1932

Abstract

This article describes my early life and the chance events leading to my becoming a microbiologist and then my embarking on a career developing the plasmid biology and genetics of lactococci used in milk fermentations.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022814-015713
2015-04-10
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-022814-015713.html?itemId=/content/journals/10.1146/annurev-food-022814-015713&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson DG, McKay LL. 1977. Plasmids, loss of lactose metabolism and appearance of partial and full lactose fermenting revertants in Streptococcus cremoris B1. J. Bacteriol. 129:367–77 [Google Scholar]
  2. Anderson DG, McKay LL. 1983. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Environ. Microbiol. 46:549–52 [Google Scholar]
  3. Anderson DG, McKay LL. 1984. Genetic and physical characterization of recombinant plasmids associated with cell aggregation and high-frequency conjugal transfer in Streptococcus lactis ML3. J. Bacteriol. 158:954–62 [Google Scholar]
  4. Baldwin KA, McKay LL. 1987. Spontaneous release of temperate phage by relysogenized lactose-positive transductants of Lactococcus lactis C2. J. Dairy Sci. 70:2005–12 [Google Scholar]
  5. Chopin M-C, Chopin A, Rouault A, Calleron N. 1989. Insertion and amplification of foreign genes in the Lactococcus lactis subsp. lactis chromosome. Appl. Environ. Microbiol. 55:1769–74 [Google Scholar]
  6. Cords BR, McKay LL, Guerry P. 1974. Demonstration of extrachromosomal elements in group N streptococci. J. Bacteriol. 117:1149–52 [Google Scholar]
  7. Crow VL, Coolbear T, Gopal PK, Martley FG, McKay LL, Riepe HR. 1995. The role of autolysis of lactic acid bacteria in the ripening of cheese. Int. Dairy J. 5:855–75 [Google Scholar]
  8. Feirtag JM, McKay LL. 1987a. Isolation of Streptococcus lactis C2 mutants selected for temperature sensitivity and potential use in cheese manufacture. J. Dairy Sci. 70:1773–78 [Google Scholar]
  9. Feirtag JM, McKay LL. 1987b. Thermoinducible lysis of temperature sensitive Streptococcus cremoris strains. J. Dairy Sci. 70:1779–84 [Google Scholar]
  10. Feirtag JM, Petzel JP, Pasalodos E, Baldwin KB, McKay LL. 1991. Thermosensitive plasmid replication, temperature-sensitive host growth, and chromosomal plasmid integration conferred by Lactococcus lactis subsp. cremoris lactose plasmids in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 57:539–48 [Google Scholar]
  11. Froseth BR, Harlander SK, McKay LL. 1988a. Plasmid-mediated reduced phage sensitivity in Streptococcus lactis KR5. J. Dairy Sci. 71:275–84 [Google Scholar]
  12. Froseth BR, Herman RE, McKay LL. 1988b. Cloning of nisin resistance and replication origin on 7.6-kilobase EcoRI fragment of pNP40 from Streptococcus lactis subsp. diacetylactis DRC3. Appl. Environ. Microbiol. 54:2136–39 [Google Scholar]
  13. Froseth BR, McKay LL. 1991. Development and application of pFM011 as a possible food-grade cloning vector. J. Dairy Sci. 74:1445–53 [Google Scholar]
  14. Gasson MJ, Davies FL. 1980. High-frequency conjugation associated with Streptococcus lactis donor cell aggregation. J. Bacteriol. 143:1260–64 [Google Scholar]
  15. Guerry P, LeBlanc DJ, Falkow S. 1973. General method for the isolation of plasmid deoxyribonucleic acid. J. Bacteriol. 116:1064–66 [Google Scholar]
  16. Hengstenberg WJ, Egan JB, Morse ML. 1967. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives and evidence for a new enzyme splitting lactose phosphate. Proc. Natl. Acad. Sci. USA 58:274–79 [Google Scholar]
