus outbreaks –United States, 2009-2012. MMWR 63:22491–95 [Google Scholar]
  49. Herbst-Kralovetz MM, Radtke AL, Lay MK, Hjelm BE, Bolick AN. et al. 2013. Lack of norovirus replication and histo-blood group antigen expression in 3-dimensional intestinal epithelial cells. Emerg. Infect. Dis. 19:3431–38 [Google Scholar]
  50. Hirneisen KA, Black EP, Cascarino JL, Fino VR, Hoover DG, Kniel KE. 2010. Viral inactivation in foods: a review of traditional and novel food-processing technologies. Compr. Rev. Food Sci. Food Saf. 9:13–20 [Google Scholar]
  51. Hirneisen KA, Kniel KE. 2013a. Comparing human norovirus surrogates: murine norovirus and Tulane virus. J. Food Prot. 76:1139–43 [Google Scholar]
  52. Hirneisen KA, Kniel KE. 2013b. Norovirus surrogate survival on spinach during preharvest growth. Phytopathology 103:4389–94 [Google Scholar]
  53. Hoelzer K, Fanaselle W, Pouillot R, Van Doren JM, Dennis S. 2013. Virus inactivation on hard surfaces or in suspension by chemical disinfectants: systematic review and meta-analysis of norovirus surrogates. J. Food Prot. 76:61006–16 [Google Scholar]
  54. Hoorfar J, Malorny B, Abdulmawjood A, Cook N, Fach P, Wagner M. 2004. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 45:51863–68 [Google Scholar]
  55. Huang P, Farkas T, Marionneau S, Zhong W, Ruvoën-Clouet N. et al. 2003. Noroviruses bind to human ABO, Lewis, and secretor histo-blood group antigens: identification of 4 distinct strain-specific patterns. J. Infect. Dis. 188:119–31 [Google Scholar]
  56. Huang P, Farkas T, Zhong W, Tan M, Thornton S. et al. 2005. Norovirus and histo-blood group antigens: demonstration of a wide spectrum of strain specificities and classification of two major binding groups among multiple binding patterns. J. Virol. 79:116714–22 [Google Scholar]
  57. International Organization for Standardization (ISO) 2013. ISO/TS 15216-1, 2: 2013 Microbiology of food and animal feed – Horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR – Part 1: Method for quantification, Part 2: Method for qualitative detection. Geneva, Switzerland
  58. Jiang B, McClure HM, Fankhauser RL, Monroe SS, Glass RI. 2004. Prevalence of rotavirus and norovirus antibodies in non-human primates. J. Med. Primatol. 33:130–33 [Google Scholar]
  59. Jiang X, Wang M, Graham DY, Estes MK. 1992. Expression, self-assembly, and antigenicity of the Norwalk virus capsid protein. J. Virol. 66:116527–32 [Google Scholar]
  60. Jiang X, Wang M, Wang K, Estes MK. 1993. Sequence and genomic organization of Norwalk virus. Virology 195:51–61 [Google Scholar]
  61. Jones MK, Watanabe M, Zhu S, Graves CL, Keyes LR. et al. 2014. Enteric bacteria promote human and mouse norovirus infection of B cells. Science 346:6210755–59 [Google Scholar]
  62. Kahan SM, Liu G, Reinhard MK, Hsu CC, Livingston RS, Karst SM. 2011. Comparative murine norovirus studies reveal a lack of correlation between intestinal virus titers and enteric pathology. Virology 421:2202–10 [Google Scholar]
  63. Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW. 2014. Advances in norovirus biology. Cell Host Microbe. 15:6668–80 [Google Scholar]
  64. Karst SM, Wobus CE, Lay M, Davidson J, Virgin HW. 2003. STAT1-dependent innate immunity to a Norwalk-like virus. Science 299:56121575–78 [Google Scholar]
  65. Kim SY, Ko G. 2012. Using propidium monoazide to distinguish between viable and nonviable bacteria, MS2 and murine norovirus. Lett. Appl. Microbiol. 55:3182–88 [Google Scholar]
