1932

Abstract

It is now well documented that the diet has a significant impact on human health and well-being. However, the complete set of small molecule metabolites present in foods that make up the human diet and the role of food production systems in altering this food metabolome are still largely unknown. Metabolomic platforms that rely on nuclear magnetic resonance (NMR) and mass spectrometry (MS) analytical technologies are being employed to study the impact of agricultural practices, processing, and storage on the global chemical composition of food; to identify novel bioactive compounds; and for authentication and region-of-origin classifications. This review provides an overview of the current terminology, analytical methods, and compounds associated with metabolomic studies, and provides insight into the application of metabolomics to generate new knowledge that enables us to produce, preserve, and distribute high-quality foods for health promotion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022814-015721
2016-02-28
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/food/7/1/annurev-food-022814-015721.html?itemId=/content/journals/10.1146/annurev-food-022814-015721&mimeType=html&fmt=ahah

Literature Cited

  1. Adahchour M, Beens J, Brinkman UATh. 2008. Recent developments in the application of comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1186:67–108 [Google Scholar]
  2. Adahchour M, Wiewel J, Verdel R, Vreuls RJJ, Brinkman UATh. 2005. Improved determination of flavour compounds in butter by solid-phase (micro)extraction and comprehensive two-dimensional gas chromatography. J. Chromatogr. A 1086:99–106 [Google Scholar]
  3. Allwood JW, Cheung W, Xu Y, Mumm R, De Vos RCH. et al. 2014. Metabolomics in melons: a new opportunity for aroma analysis. Phytochemistry 99:61–72 [Google Scholar]
  4. Alvarez S, Marsh EL, Schroeder SG, Schachtman DP. 2008. Metabolomic and proteomic changes in the xylem sap of maize under drought. Plant Cell Environ. 31:325–40 [Google Scholar]
  5. Argyri AA, Mallouchos A, Panagou EZ, Nychas GJ. 2015. The dynamics of the HS/SPME-GC/MS as a tool to assess the spoilage of minced beef stored under different packaging and temperature conditions. Int. J. Food Microbiol. 193:51–58 [Google Scholar]
  6. Ashihara H, Crozier A. 2001. Caffeine: a well known but little mentioned compound in plant science. Trends Plant Sci. 8:407–13 [Google Scholar]
  7. Barsch A, Patschkowski T, Niehaus K. 2004. Comprehensive metabolite profiling of Sinorhizobium meliloti using gas chromatography-mass spectrometry. Funct. Integr. Genomics 4:219–30 [Google Scholar]
  8. Bedair M, Sumner LW. 2008. Current and emerging mass-spectrometry technologies for metabolomics. Trends Anal. Chem. 27:238–50 [Google Scholar]
  9. Begley P, Francis-McIntyre S, Dunn WB, Broadhurst DI, Halsall A. et al. 2009. Development and performance of a gas chromatography–time-of-flight mass spectrometry analysis for large-scale nontargeted metabolomic studies of human serum. Anal. Chem. 81:7038–46 [Google Scholar]
  10. Beleggia R, Platani C, Papa R, Chio AD, Barros E. et al. 2011. Metabolomics and food processing: from semolina to pasta. J. Agric. Food Chem. 29:9366–77 [Google Scholar]
  11. Bérdy J. 2005. Bioactive microbial metabolites. J. Antibiot. 58:11–26 [Google Scholar]
  12. Bernillon S, Biais B, Deborde C, Maucourt M, Cabasson C. et al. 2013. Metabolomic and elemental profiling of melon fruit quality as affected by genotype and environment. Metabolomics 9:57–77 [Google Scholar]
