There has been considerable concern related to spp. in foods, especially due to their highlighted association with neonatal infections through the ingestion of reconstituted powdered infant formula (PIF). This concern resulted in improved microbiological criteria recommendations by the Codex Alimentarius Commission and revised WHO advice on the preparation of infant feeds. In recent years, the diversity of the genus has been well described, and various detection and typing methods have been developed. This review considers our current knowledge of the genus and how DNA-sequence-based methods have contributed considerably to research into improved detection methods and more reliable identification procedures, genotyping schemes, and genomic analysis. The broader occurrence of in food ingredients, finished products, and food manufacturing environments is covered. This review also highlights the significance of clonal lineages in microbial source tracking and the use of CRISPR- array profiling.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Almajed FS, Forsythe SJ. 2016. Cronobacter sakazakii clinical isolates overcome host barriers and evade the immune response. Microb. Pathog. 90:55–63 [Google Scholar]
  2. Alsonosi A, Hariri S, Kajsik M, Orieskova M, Hanulik V. et al. 2015. The speciation and genotyping of Cronobacter isolates from hospitalised patients. Euro. J. Clin. Microbiol. 34:1979–88 [Google Scholar]
  3. Alzahrani H, Winter J, Boocock D, Girolamo L, Forsythe S. 2015. Characterisation of outer membrane vesicles from a neonatal meningitic strain of Cronobacter sakazakii. FEMS Microbiol. Letts. 362:fnv085 [Google Scholar]
  4. Arbatsky NP, Wang M, Shashkov AS, Chizhov AO, Feng L. et al. 2010. Structure of the O-polysaccharide of Cronobacter sakazakii O2 with a randomly O-acetylated l-rhamnose residue. Carbohydr. Res. 345:2090–94 [Google Scholar]
  5. Arku B, Fanning S, Jordan K. 2011. Heat adaptation and survival of Cronobacter spp. (formerly Enterobacter sakazakii). Foodborne Pathog. Dis. 8:975–81 [Google Scholar]
  6. Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G. et al. 2009. Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 9:223 [Google Scholar]
  7. Baltimore RS, Duncan RL, Shapiro ED, Edberg SC. 1989. Epidemiology of pharyngeal colonization of infants with aerobic Gram-negative rod bacteria. J. Clin. Microbiol. 27:91–95 [Google Scholar]
  8. Barreira ER, de Souza DC, de Freitas Góis P, Fernandes JC. 2003. Enterobacter sakazakii meningitis in a newborn infant: case report. Pediatria 25:65–70 [Google Scholar]
  9. Blažková M, Javurkova B, Vlach J, Goselova S, Ogrodzki P. et al. 2015. Diversity of O-antigen designations within the genus Cronobacter: from disorder to order. Appl. Environ. Microbiol. 81:5574–82 [Google Scholar]
  10. Block C, Peleg O, Minster N, Bar-Oz B, Simhon A. et al. 2002. Cluster of neonatal infections in Jerusalem due to unusual biochemical variant of Enterobacter sakazakii. Eur. Soc. Clin. Microbiol. 21:613–16 [Google Scholar]
  11. Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P. 2013. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter.. Syst. Appl. Microbiol. 36:309–19 [Google Scholar]
  12. Brengi SP, O'Brien SB, Pichel M, Iversen C, Arduino M. et al. 2012. Development and validation of a PulseNet standardized protocol for subtyping isolates of Cronobacter species. Foodborne Pathog. Dis. 9:861–67 [Google Scholar]
  13. Carleton HA, Gerner-Smidt P. 2016. Whole-genome sequencing is taking over foodborne disease surveillance. Microbe Mag 11:311–17 [Google Scholar]
  14. Carter L, Lindsey LA, Grim CJ, Sathyamoorthy V, Jarvis KG, Gopinath G. et al. 2013. Multiplex PCR assay targeting a diguanylate cyclase-encoding gene, cgcA, to differentiate species within the genus Cronobacter. Appl. Environ. Microbiol. 79:734–37 [Google Scholar]
  15. Caubilla-Barron J, Forsythe S. 2007. Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae. J. Food Prot. 70:2111–17 [Google Scholar]