  66. Knight A, Li D, Uyttendaele M, Jaykus L-A. 2013. A critical review of methods for detecting human noroviruses and predicting their infectivity. Crit. Rev. Microbiol. 39:3295–309 [Google Scholar]
  67. Kostela J, Ayers M, Nishikawa J, McIntyre L, Petric M, Tellier R. 2008. Amplification by long RT-PCR of near full-length norovirus genomes. J. Virol. Methods 149:2226–30 [Google Scholar]
  68. Kovbasnjuk O, Zachos NC, In J, Foulke-Abel J, Ettayebi K. et al. 2013. Human enteroids: preclinical models of non-inflammatory diarrhea. Stem Cell Res. Ther. 4:Suppl. 1S3 [Google Scholar]
  69. Kroneman A, Vega E, Vennema H, Vinjé J, White PA. et al. 2013. Proposal for a unified norovirus nomenclature and genotyping. Arch. Virol. 158:102059–68 [Google Scholar]
  70. Lambden PR, Caul EO, Ashley CR, Clarke IN. 1993. Sequence and genome organization of a human small round-structured (Norwalk-like) virus. Science 259:5094516–19 [Google Scholar]
  71. Lamhoujeb S, Fliss I, Ngazoa SE, Jean J. 2008. Evaluation of the persistence of infectious human noroviruses on food surfaces by using real-time nucleic acid sequence-based amplification. Appl. Environ. Microbiol. 74:113349–55 [Google Scholar]
  72. Lay MK, Atmar RL, Guix S, Bharadwaj U, He H. et al. 2010. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406:11–11 [Google Scholar]
  73. Leon JS, Kingsley DH, Montes JS, Richards GP, Lyon GM. et al. 2011. Randomized, double-blinded clinical trial for human norovirus inactivation in oysters by high hydrostatic pressure processing. Appl. Environ. Microbiol. 77:155476–82 [Google Scholar]
  74. Leung WK, Chan PKS, Lee NLS, Sung JJY. 2010. Development of an in vitro cell culture model for human noroviruses and its clinical application. Hong Kong Med. J. 16:Suppl. 4S18–21 [Google Scholar]
  75. Li D, Baert L, Van Coillie E, Uyttendaele M. 2011. Critical studies on binding-based RT-PCR detection of infectious noroviruses. J. Virol. Methods 177:2153–59 [Google Scholar]
  76. Li D, Baert L, Xia M, Zhong W, Van Coillie E. et al. 2012a. Evaluation of methods measuring the capsid integrity and/or functions of noroviruses by heat inactivation. J. Virol. Methods 181:11–5 [Google Scholar]
  77. Li J, Predmore A, Divers E, Lou F. 2012b. New interventions against human norovirus: progress, opportunities, and challenges. Annu. Rev. Food Sci. Technol. 3:331–52 [Google Scholar]
  78. Lindesmith LC, Beltramello M, Donaldson EF, Corti D, Swanstrom J. et al. 2012. Immunogenetic mechanisms driving norovirus GII.4 antigenic variation. PLOS Pathog. 8:5e1002705 [Google Scholar]
  79. Lindesmith LC, Costantini V, Swanstrom J, Debbink K, Donaldson EF. et al. 2013. Emergence of a norovirus GII.4 strain correlates with changes in evolving blockade epitopes. J. Virol. 87:52803–13 [Google Scholar]
  80. Lindesmith LC, Donaldson EF, Lobue AD, Cannon JL, Zheng D-P. et al. 2008. Mechanisms of GII.4 norovirus persistence in human populations. PLOS Med. 5:2e31 [Google Scholar]
  81. Lindesmith LC, Moe C, Lependu J, Frelinger A, Treanor J, Baric RS. 2005. Cellular and humoral immunity following Snow Mountain virus challenge. J. Virol. 79:52900–9 [Google Scholar]
  82. Liu B, Clarke IN, Lambden PR. 1996. Polyprotein processing in Southampton virus: identification of 3C-like protease cleavage sites by in vitro mutagenesis. J. Virol. 70:42605–10 [Google Scholar]