  13. Bölling C, Fiehn O. 2005. Metabolite profiling of Chlamydomonas reinhardtii under nutrient deprivation. Plant Physiol. 139:1995–2005 [Google Scholar]
  14. Caligiani A, Coisson JD, Travaglia F, Acquotti D, Palla G. et al. 2014. Application of 1H NMR for the charactarisation and authentication of “Tonda Gentile Trilobata” hazelnuts from Piedmont (Italy). Food Chem. 148:77–85 [Google Scholar]
  15. Calingacion MN, Boualaphanh C, Daygon VD, Anacleto R, Hamilton RS. et al. 2012. A genomics and multi-platform metabolomics approach to identify new traits of rice quality in traditional and improved varieties. Metabolomics 8:771–83 [Google Scholar]
  16. Capanoglu E, Beekwilder J, Boyacioglu D, Hall R, De Vos R. 2008. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 56:964–73 [Google Scholar]
  17. Castro CC, Martins RC, Teixeira JA, Ferreira ACS. 2014. Application of a high-throughput process analytical technology metabolomics pipeline to Port wine forced ageing process. Food Chem. 143:384–91 [Google Scholar]
  18. Cevallos-Cevallos JM, Reyes-De-Corcuera JI, Etxeberria E, Danyluk MD, Rodrick GE. 2009. Metabolomic analysis in food science: a review. Trends Food Sci. Technol. 20:11–12557–66 [Google Scholar]
  19. Choi MY, Choi W, Park JH, Lim J, Kwon SW. 2010. Determination of coffee origins by integrated metabolomics approach of combining multiple analytical data. Food Chem. 121:1260–68 [Google Scholar]
  20. Chong ESL, McGhie TK, Heyes JA, Stowell KM. 2013. Metabolite profiling and quantification of phytochemicals in potato extracts using ultra-high-performance liquid chromatography-mass spectrometry. J. Sci. Food Agric. 93:3801–8 [Google Scholar]
  21. Clausen MR, Edelenbos M, Bertram HC. 2014. Mapping the variation of the carrot metabolome using 1H NMR spectroscopy and consenus PCA. J. Agric. Food Chem. 62:194392–98 [Google Scholar]
  22. Crozier A, Clifford MN, Ashihara H. 2006a. Plant Secondary Metabolism Occurrence, Structure, and Role in the Human Diet Oxford: Blackwell Publ
  23. Crozier A, Jaganath IB, Clifford MN. 2006b. Phenols, polyphenols and tannins: an overview.. See Crozier et al. 2006a 1–24
  24. Cuthbertson D, Andrews PK, Reganold JP, Davies NM, Lange BM. 2012. Utility of metabolomics toward assessing the metabolic basis of quality traits in apple fruit with an emphasis on antioxidants. J. Agric. Food Chem. 60:8552–60 [Google Scholar]
  25. Denkert C, Budczies J, Weichert W, Wohlgemuth G, Scholz M. et al. 2008. Metabolite profiling of human colon carcinoma: deregulation of TCA cycle and amino acid turnover. Mol. Cancer 7:72–86 [Google Scholar]
  26. De Vos R, Moco S, Lommen A, Keurentjes J, Bino RJ, Hall RD. 2007. Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nat. Protoc. 2:778–91 [Google Scholar]
  27. Dunn WB, Erban A, Weber RJM, Creek DJ, Brown M. et al. 2013. Mass appeal: metabolite identification in mass spectrometry–focused untargeted metabolomics. Metabolomics 9:144–66 [Google Scholar]
  28. Egan G. 1998. Yeyuka. The Year's Best Science Fiction: Fifteenth Annual Collection G. Dozois 418–31 New York: St. Martin's Griffin [Google Scholar]
  29. Fahey JW, Zalcmann AT, Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51 [Google Scholar]
  30. Fiehn O. 2001. Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks. Comp. Funct. Genomics 2:155–68 [Google Scholar]