  16. Caubilla-Barron J, Hurrell E, Townsend S, Cheetham P, Loc-Carrillo C. et al. 2007. Genotypic and phenotypic analysis of Enterobacter sakazakii strains from an outbreak resulting in fatalities in a neonatal intensive care unit in France. J. Clin. Microbiol. 45:3979–85 [Google Scholar]
  17. Cetinkaya E, Joseph S, Ayhan K, Forsythe SJ. 2013. Comparison of methods for the microbiological identification and profiling of Cronobacter species from ingredients used in the preparation of infant formula. Mol. Cell. Probes 27:60–64 [Google Scholar]
  18. Chap J, Jackson P, Siqueira R, Gaspar N, Quintas C. et al. 2009. International survey of Cronobacter sakazakii and other Cronobacter spp. in follow up formulas and infant foods. Int. J. Food Microbiol. 136:185–88 [Google Scholar]
  19. Chen Y, Lampel K, Hammack K. 2012. Cronobacter. In Bacteriological Analytical Manual. Washington, DC: USDA http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm289378.htm
  20. Clark NC, Hill BC, O'Hara CM, Steingrimsson O, Cooksey RC. 1990. Epidemiologic typing of Enterobacter sakazakii in two neonatal nosocomial outbreaks. Diagn. Microbiol. Infect. Dis. 13:467–72 [Google Scholar]
  21. Codex Aliment. Comm. (CAC). 2008. Code of hygienic practice for powdered formulae for infants and young children CAC/RCP Rep. 66–2008, FAO New York: [Google Scholar]
  22. Craven HM, McAuley CM, Duffy LL, Fegan N. 2010. Distribution, prevalence and persistence of Cronobacter (Enterobacter sakazakii) in the nonprocessing and processing environments of five milk powder factories. J. Appl. Microbiol. 109:1044–52 [Google Scholar]
  23. Cruz AL, Rocha-Ramirez LM, Ochoa SA, Gonzalez-Pedrajo B, Espinosa N. et al. 2011. Flagella from Cronobacter sakazakii induced an inflammatory response in human monocytes. Cytokine 56:95 [Google Scholar]
  24. Czerwicka MM, Forsythe SJ, Bychowska A, Dziadziuszko H, Kunikowska D. et al. 2010. Structure of the O-polysaccharide isolated from Cronobacter sakazakii 767. Carbohydr. Res. 345:908–13 [Google Scholar]
  25. Drudy D, O'Rourke M, Murphy M, Mullane NR, O'Mahony R. et al. 2006. Characterization of a collection of Enterobacter sakazakii isolates from environmental and food sources. Int. J. Food Microbiol. 110:127–34 [Google Scholar]
  26. Farmer JJ, Asbury MA, Hickman FW, Brenner DJ. 1980. Enterobacter sakazakii: a new species of “Enterobacteriaceae” isolated from clinical specimens. Int. J. Syst. Bacteriol. 30:569–84 [Google Scholar]
  27. Fei P, Man C, Lou B, Forsythe SJ, Chai Y, Li R. 2015. Genotyping and source tracking of Cronobacter sakazakii and C. malonaticus isolates from powdered infant formula and an infant formula production factory in China. Appl. Environ. Microbiol. 81:5430–39 [Google Scholar]
  28. Food Agric. Organ. World Health Organ. (FAO-WHO). 2004. Enterobacter sakazakii and other microorganisms in powdered infant formula. FAO-WHO Rep. Microbiol Risk Assess. 6, WHO, Geneva, Switz.. http://www.who.int/foodsafety/publications/mra6-enterobacter-sakazakii/en/
  29. Food Agric. Organ. World Health Organ. (FAO-WHO). 2006. Enterobacter sakazakii and Salmonella in powdered infant formula. FAO-WHO Rep. Microbiol Risk Assess. 10 WHO, Geneva, Switz. http://www.who.int/foodsafety/publications/micro/mra10/en/index.html
  30. Food Agric. Organ. World Health Organ. (FAO-WHO). 2008. Enterobacter sakazakii (Cronobacter spp.) in powdered follow-up formula. FAO-WHO Rep. Microbiol Risk Assess. 6 WHO, Geneva, Switz. http://www.who.int/foodsafety/publications/mra_followup/en/
  31. Forsythe S, Caubilla-Barron J, Kucerova E, Loughlin M. 2009. Bacteriocidal preparation of powdered infant milk formulae UK Food Stand. Agency Proj. Code B13010, FSA London: [Google Scholar]
  32. Forsythe SJ. 2015. New insights into the emergent bacterial pathogen Cronobacter. Food Safety: Emerging Issues, Technologies and Systems SC Ricke, JR Donaldson, CA Phillips 265–308 Amsterdam, Neth.: Elsevier [Google Scholar]