  83. Liu P, Escudero B, Jaykus L-A, Montes J, Goulter RM. et al. 2013. Laboratory evidence of Norwalk virus contamination on the hands of infected individuals. Appl. Environ. Microbiol. 79:247875–81 [Google Scholar]
  84. Loisy F, Atmar RL, Guillon P, Le Cann P, Pommepuy M, Le Guyader FS. 2005. Real-time RT-PCR for norovirus screening in shellfish. J. Virol. Methods 123:11–7 [Google Scholar]
  85. Martella V, Lorusso E, Decaro N, Elia G, Radogna A. et al. 2008. Detection and molecular characterization of a canine norovirus. Emerg. Infect. Dis. 14:81306–8 [Google Scholar]
  86. Matthews JE, Dickey BW, Miller RD, Felzer JR, Dawson BP. et al. 2012. The epidemiology of published norovirus outbreaks: a review of risk factors associated with attack rate and genogroup. Epidemiol. Infect. 140:71161–72 [Google Scholar]
  87. Mattison K, Harlow J, Vanessa M, Cook A, Pollari F. et al. 2010. Enteric viruses in ready-to-eat packaged leafy greens. Clin. Infect. Dis. 16:111815–16 [Google Scholar]
  88. Maurer JJ. 2011. Rapid detection and limitations of molecular techniques. Annu. Rev. Food Sci. Technol. 2:259–79 [Google Scholar]
  89. Meyers G, Wirblich C, Thiel HJ. 1991. Rabbit hemorrhagic disease virus—molecular cloning and nucleotide sequencing of a calicivirus genome. Virology 184:2664–76 [Google Scholar]
  90. Murakami K, Kurihara C, Oka T, Shimoike T, Fujii Y. et al. 2013. Norovirus binding to intestinal epithelial cells is independent of histo-blood group antigens. PLOS ONE 8:6e66534 [Google Scholar]
  91. Nowak P, Topping JR, Bellamy K, Fotheringham V, Gray JJ. et al. 2011a. Virolysis of feline calicivirus and human GII.4 norovirus following chlorine exposure under standardized light soil disinfection conditions. J. Food Prot. 74:122113–18 [Google Scholar]
  92. Nowak P, Topping JR, Fotheringham V, Gallimore CI, Gray JJ. et al. 2011b. Measurement of the virolysis of human GII.4 norovirus in response to disinfectants and sanitisers. J. Virol. Methods 174:1–27–11 [Google Scholar]
  93. Nuanualsuwan S, Cliver DO. 2002. Pretreatment to avoid positive RT-PCR results with inactivated viruses. J. Virol. Methods 104:2217–25 [Google Scholar]
  94. Painter JA, Hoekstra RM, Ayers T, Tauxe RV, Braden CR. et al. 2013. Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg. Infect. Dis. 19:3407–15 [Google Scholar]
  95. Papafragkou E, Hewitt J, Park GW, Greening G, Vinjé J. 2013. Challenges of culturing human norovirus in three-dimensional organoid intestinal cell culture models. PLOS ONE 8:6e63485 [Google Scholar]
  96. Park GW, Barclay L, Macinga D, Charbonneau D, Pettigrew CA, Vinjé J. 2010. Comparative efficacy of seven hand sanitizers against murine norovirus, feline calicivirus, and GII.4 norovirus. J. Food Prot. 73:122232–38 [Google Scholar]
  97. Parrino TA, Schreiber DS, Trier JS, Kapikian AZ, Blacklow NR. 1977. Clinical immunity in acute gastroenteritis caused by Norwalk agent. N. Engl. J. Med. 297:286–89 [Google Scholar]
  98. Parshionikar S, Laseke I, Fout GS. 2010. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples. Appl. Environ. Microbiol. 76:134318–26 [Google Scholar]
  99. Patel MM, Widdowson M-A, Glass RI, Akazawa K, Vinjé J, Parashar UD. 2008. Systematic literature review of role of noroviruses in sporadic gastroenteritis. Emerg. Infect. Dis. 14:81224–31 [Google Scholar]
  100. Pecson BM, Ackermann M, Kohn T. 2011. Framework for using quantitative PCR as a nonculture based method to estimate virus infectivity. Environ. Sci. Technol. 45:62257–63 [Google Scholar]