  31. Fiehn O, Kopka J, Dörmann P, Altmann T, Trethewey RN, Willmitzer L. 2000. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18:1157–61 [Google Scholar]
  32. Fortes AM, Agudelo-Romero P, Silva MS, Ali K, Sousa L. et al. 2011. Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening. BMC Plant Biol. 11:149–83 [Google Scholar]
  33. Frank T, Scholz B, Peter S, Engel KH. 2011. Metabolite profiling of barley: influence of the malting process. Food Chem. 124:948–57 [Google Scholar]
  34. Fraser PD, Bramley PM. 2004. The biosynthesis and nutritional uses of carotenoids. Prog. Lipid Res. 43:228–65 [Google Scholar]
  35. German JB, Bauman DE, Burrin DG, Failla ML, Freake HC. et al. 2004. Metabolomics in the opening decade of the 21st century: building the roads to individualized health. J. Nutr. 134:102729–32 [Google Scholar]
  36. Gómez-Romero M, Segura-Carretero A, Fernández-Gutiérrez A. 2010. Metabolite profiling and quantification of phenolic compounds in methanol extracts of tomato fruit. Phytochemistry 71:1848–64 [Google Scholar]
  37. Goodacre R, Vaidyanathan S, Bianchi G, Kell DB. 2002. Metabolic profiling using direct infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst 127:1457–62 [Google Scholar]
  38. Graham SF, Kennedy T, Chevallier O, Gordon A, Farmer L. et al. 2010. The application of NMR to study changes in polar metabolite concentrations in beef longissimus dorsi stored for different periods post mortem. Metabolomics 6:395–404 [Google Scholar]
  39. Grapov D, Wanichthanarak K, Fiehn O. 2015. MetaMapR: pathway independent metabolomic network analysis incorporating unknowns. Bioinformatics 31:162757–60 [Google Scholar]
  40. Gullberg J, Jonsson P, Nordström A, Sjöström M, Moritz T. 2004. Design of experiments: an efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331:283–95 [Google Scholar]
  41. Guo X, Lidstrom ME. 2008. Metabolite profiling analysis of Methylobacterium extorquens AM1 by comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Biotechnol. Bioeng. 99:4929–40 [Google Scholar]
  42. Herrmann K. 1976. Flavonols and flavones in food plants: a review. Int. J. Food Sci. Technol. 11:433–48 [Google Scholar]
  43. Herrmann K. 1988. On the occurrence of flavonol and flavone glycosides in vegetables. Z. Lebensm. Unters. Forsch. 186:1–5 [Google Scholar]
  44. Heuberger AL, Broeckling CD, Lewis MR, Salazar L, Bouckaert P, Prenni JE. 2012. Metabolomic profiling of beer reveals effect of temperature on non-volatile small molecules during short-term storage. Food Chem. 135:1284–89 [Google Scholar]
  45. Heuberger AL, Lewis MR, Chen M-H, Brick MA, Leach JE, Ryan EP. 2010. Metabolomic and functional genomic analyses reveal varietal differences in bioactive compounds of cooked rice. PLOS ONE 5:9e12915 [Google Scholar]
  46. Hope JL, Prazen BJ, Nilsson EJ, Lidstrom ME, Synovec RE. 2005. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection: analysis of amino acid and organic acid trimethylsilyl derivatives, with application to the analysis of metabolites in rye grass samples. Talanta 65:380–88 [Google Scholar]
  47. Humphrey AJ, Beale MH. 2006. Terpenes. See Crozier et al. 2006a 47–101
  48. Ishikura N, Sugahara K. 1979. A survey of anthocyanins in fruits of some angiosperms, II. Bot. Mag. 92:157–67 [Google Scholar]
  49. Jandrić Z, Roberts D, Rathor MN, Abrahim A, Islam M, Cannavan A. 2014. Assessment of fruit juice authenticity using UPLC-QToF MS: a metabolomics approach. Food Chem. 148:7–17 [Google Scholar]