  33. Forsythe SJ, Dickins B, Jolley KA. 2014. Cronobacter, the emergent bacterial pathogen Enterobacter sakazakii comes of age; MLST and whole genome sequence analysis. BMC Genom 15:1121 [Google Scholar]
  34. Franco AA, Kothary MH, Gopinath G, Jarvis KG, Grim CJ. et al. 2011. Cpa, the outer membrane protease of Cronobacter sakazakii, activates plasminogen and mediates resistance to serum bactericidal activity. Infect. Immun. 79:1578–87 [Google Scholar]
  35. Friedemann M. 2007. Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int. J. Food Microbiol. 116:1–10 [Google Scholar]
  36. Gosney MA, Martin MV, Wright AE, Gallagher M. 2006. Enterobacter sakazakii in the mouths of stroke patients and its association with aspiration pneumonia. Eur. J. Intern. Med. 17:185–88 [Google Scholar]
  37. Grim CJ, Kothary MH, Gopinath G, Jarvis KG, Beaubrun JJ. et al. 2012. Identification and characterization of Cronobacter iron acquisition systems. Appl. Environ. Microbiol. 78:6035–50 [Google Scholar]
  38. Grissa I, Vergnaud G, Pourcel C. 2007. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinform 8:172 [Google Scholar]
  39. Hamilton JV, Lehane MJ, Braig HR. 2003. Isolation of Enterobacter sakazakii from midgut of Stomoxys calcitrans. Emerg. Infect. Dis. 9:1355–56 [Google Scholar]
  40. Hariri S, Joseph S, Forsythe SJ. 2013. Cronobacter sakazakii ST4 strains and neonatal meningitis. Emerg. Infect. Dis. 19:175–77 [Google Scholar]
  41. Harris LS, Oriel PJ. 1989. Heteropolysaccharide produced by Enterobacter sakazakii. US Patent No. 4806636
  42. Himelright I, Harris E, Lorch V, Anderson M. 2002. Enterobacter sakazakii infections associated with the use of powdered infant formula—Tennessee, 2001. J. Am. Med. Assoc. 287:2204–5 [Google Scholar]
  43. Hochel I, Ruzickova H, Krasny L, Demnerova K. 2012. Occurrence of Cronobacter spp. in retail foods. J. Appl. Microbiol. 112:1257–65 [Google Scholar]
  44. Holy O, Forsythe SJ. 2014. Cronobacter species as emerging causes of healthcare-associated infection. J. Hosp. Infect. 86:169–77 [Google Scholar]
  45. Holy O, Petrželová J, Hanulík V, Chromá M, Matoušková I. 2013. Epidemiology of Cronobacter isolates from patients admitted to the Olomouc University Hospital (Czech Republic). Epidemiol. Mikrobiol. Imunol. 63:69–72 [Google Scholar]
  46. Hurrell E, Kucerova E, Loughlin M, Caubilla-Barron J, Forsythe SJ. 2009.a Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae. Int. J. Food Microbiol. 136:227–31 [Google Scholar]
  47. Hurrell E, Kucerova E, Loughlin M, Caubilla-Barron J, Hilton A. et al. 2009.b Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect. Dis. 9:146 [Google Scholar]
  48. Int. Organ. Stand. (ISO). 2017. Microbiology of the food chain: horizontal method for the detection of Cronobacter spp ISO rep. TS22964, Int. Organ. Stand Geneva, Switz.: [Google Scholar]
  49. Iversen C, Druggan P, Forsythe SJ. 2004.a A selective differential medium for Enterobacter sakazakii. Int. J. Food Microbiol. 96:133–39 [Google Scholar]
  50. Iversen C, Forsythe S. 2003. Risk profile of Enterobacter sakazakii, an emergent pathogen associated with infant milk formula. Trends Food Sci. Technol. 14:443–54 [Google Scholar]
  51. Iversen C, Forsythe S. 2007. Comparison of media for the isolation of Enterobacter sakazakii. Appl. Environ. Microbiol. 73:48–52 [Google Scholar]
  52. Iversen C, Forsythe SJ. 2004. Isolation of Enterobacter sakazakii and other Enterobacteriaceae from powdered infant formula milk and related products. Food Microbiol 21:771–76 [Google Scholar]
  53. Iversen C, Lane M, Forsythe SJ. 2004.b The growth profile, thermotolerance and biofilm formation of Enterobacter sakazakii grown in infant formula milk. Lett. Appl. Microbiol. 38:378–82 [Google Scholar]