  101. Pecson BM, Martin LV, Kohn T. 2009. Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UV-B radiation, and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results. Appl. Environ. Microbiol. 75:175544–54 [Google Scholar]
  102. Pfister T, Wimmer E. 2001. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J. Virol. 75:41611–19 [Google Scholar]
  103. Phillips G, Tam CC, Conti S, Rodrigues LC, Brown D. et al. 2010. Community incidence of norovirus-associated infectious intestinal disease in England: improved estimates using viral load for norovirus diagnosis. Am. J. Epidemiol. 171:91014–22 [Google Scholar]
  104. Prasad BVV, Hardy ME, Dokland T, Bella J, Rossman MG, Estes MK. 1999. X-ray crystallographic structure of the Norwalk virus capsid. Science 286:5438287–90 [Google Scholar]
  105. Rha B, Burrer S, Park S, Trivedi T, Parashar UD, Lopman BA. 2013. Emergency department visit data for rapid detection and monitoring of norovirus activity, United States. Emerg. Infect. Dis. 19:81214–21 [Google Scholar]
  106. Richards GP. 1999. Limitations of molecular biological techniques for assessing the virological safety of foods. J. Food Prot. 62:6691–97 [Google Scholar]
  107. Richards GP. 2012. Critical review of norovirus surrogates in food safety research: rationale for considering volunteer studies. Food Environ. Virol. 4:16–13 [Google Scholar]
  108. Rockx BHG, Bogers WMJM, Heeney JL, van Amerongen G, Koopmans MPG. 2005. Experimental norovirus infections in non-human primates. J. Med. Virol. 75:2313–20 [Google Scholar]
  109. Rohayem J, Mu J, Rethwilm A. 2005. Evidence of recombination in the norovirus capsid gene. J. Virol. 79:84977–90 [Google Scholar]
  110. Rohayem J, Robel I, Jäger K, Scheffler U, Rudolph W. 2006. Protein-primed and de novo initiation of RNA synthesis by norovirus 3Dpol. J. Virol. 80:147060–69 [Google Scholar]
  111. Rutjes SA, Lodder-Verschoor F, Maria ANA, Husman R. 2006. Detection of noroviruses in foods: a study on virus extraction. J. Food Prot. 69:81949–56 [Google Scholar]
  112. Sánchez G, Elizaquível P, Aznar R. 2012. Discrimination of infectious hepatitis A viruses by propidium monoazide real-time RT-PCR. Food Environ. Virol. 4:121–25 [Google Scholar]
  113. Sano D, Pintó RM, Omura T, Bosch A. 2010. Detection of oxidative damages on viral capsid protein for evaluating structural integrity and infectivity of human norovirus. Environ. Sci. Technol. 44:2808–12 [Google Scholar]
  114. Scallan E, Griffin PM, Angulo FJ, Tauxe RV, Hoekstra RM. 2011a. Foodborne illness acquired in the United States—unspecified agents. Emerg. Infect. Dis. 17:116–22 [Google Scholar]
  115. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A. et al. 2011b. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17:17–15 [Google Scholar]
  116. Schrader C, Schielke A, Ellerbroek L, Johne R. 2012. PCR inhibitors – occurrence, properties and removal. J. Appl. Microbiol. 113:51014–26 [Google Scholar]
  117. Seitz SR, Leon JS, Schwab KJ, Lyon GM, Dowd M. et al. 2011. Norovirus infectivity in humans and persistence in water. Appl. Environ. Microbiol. 77:196884–88 [Google Scholar]
  118. Shin G, Sobsey MD. 2003. Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water. Appl. Environ. Microbiol. 69:73975–78 [Google Scholar]