  50. Jennings DL, Carmichael E. 1980. Anthocyanin variation in the genus Rubus. New Phytol. 84:505–13 [Google Scholar]
  51. Jiye A, Trygg J, Gullberg J, Johansson AI, Jonsson P. et al. 2005. Extraction and GC/MS analysis of the human blood plasma metabolome. Anal. Chem. 77:8086–94 [Google Scholar]
  52. Johanningsmeier SD, McFeeters RF. 2011. Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS). J. Food Sci. 76:1C168–77 [Google Scholar]
  53. Johanningsmeier SD, McFeeters RF. 2015. Metabolic footprinting of Lactobacillus buchneri strain LA1147 during anaerobic spoilage of fermented cucumbers. Int. J. Food Microbiol. 215:40–48 [Google Scholar]
  54. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G. 2015. Bioinformatics: the next frontier of metabolomics. Anal. Chem. 87:147–56 [Google Scholar]
  55. Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. 2008. Metabolomics: a global biochemical approach to drug response and disease. Annu. Rev. Pharmacol. Toxicol. 48:653–83 [Google Scholar]
  56. Kanani H, Chrysanthopoulos PK, Klapa MI. 2008. Standardizing GC-MS metabolomics. J. Chromatogr. B 871:191–201 [Google Scholar]
  57. Kim HK, Choi YH, Verpoorte R. 2010. NMR-based metabolomic analysis of plants. Nat. Protoc. 5:536–49 [Google Scholar]
  58. Kim HK, Choi YH, Verpoorte R. 2011. NMR-based plant metabolomics: Where do we stand, where do we go?. Trends Biotechnol. 29:267–75 [Google Scholar]
  59. Kim MJ, John KMM, Choi JN, Lee S, Kim AJ. et al. 2013. Changes in secondary metabolites of green tea during fermentation by Aspergillus oryzae and its effect on antioxidant potential. Food Res. Int. 53:670–77 [Google Scholar]
  60. Ko BK, Ahn HJ, Van Den Berg F, Lee CH, Hong YS. 2009. Metabolomic insight into soy sauce through 1H NMR spectroscopy. J. Agric. Food Chem. 57:6862–70 [Google Scholar]
  61. Koek MM, Muilwijk B, van der Werf MJ, Hankemeier T. 2006. Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem. 78:1272–81 [Google Scholar]
  62. Koek MM, Muilwijk B, van Stee LLP, Hankemeier T. 2008. Higher mass loadability in comprehensive two-dimensional gas chromatography–mass spectrometry for improved analytical performance in metabolomics analysis. J. Chrom. A 1186:420–29 [Google Scholar]
  63. Krishnan P, Kruger NJ, Ratcliffe RG. 2005. Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56:255–65 [Google Scholar]
  64. Kruger NJ, Troncoso-Ponce MA, Ratcliffe RG. 2008. 1H NMR metabolite fingerprinting and metabolomic analysis of perchloric acid extracts from plant tissues. Nat. Protoc. 3:1001–12 [Google Scholar]
  65. Ku KM, Choi JN, Kim J, Kim JK, Yoo LG. et al. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J. Agric. Food Chem. 58:418–26 [Google Scholar]
  66. Kubec R, Krejcova P, Mansur L, Garcia N. 2013. Flavor precursors and sensory-active sulfur compounds in Alliaceae species native to South Africa and South America. J. Agric. Food Chem. 61:1335–42 [Google Scholar]
  67. Kuehnbaum NL, Kormendi A, Britz-McKibbin P. 2013. Multisegment injection-capillary electrophoresis-mass spectrometry: a high-throughput platform for metabolomics with high data fidelity Anal. Chem. 85:10664–69 [Google Scholar]
  68. Kusano M, Fukushima A, Kobayashi M, Hayashi N, Jonsson P. et al. 2007. Application of a metabolomic method combining one-dimensional and two-dimensional gas chromatography-time-of-flight/mass spectrometry to metabolic phenotyping of natural variants in rice. J. Chromatogr. B 855:71–79 [Google Scholar]