  17. Herman RE, McKay LL. 1986. Cloning and expression of the β-D-galactosidase gene from Streptococcus thermophilus in Escherichia coli. Appl. Environ. Microbiol. 52:45–50 [Google Scholar]
  18. Hirsch A. 1952. The evolution of the lactic streptococci. J. Dairy Res. 19:290–93 [Google Scholar]
  19. Horng JS, Polzin KM, McKay LL. 1991. Replication and temperature-sensitive maintenance functions of the lactose plasmid pSK11L from Lactococcus lactis subsp. cremoris. J. Bacteriol. 173:7573–81 [Google Scholar]
  20. Kempler GM, McKay LL. 1979a. Characterization of plasmid deoxyribonucleic acid in Streptococcus lactis subsp. diacetylactis: evidence for plasmid linked citrate utilization. Appl. Environ. Microbiol. 37:316–23 [Google Scholar]
  21. Kempler GM, McKay LL. 1979b. Genetic evidence for plasmid-linked lactose metabolism in Streptococcus lactis subsp. diacetylactis. Appl. Environ. Microbiol. 37:1041–43 [Google Scholar]
  22. Kempler GM, McKay LL. 1980. An improved medium for the detection of citrate fermenting Streptococcus lactis subsp. diacetylactis. Appl. Environ. Microbiol. 39:926–27 [Google Scholar]
  23. Klaenhammer TR, McKay LL, Baldwin KA. 1978. Improved lysis of group N streptococci for isolation and rapid characterization of plasmid deoxyribonucleic acid. Appl. Environ. Microbiol. 35:592–600 [Google Scholar]
  24. Kondo JK, McKay LL. 1982. Transformation of Streptococcus lactis protoplasts by plasmid deoxyribonucleic acid. Appl. Environ. Microbiol. 43:1213–15 [Google Scholar]
  25. Kondo JK, McKay LL. 1984. Plasmid transformation of Streptococcus lactis protoplasts: optimization and use in molecular cloning. Appl. Environ. Microbiol. 48:252–59 [Google Scholar]
  26. Krishnaswamy MA, Babel FJ. 1951. Biacetyl production by cultures of lactic acid-producing streptococci. J. Dairy Sci. 34:374–78 [Google Scholar]
  27. Kuhl SA, Larsen LD, McKay LL. 1979. Plasmid profiles of lactose-negative and proteinase-deficient mutants of Streptococcus lactis C10, ML3 and M18. Appl. Environ. Microbiol. 37:1193–95 [Google Scholar]
  28. Laible NJ, Rule PL, Harlander SK, McKay LL. 1987. Identification and cloning of plasmid DNA coding for abortive phage infection from Streptococcus lactis subsp. diacetylactis. J. Dairy Sci. 70:2211–19 [Google Scholar]
  29. Lambowitz AM, Zimmerly S. 2004. Mobile group II introns. Annu. Rev. Genet. 38:1–35 [Google Scholar]
  30. Larsen LD, McKay LL. 1978. Isolation and characterization of plasmid deoxyribonucleic acid in Streptococcus cremoris. Appl. Environ. Microbiol. 36:944–52 [Google Scholar]
  31. Leenhouts K, Kok J, Venema G. 1990. Stability of integrated plasmids in the chromosome of Lactococcus lactis. Appl. Environ. Microbiol. 56:2726–35 [Google Scholar]
  32. McIntyre DA, Harlander SK. 1989. Improved electroporation efficiency of intact Lactococcus lactis subsp. lactis cells grown in defined media. Appl. Environ. Microbiol. 55:2621–26 [Google Scholar]
  33. McKay LL, Baldwin KA. 1973. Induction of prophage in Streptococcus lactis C2 by ultraviolet irradiation. Appl. Microbiol. 25:682–84 [Google Scholar]
  34. McKay LL, Baldwin KA. 1974a. Altered metabolism in a Streptococcus lactis C2 mutant deficient in lactic dehydrogenase. J. Dairy Sci. 57:181–86 [Google Scholar]
  35. McKay LL, Baldwin KA. 1974b. Simultaneous loss of proteinase and lactose utilizing enzyme activities in Streptococcus lactis and reversal of loss by transduction. Appl. Microbiol. 28:342–46 [Google Scholar]
  36. McKay LL, Baldwin KA. 1975. Plasmid distribution and evidence for a proteinase plasmid in Streptococcus lactis. Appl. Microbiol. 29:546–48 [Google Scholar]