  119. Siebenga JJ, Beersma MFC, Vennema H, van Biezen P, Hartwig NJ, Koopmans M. 2008. High prevalence of prolonged norovirus shedding and illness among hospitalized patients: a model for in vivo molecular evolution. J. Infect. Dis. 198:7994–1001 [Google Scholar]
  120. Souza M, Azevedo MSP, Jung K, Cheetham S, Saif LJ. 2008. Pathogenesis and immune responses in gnotobiotic calves after infection with the genogroup II.4-HS66 strain of human norovirus. J. Virol. 82:41777–86 [Google Scholar]
  121. Stals A, Baert L, Van Coillie E, Uyttendaele M. 2011. Evaluation of a norovirus detection methodology for soft red fruits. Food Microbiol. 28:152–58 [Google Scholar]
  122. Straub TM, Bartholomew RA, Valdez CO, Valentine NB, Dohnalkova A. et al. 2011. Human norovirus infection of Caco-2 cells grown as a three-dimensional tissue structure. J. Water Health 9:2225–40 [Google Scholar]
  123. Straub TM, Höner zu Bentrup K, Orosz-Coghlan P, Dohnalkova A, Mayer BK. et al. 2007. In vitro cell culture infectivity assay for human noroviruses. Emerg. Infect. Dis. 13:3396–403 [Google Scholar]
  124. Subba-Reddy CV, Goodfellow I, Kao CC. 2011. VPg-primed RNA synthesis of norovirus RNA-dependent RNA polymerases by using a novel cell-based assay. J. Virol. 85:2413027–37 [Google Scholar]
  125. Sukhrie FHA, Beersma MFC, Wong A, van der Veer B, Vennema H. et al. 2011. Using molecular epidemiology to trace transmission of nosocomial norovirus infection. J. Clin. Microbiol. 49:2602–6 [Google Scholar]
  126. Swanstrom J, Lindesmith LC, Donaldson EF, Yount B, Baric RS. 2014. Characterization of blockade antibody responses in GII.2.1976 SMV infected subjects. J. Virol. 88:2829–37 [Google Scholar]
  127. Takanashi S, Saif LJ, Hughes JH, Meulia T, Jung K. et al. 2014. Failure of propagation of human norovirus in intestinal epithelial cells with microvilli grown in three-dimensional cultures. Arch. Virol. 159:2257–66 [Google Scholar]
  128. Takanashi S, Wang Q, Chen N, Shen Q, Jung K. et al. 2011. Characterization of emerging GII.g/GII.12 noroviruses from a gastroenteritis outbreak in the United States in 2010. J. Clin. Microbiol. 49:93234–44 [Google Scholar]
  129. Tam CC, Rodrigues LC, Viviani L, Dodds JP, Evans MR. et al. 2012. Longitudinal study of infectious intestinal disease in the UK (IID2 study): incidence in the community and presenting to general practice. Gut 61:169–77 [Google Scholar]
  130. Tang Q, Li D, Xu J, Wang J, Zhao Y. et al. 2010. Mechanism of inactivation of murine norovirus-1 by high pressure processing. Int. J. Food Microbiol. 137:2–3186–89 [Google Scholar]
  131. Taube S, Kolawole AO, Höhne M, Wilkinson JE, Handley SA, Perry JW. 2013. A mouse model for human norovirus. mBio 4:4e00450 [Google Scholar]
  132. Teunis PFM, Moe CL, Liu P, Miller SE, Lindesmith L. et al. 2008. Norwalk virus: how infectious is it?. J. Med. Virol. 80:1468–76 [Google Scholar]
  133. Thomas MK, Murray R, Flockhart L, Pintar K, Pollari F. et al. 2013. Estimates of the burden of foodborne illness in Canada for 30 specified pathogens and unspecified agents, circa 2006. Foodborne Pathog. Dis. 10:7639–48 [Google Scholar]
  134. Thorne LG, Goodfellow IG. 2014. Norovirus gene expression and replication. J. Gen. Virol. 95:278–91 [Google Scholar]
  135. Topping JR, Schnerr H, Haines J, Scott M, Carter MJ. et al. 2009. Temperature inactivation of feline calicivirus vaccine strain FCV F-9 in comparison with human noroviruses using an RNA exposure assay and reverse transcribed quantitative real-time polymerase chain reaction—a novel method for predicting virus infectivity. J. Virol. Methods 156:89–95 [Google Scholar]