  69. Lauxmann MA, Borsani J, Osorio S, Lombardo VA, Budde CO. et al. 2014. Deciphering the metabolic pathways influencing heat and cold responses during post-harvest physiology of peach fruit. Plant Cell Environ. 37:601–16 [Google Scholar]
  70. Lee L-S, Choi JH, Son N, Kim S-H, Park J-D. et al. 2013. Metabolomic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J. Agric. Food Chem. 61:332–38 [Google Scholar]
  71. Lee W-J, Hase K. 2014. Gut microbiota–generated metabolites in animal health and disease. Nat. Chem. Bio. 10:416–24 [Google Scholar]
  72. Leisso R, Buchanan D, Lee J, Matheis J, Rudell D. 2013. Cell wall, cell membrane, and volatile metabolism are altered by antioxidant treatment, temperature shifts, and peel necrosis during apple fruit storage. J. Agric. Food. Chem. 61:1373–87 [Google Scholar]
  73. Li X, Xu Z, Lu X, Yang X, Yin P. et al. 2009. Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: biomarker discovery for diabetes mellitus. Anal. Chem. Acta 633:257–62 [Google Scholar]
  74. Lisec J, Schauer N, Kopka J, Willmitzer L, Fernie AR. 2006. Gas chromatography mass spectrometry–based metabolite profiling in plants. Nat. Protoc. 1:387–96 [Google Scholar]
  75. López-Rituerto E, Savorani F, Avenoza A, Busto JH, Peregrina JM, Engelsen SB. 2012. Investigations of La Rioja terroir for wine production using 1H NMR metabolomics. J. Agric. Food Chem. 60:3452–61 [Google Scholar]
  76. Lopez-Sanchez P, de Vos RCH, Jonker HH, Mumm R, Hall RD. et al. 2015. Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chem. 168:348–55 [Google Scholar]
  77. Lou Q, Ma C, Wen W, Zhou J, Chen L. et al. 2011. Profiling and association mapping of grain metabolites in a subset of the core collection of Chinese rice germplasm (Oryza sativa L.). J. Agric. Food Chem. 59:9257–64 [Google Scholar]
  78. Mal M, Koh PK, Cheah PY, Chan ECY. 2009. Development and validation of a gas chromatography/mass spectrometry method for the metabolic profiling of human colon tissue. Rapid Commun. Mass Spec. 23:487–94 [Google Scholar]
  79. Marriott P, Shellie R. 2002. Principles and applications of comprehensive two-dimensional gas chromatography. Trends Anal. Chem. 21:573–83 [Google Scholar]
  80. Mazzei P, Piccolo A. 2012. 1H HRMAS-NMR metabolomics to assess quality and traceability of mozzarella cheese from Campania buffalo milk. Food Chem. 132:1620–27 [Google Scholar]
  81. Mithen R. 2006. Sulphur-containing compounds. See Crozier et al. 2006a 25–46
  82. Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J. et al. 2006. A liquid chromatography–mass spectrometry-based metabolome database for tomato. Plant Physiol. 141:1205–18 [Google Scholar]
  83. Mohler RE, Dombek KM, Hoggard JC, Young ET, Synovec RE. 2006. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells. Anal. Chem. 78:82700–9 [Google Scholar]
  84. Monteiro MS, Carvalho M, Bastos ML, Guedes de Pinho P. 2013. Metabolomic analysis for biomarker discovery: advances and challenges. Curr. Med. Chem. 20:257–71 [Google Scholar]
  85. Nicholson JK, Lindon JC, Holmes E. 1999. Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 29:1181–89 [Google Scholar]
  86. Nychas GJ, Skandamis PN, Tassou CC, Koutsoumanis KP. 2008. Meat spoilage during distribution. Meat Sci. 78:77–89 [Google Scholar]
  87. O'Hagan S, Dunn WB, Brown M, Knowles JD, Broadhurst D. et al. 2007. Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics. Anal. Chem 79:2464–76 [Google Scholar]