  37. McKay LL, Baldwin KA. 1978. Stabilization of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol 36:360–67 [Google Scholar]
  38. McKay LL, Baldwin KA. 1984. A conjugative 40 megadalton plasmid in Streptococcus lactis subsp. diacetylactis DRC3 is associated with resistance to nisin and bacteriophage. Appl. Environ. Microbiol. 47:68–74 [Google Scholar]
  39. McKay LL, Baldwin KA, Efstathiou JD. 1976. Transductional evidence for plasmid linkage of lactose metabolism in Streptococcus lactis C2. Appl. Environ. Microbiol. 32:45–52 [Google Scholar]
  40. McKay LL, Baldwin KA, Walsh PM. 1980. Conjugal transfer of genetic information in group N streptococci. Appl. Environ. Microbiol. 40:84–91 [Google Scholar]
  41. McKay LL, Baldwin KA, Zottola EA. 1972. Loss of lactose metabolism in lactic streptococci. Appl. Microbiol. 23:1090–96 [Google Scholar]
  42. McKay LL, Bohanon MJ, Polzin KM, Rule PL, Baldwin KA. 1989. Localization of separate genetic loci for reduced sensitivity towards small isometric-headed bacteriophage skl and prolate-headed bacteriophage c2 on pGBK17 from Lactococcus lactis subsp. lactis KR2. Appl. Environ. Microbiol. 55:2702–9 [Google Scholar]
  43. McKay LL, Cords BR, Baldwin KA. 1973. Transduction of lactose metabolism in Streptococcus lactis C2. J. Bacteriol. 115:810–15 [Google Scholar]
  44. McKay LL, Miller A, Sandine WE, Elliker PR. 1970. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. J. Bacteriol. 102:804–9 [Google Scholar]
  45. McKay LL, Walter LA, Sandine WE, Elliker PR. 1969. Involvement of phosphoenolpyruvate in lactose utilization by group N streptococci. J. Bacteriol. 99:603–10 [Google Scholar]
  46. McLandsborough LA, Kolaetis KM, Requena T, McKay LL. 1995. Cloning and characterization of the abortive infection genetic determinant abiD isolated from pBF61 of Lactococcus lactis subsp. lactis KR5. Appl. Environ. Microbiol. 61:2023–26 [Google Scholar]
  47. McLandsborough LA, Sechaud L, McKay LL. 1998. Synergistic effects of abiE or abiF from pNP40 when cloned in combination with abiD from pBF61. J. Dairy Sci. 81:362–68 [Google Scholar]
  48. Mills DA, Manias DA, McKay LL, Dunny GM. 1997. Homing of a group II intron from Lactococcus lactis subsp. lactis ML3. J. Bacteriol. 179:6107–11 [Google Scholar]
  49. Mills DA, McKay LL, Dunny GM. 1996. Splicing of a Group II intron involved in the conjugative transfer of pRS01 in lactococci. J. Bacteriol. 178:3531–38 [Google Scholar]
  50. Mills DA, Phister TG, Dunny GM, McKay LL. 1998. An origin of transfer (oriT) on the conjugative element pRS01 from Lactococcus lactis subsp. lactis ML3. Appl. Environ. Microbiol. 64:1541–42 [Google Scholar]
  51. Murphy MC, Steele JL, Daly C, McKay LL. 1988. Concomitant conjugal transfer of reduced bacteriophage sensitivity mechanisms with lactose and sucrose fermenting ability in lactic streptococci. Appl. Environ. Microbiol. 54:1951–56 [Google Scholar]
  52. Park C, McKay LL. 1975. Induction of prophage in lactic streptococci isolated from commercial dairy starter cultures. J. Milk Food Technol. 38:594–97 [Google Scholar]
  53. Polzin KM, McKay LL. 1991. Identification, DNA sequence, and distribution of IS981, a new, high copy number insertion sequence in lactococci. Appl. Environ. Microbiol. 57:734–43 [Google Scholar]
  54. Polzin KM, McKay LL. 1992. Development of a lactococcal integration vector by using IS981 and a temperature-sensitive lactococcal replication region. Appl. Environ. Microbiol. 58:476–84 [Google Scholar]