  136. Tse H, Lau SKP, Chan W-M, Choi GKY, Woo PCY, Yuen K-Y. 2012. Complete genome sequences of novel canine noroviruses in Hong Kong. J. Virol. 86:179531–32 [Google Scholar]
  137. Tung G, Macinga D, Arbogast J, Jaykus L-A. 2013. Efficacy of commonly used disinfectants for inactivation of human noroviruses and their surrogates. J. Food Prot. 76:71210–17 [Google Scholar]
  138. van Beek J, Ambert-Balay K, Botteldoorn N, Eden JS, Fonager J. et al. 2013. Indications for worldwide increased norovirus activity associated with emergence of a new variant of genotype II.4, late 2012. Euro Surveill. 18:18–9 [Google Scholar]
  139. van den Berg H, Lodder W, van der Poel W, Vennema H, de Roda Husman AM. 2005. Genetic diversity of noroviruses in raw and treated sewage water. Res. Microbiol. 156:4532–40 [Google Scholar]
  140. Vashist S, Bailey D, Putics A, Goodfellow I. 2009. Model systems for the study of human norovirus biology. Future Virol. 4:4353–67 [Google Scholar]
  141. Vega E, Barclay L, Gregoricus N, Shirley SH, Lee D, Vinjé J. 2014. Genotypic and epidemiologic trends of norovirus outbreaks in the United States, 2009–2013. J. Clin. Microbiol. 52:1147–55 [Google Scholar]
  142. Vega E, Barclay L, Gregoricus N, Williams K, Lee D, Vinjé J. 2011. Novel surveillance network for norovirus gastroenteritis outbreaks, United States. Emerg. Infect. Dis. 17:81389–95 [Google Scholar]
  143. Verhoef L, Kouyos RD, Vennema H, Kroneman A, Siebenga J. et al. 2011. An integrated approach to identifying international foodborne norovirus outbreaks. Emerg. Infect. Dis. 17:3412–18 [Google Scholar]
  144. Verhoef L, Vennema H, van Pelt W, Lees D, Boshuizen H. et al. 2010. Use of norovirus genotype profiles to differentiate origins of foodborne outbreaks. Emerg. Infect. Dis. 16:4617–24 [Google Scholar]
  145. Verhoef L, Williams KP, Kroneman A, Sobral B, van Pelt W, Koopmans M. 2012. Selection of a phylogenetically informative region of the norovirus genome for outbreak linkage. Virus Genes 44:18–18 [Google Scholar]
  146. Vinjé J. 2015. Advances in laboratory methods for detection and typing of norovirus. J. Clin. Microbiol. 532373–81 [Google Scholar]
  147. Wang Q, Hirneisen KA, Markland SM, Kniel KE. 2013. Survival of murine norovirus, Tulane virus, and hepatitis A virus on alfalfa seeds and sprouts during storage and germination. Appl. Environ. Microbiol. 79:227021–27 [Google Scholar]
  148. Waters A, Coughlan S, Hall WW. 2007. Characterisation of a novel recombination event in the norovirus polymerase gene. Virology 363:111–14 [Google Scholar]
  149. White PA. 2014. Evolution of norovirus. Clin. Microbiol. Infect. 20:8741–45 [Google Scholar]
  150. Wobus CE, Thackray LB, Virgin HW. 2006. Murine norovirus: a model system to study norovirus biology and pathogenesis. J. Virol. 80:115104–12 [Google Scholar]
  151. Wolf S, Rivera-Aban M, Greening GE. 2009. Long-range reverse transcription as a useful tool to assess the genomic integrity of norovirus. Food Environ. Virol. 1:3–4129–36 [Google Scholar]
  152. Zheng D-P, Ando T, Fankhauser RL, Beard RS, Glass RI, Monroe SS. 2006. Norovirus classification and proposed strain nomenclature. Virology 346:2312–23 [Google Scholar]
/content/journals/10.1146/annurev-food-022814-015643
Loading
/content/journals/10.1146/annurev-food-022814-015643
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error