  88. O'Hagan S, Dunn WB, Brown M, Knowles JD, Kell DB. 2005. Closed-loop, multiobjective optimization of analytical instrumentation: gas chromatography/time-of-flight mass spectrometry of the metabolomes of human serum and of yeast fermentations. Anal. Chem 77:290–303 [Google Scholar]
  89. Overy SA, Walker HJ, Malone S, Howard TP, Baxter CJ. et al. 2005. Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J. Exp. Bot 56:287–96 [Google Scholar]
  90. Palama TL, Khatib A, Choi YH, Payet B, Fock I. et al. 2009. Metabolic changes in different developmental stages of Vanilla planifolia pods. J. Agric. Food Chem 57:7651–58 [Google Scholar]
  91. Parfitt J, Barthel M, MacNaughton. 2010. Food waste within food supply chains: quantification and potential for change to 2050. Philos. Trans. R. Soc. B 365:3065–81 [Google Scholar]
  92. Park MK, Cho IH, Lee S, Choi HK, Kwon DY, Kim YS. 2010. Metabolite profiling of Cheonggukjang, a fermented soybean paste, during fermentation by gas chromatography–mass spectrometry and principal component analysis. Food Chem 122:1313–19 [Google Scholar]
  93. Pasikanti KK, Ho PC, Chan ECY. 2008. Development and validation of a gas chromatography/mass spectrometry metabonomic platform for the global profiling of urinary metabolites. Rapid Commun. Mass Spec 22:2984–92 [Google Scholar]
  94. Pedreschi R, Franck C, Lammertyn J, Erban A, Kopka J. et al. 2009. Metabolic profiling of “Conference” pears under low oxygen stress. Postharvest Biol. Technol 51:123–30 [Google Scholar]
  95. Peluffo L, Lia V, Troglia C, Maringolo C, Norma P. et al. 2010. Metabolic profiles of sunflower genotypes with contrasting response to Sclerotinia sclerotiorum infection. Phytochemistry 71:70–80 [Google Scholar]
  96. Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi A. 2000. Plant sterols: biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric 80:939–66 [Google Scholar]
  97. Pinu FR, Edwards PJB, Jouanneau S, Kilmartin PA, Gardner RC, Villas-Boas SG. 2014. Sauvignon blanc metabolomics: grape juice metabolites affecting the development of varietal thiols and other aroma compounds in wines. Metabolomics 10:556–73 [Google Scholar]
  98. Piras C, Scano P, Locci E, Sanna R, Marincola FC. 2014. Analyzing the effects of frozen storage and processing on the metabolite profile of raw mullet roes using 1H NMR spectroscopy. Food Chem 159:71–79 [Google Scholar]
  99. Ramautar R, Somsen GW, de Jong GJ. 2015. CE-MS for metabolomics: Developments and applications in the period 2012–2014. Electrophoresis 36:212–24 [Google Scholar]
  100. Robards K, Antolovich M. 1997. Analytical chemistry of fruit bioflavonoids: a review. Analyst 122:11R–34 [Google Scholar]
  101. Robbins RJ. 2003. Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem 51:2866–87 [Google Scholar]
  102. Rocha SM, Coelho E, Zrostlíková J, Delgadillo I, Coimbra MA. 2007. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. J. Chromatogr. A 1161:292–99 [Google Scholar]
  103. Roessner-Tunali U, Hegemann B, Lytovchenko A, Carrari F, Bruedigam C. et al. 2003. Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiol 133:84–99 [Google Scholar]
  104. Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L. 2000. Simultaneous analysis of metabolites in potato tuber by gas chromatography–mass spectrometry. Plant J 23:1131–42 [Google Scholar]
  105. Rudell DR, Mattheis JP, Curry EA. 2008. Prestorage ultraviolet-white light irradiation alters apple peel metabolome. J. Agric. Food Chem 56:1138–47 [Google Scholar]