  55. Polzin KM, Shimizu-Kadota M. 1987. Identification of a new insertion element similar to gram-negative IS26, on the lactose plasmid of Streptococcus lactis ML3. J. Bacteriol. 169:5481–84 [Google Scholar]
  56. Riepe HR, McKay LL. 1994. Oversecretion of the neutral protease from Bacillus subtilis in Lactococcus lactis spp. lactis JF254. J. Dairy Sci. 77:2150–59 [Google Scholar]
  57. Riepe HR, Pillidge CJ, Gopal PK, McKay LL. 1997. Characterization of the highly autolytic Lactococcus lactis subsp. cremoris strains CO and 2250. Appl. Environ. Microbiol. 63:3757–63 [Google Scholar]
  58. Sandine WE, Elliker PR, Anderson AW. 1957. A simple apparatus for measurement of gas production and activity of lactic starter cultures. Milk Prod. J. 48:12–15 [Google Scholar]
  59. Scherwitz KM, Baldwin KA, McKay LL. 1983. Plasmid linkage of a bacteriocin-like substance in Streptococcus lactis subsp. diacetylactis strain WM4: transferability to Streptococcus lactis. Appl. Environ. Microbiol. 45:1506–8 [Google Scholar]
  60. Scherwitz-Harmon KM, McKay LL. 1987. Restriction enzyme analysis of lactose and bacteriocin plasmids from Streptococcus lactis subsp. diacetylactis WM4 and cloning of Bc1I fragments coding for bacteriocin production. Appl. Environ. Microbiol. 53:1171–74 [Google Scholar]
  61. Snook RJ, McKay LL. 1981. Conjugal transfer of lactose-fermenting ability among Streptococcus cremoris and Streptococcus lactis. Appl. Environ. Microbiol. 43:904–11 [Google Scholar]
  62. Snook RJ, McKay LL, Ahlstrand GG. 1981. Transduction of lactose metabolism by Streptococcus cremoris C3 temperate phage. Appl. Environ. Microbiol. 43:897–903 [Google Scholar]
  63. Steele JL, McKay LL. 1989. Conjugal transfer of genetic material in lactococci: a review. J. Dairy Sci. 72:3388–97 [Google Scholar]
  64. Steele JL, Murphy MC, Daly C, McKay LL. 1989. DNA-DNA homology among lactose- and sucrose-fermenting transconjugants from Lactococcus lactis strains exhibiting reduced bacteriophage sensitivity. Appl. Environ. Microbiol. 55:2410–13 [Google Scholar]
  65. Stoddard GW, Petzel JP, Van Belkum MN, Kok J, McKay LL. 1992. Molecular analyses of the Lactococcin A gene cluster from Lactococcus lactis subsp. lactis biovar diacetylactis WM4. Appl. Environ. Microbiol 58:1952–61 [Google Scholar]
  66. Stoddard GW, Richardson GH. 1986. Effect of proteolytic activity of Streptococcus cremoris on cottage cheese yields. J. Dairy Sci. 69:9–14 [Google Scholar]
  67. Tynkkynen S, Buist G, Kunji E, Kok J, Poolman B. et al. 1993. Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J. Bacteriol. 175:7523–32 [Google Scholar]
  68. van de Guchte MJ, Kodde J, van der Vossen JMBM, Kok J, Venema G. 1990. Heterologous gene expression in Lactococcus lactis subsp. lactis: synthesis, secretion, and processing of the Bacillus subtilis neutral protease. Appl. Environ. Microbiol. 56:2606–11 [Google Scholar]
  69. Walsh PM, McKay LL. 1981. Recombinant plasmid associated with cell aggregation and high-frequency conjugation of Streptococcus lactis ML3. J. Bacteriol. 146:937–44 [Google Scholar]
  70. Wang H, Yu W, Coolbear T, O'Sullivan D, McKay LL. 1998. A deficiency in aspartate biosynthesis in Lactococcus lactis subsp. lactis C2 causes slow milk coagulation. Appl. Environ. Microbiol. 64:1673–79 [Google Scholar]
  71. Yu W, Gillies K, Kondo JK, Broadbent JR, McKay LL. 1996. Loss of plasmid-mediated oligopeptide transport system in lactococci: another reason for slow milk coagulation. Plasmid 35:145–55 [Google Scholar]
/content/journals/10.1146/annurev-food-022814-015713
Loading
/content/journals/10.1146/annurev-food-022814-015713
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error