  106. Sánchez de Medina V, Calderón-Santiago M, Riachy ME, Priego-Capote F, Luque de Castro MD. 2014. High-resolution mass spectrometry to evaluate the influence of cross-breeding segregating populations on the phenolic profile of virgin olive oils. J. Sci. Food Agric 94:3100–9 [Google Scholar]
  107. Savorani F, Picone G, Badiani A, Fagioli P, Capozzi F, Engelsen SB. 2010. Metabolic profiling and aquaculture differentiation of gilthead sea bream by 1H NMR metabolomics. Food Chem 120:907–14 [Google Scholar]
  108. Schauer N, Semel Y, Roessner U, Gur A, Balbo I. et al. 2006. Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat. Biotechnol 24:4447–54 [Google Scholar]
  109. Schmidtke LM, Blackman JW, Clark AC, Grant-Preece P. 2013. Wine metabolomics: objective measures of sensory properties of Semillon from GC-MS profiles. J. Agric. Food Chem 61:11957–67 [Google Scholar]
  110. Schweiterman ML, Colguhoun TA, Jaworski EA, Bartushok LM, Gilbert JL. et al. 2014. Strawberry flavor: diverse chemical compositions, a seasonal influence, and effects on sensory perception. PLOS ONE 9:2e88446 [Google Scholar]
  111. Shellie R, Marriott P, Morrison P. 2001. Concepts and preliminary observations on the triple-dimensional analysis of complex volatile samples by using GC×GC–TOFMS. Anal. Chem 73:1336–44 [Google Scholar]
  112. Siuzdak G, Vaniya A, Keim N. 2015. Technology Showcase: What are we eating? Presented at 11th Annu. Int. Conf. Metabolomics Soc., Burlingame, CA, June 29, 2015
  113. Soga T, Ohashi Y, Ueno Y, Naraoka H, Tomita M, Nishioka T. 2003. Quantitative metabolome analysis using capillary electrophoresis mass spectrometry. J. Proteome Res 2:488–94 [Google Scholar]
  114. Spagou K, Tsoukali H, Raikos N, Gika H, Wilson ID, Theodoridis G. 2010. Hydrophilic interaction chromatography coupled to MS for metabonomic/metabolomic studies. J. Sep. Sci 33:716–27 [Google Scholar]
  115. Spanos GA, Wrolstad RE. 1992. Phenolics of apple, pear, and white grape juices and their changes with processing and storage: a review. J. Agric. Food Chem 40:1478–87 [Google Scholar]
  116. Straadt IK, Aaslyng MD, Bertram HC. 2014. An NMR-based metabolomics study of pork from different crossbreeds and relation to sensory perception. Meat Sci 96:719–28 [Google Scholar]
  117. Strack D, Vogt T, Schliemann W. 2003. Recent advances in betalain research. Phytochemistry 62:247–69 [Google Scholar]
  118. Strelkov S, von Elstermann M, Schomburg D. 2004. Comprehensive analysis of metabolites in Corynebacterium glutamicum by gas chromatography/mass spectrometry. Biol. Chem 385:853–61 [Google Scholar]
  119. Sugimoto M, Goto H, Otomo K, Ito M, Onuma H. et al. 2010. Metabolomic profiles and sensory attributes of edamame under various storage duration and temperature conditions. J. Agric. Food Chem 58:8418–25 [Google Scholar]
  120. Sugimoto M, Kaneko M, Onuma H, Sakaguchi Y, Mori M. et al. 2012. Changes in the charged metabolite and sugar profiles of pasteurized and unpasteurized Japanese sake with storage. J. Agric. Food Chem 60:2586–93 [Google Scholar]
  121. Sun J, Kou L, Geng P, Huang H, Yang T. et al. 2015. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem 63:1863–68 [Google Scholar]
  122. Thissen U, Coulier L, Overkamp KM, Jetten J, van der Werff BJC. et al. 2011. A proper metabolomics strategy supports efficient food quality improvement: a case study on tomato sensory properties. Food Qual. Preference 22:499–506 [Google Scholar]
  123. US Natl. Libr. Med 2015. The World of Shakespeare's Humors Bethesda, MD: US Natl. Libr. Med http://www.nlm.nih.gov/exhibition/shakespeare/fourhumors.html
  124. Vallverdú-Queralt A, Medina-Remón A, Casals-Ribes I, Amat M, Lamuela-Raventós RM. 2011. A metabolomics approach differentiates between conventional and organic ketchups. J. Agric. Food Chem 59:11703–10 [Google Scholar]
  125. van der Werf MJ, Overcamp KM, Muilwijk B, Koek MM, van der Werff-van der Vat BJC. et al. 2008. Comprehensive analysis of the metabolome of Pseudomonas putida S12 grown on different carbon sources. Mol. BioSyst 4:315–27 [Google Scholar]
  126. Wagner L, Trattner S, Pickova J, Gómez-Requeni P, Moazzami AA. 2014. 1H NMR-based metabolomics studies on the effect of sesamin in Atlantic salmon (Salmo salar). Food Chem 147:98–105 [Google Scholar]
  127. Wahyuni Y, Ballester A-R, Tikunov Y, de Vos RCH, Pelgrom KTB. et al. 2013. Metabolomics and molecular marker analysis to explore pepper (Capsicum sp.) biodiversity. Metabolomics 9:130–44 [Google Scholar]
  128. Weatherby D, Ferguson S. 2004. Blood Chemistry and CBC Analysis: Clinical Laboratory Testing from a Functional Perspective Ashland, OR: Bear Mt. Publ.
  129. Weckworth W, Loureiro ME, Wenzel K, Fiehn O. 2004. Differential metabolic networks unravel the effects of silent plant phenotypes. PNAS 101:207809–14 [Google Scholar]
  130. Wei F, Furihata K, Miyakawa T, Tanokura M. 2014. A pilot study of sensory-based prediction of roasted coffee bean extracts. Food Chem 152:363–69 [Google Scholar]
  131. Welthagan W, Shellie RA, Spranger J, Ristow M, Zimmermann R, Fiehn O. 2005. Comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry (GC×GC-TOF) for high resolution metabolomics: biomarker discovery on spleen tissue extracts of obese NZO compared to lean C57BL/6 mice. Metabolomics 1:165–73 [Google Scholar]
  132. Wishart DS. 2008. Metabolomics: applications to food science and nutrition research. Trends Food Sci. Technol 19:482–93 [Google Scholar]
  133. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C. et al. 2013. HMDB 3.0: the Human Metabolome Database in 2013. Nucleic Acids Res 41:D801–7 [Google Scholar]
  134. Wishart DS, Knox C, Guo AC, Eisner R, Young N. et al. 2009. HMDB: a knowledge base for the human metabolome. Nucleic Acids Res 37:D603–10 [Google Scholar]
  135. Wishart DS, Tzur D, Knox C, Eisner R, Guo AC. et al. 2007. HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–26 [Google Scholar]
  136. Yamomoto S, Shiga K, Kodama Y, Imamura M, Uchida R. et al. 2014. Analysis of the correlation between dipeptides and taste differences among soy sauces by using metabolomics-based component profiling. J. Biosci. Bioeng 118:56–63 [Google Scholar]
  137. Zhang X, Breksa AP, Mishchuk DO, Fake CE, O'Mahoney MA, Slupsky CM. 2012. Fertilisation and pesticides affect mandarin orange nutrient composition. Food Chem 134:1020–24 [Google Scholar]
  138. Zörb C, Langenkämper G, Betsche T, Niehaus K, Barsch A. 2006. Metabolite profiling of wheat grains (Triticum aestivum L.) from organic and conventional agriculture. J. Agric. Food Chem 54:8301–6 [Google Scholar]
  139. Zulak KG, Liscombe DK, Ashihara H, Facchini PJ. 2006. Alkaloids. See Crozier et al. 2006a 102–36
/content/journals/10.1146/annurev-food-022814-015721
Loading
/content/journals/10.1146/annurev-food-022814-015721
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error