  54. Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I. et al. 2007. The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol. Biol. 7:64 [Google Scholar]
  55. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A. et al. 2008. Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int. J. Syst. Evol. Microbiol. 58:1442–47 [Google Scholar]
  56. Iversen C, Waddington M, Farmer JJ, Forsythe SJ. 2006. The biochemical differentiation of Enterobacter sakazakii genotypes. BMC Microbiol 6:94 [Google Scholar]
  57. Iversen C, Waddington M, On SL, Forsythe S. 2004.c Identification and phylogeny of Enterobacter sakazakii relative to Enterobacter and Citrobacter. J. Clin. Microbiol. I42:5368–70 [Google Scholar]
  58. Jackson EE, Forsythe SJ. 2016. Comparative study of Cronobacter identification according to phenotyping methods. BMC Microbiol 16:146 [Google Scholar]
  59. Jackson EE, Parra-Flores J, Fernandez-Escartin E, Forsythe SJ. 2015. Re-evaluation of a suspected Cronobacter sakazakii outbreak in Mexico. J. Food Prot. 78:1191–96 [Google Scholar]
  60. Jackson EE, Sonbol H, Masood N, Forsythe SJ. 2014. Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species C. helveticus, C. pulveris, and C. zurichensis. Food Microbiol. 44:226–35 [Google Scholar]
  61. Jacobs C, Braun P, Hammer P. 2011. Reservoir and routes of transmission of Enterobacter sakazakii (Cronobacter spp.) in a milk powder-producing plant. J. Dairy Sci. 94:3801–10 [Google Scholar]
  62. Jarvis KG, Grim CJ, Franco AA, Gopinath G, Sathyamoorthy V. et al. 2011. Molecular characterization of Cronobacter lipopolysaccharide O-antigen gene clusters and development of serotype-specific PCR assays. Appl. Environ. Microbiol. 77:4107–26 [Google Scholar]
  63. Jarvis KG, Yan QQ, Grim CJ, Power KA, Franco AA. et al. 2013. Identification and characterization of five new molecular serogroups of Cronobacter spp. Foodborne Pathog. Dis. 10:343–52 [Google Scholar]
  64. Jolley KA, Bliss CM, Bennett JS, Bratcher HB, Brehony C. et al. 2012. Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain. Microbiology 158:1005–15 [Google Scholar]
  65. Joseph S, Cetinkaya E, Drahovska H, Levican A, Figueras MJ. 2011. Cronobacter condimenti sp. nov., isolated from spiced meat and Cronobacter universalis sp. nov., a novel species designation for Cronobacter sp. genomospecies 1, recovered from a leg infection, water, and food ingredients. Int. J. Syst. Evol. Microbiol. 62:1277–83 [Google Scholar]
  66. Joseph S, Desai P, Ji Y, Cummings CA, Shih R. et al. 2012.a Comparative analysis of genome sequences covering the seven Cronobacter species. PLOS ONE 7:e49455 [Google Scholar]
  67. Joseph S, Forsythe S. 2011. Predominance of Cronobacter sakazakii sequence type 4 in neonatal infections. Emerg. Infect. Dis. 17:1713–15 [Google Scholar]
  68. Joseph S, Forsythe SJ. 2012. Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front. Food Microbiol. 3:397 [Google Scholar]
  69. Joseph S, Forsythe SJ. 2014. DNA typing methods for members of the Cronobacter genus. DNA Methods in Food Safety: Molecular Typing of Foodborne and Waterborne Bacterial Pathogens OA Oyarzabal, S. Kathariou 205–47 New York: Wiley [Google Scholar]
  70. Joseph S, Hariri S, Forsythe SJ. 2013.a Lack of continuity between Cronobacter biotypes and species as determined using multilocus sequence typing. Mol. Cell. Probes 27:137–39 [Google Scholar]
  71. Joseph S, Hariri S, Masood N, Forsythe S. 2013.b Sialic acid utilization by Cronobacter sakazakii. Microb. Inform. Exp. 3:3 [Google Scholar]
  72. Joseph S, Sonbol H, Hariri S, Desai P, McClelland M. 2012.b Diversity of the Cronobacter genus as revealed by multilocus sequence typing. J. Clin. Microbiol. 50:3031–39 [Google Scholar]
  73. Kandhai MC, Reij MW, Gorris LG, Guillaume-Gentil O, van Schothorst M. 2004. Occurrence of Enterobacter sakazakii in food production environments and households. Lancet 363:39–40 [Google Scholar]
  74. Killer J, Skřivanová E, Hochel I, Marounek M. 2015. Multilocus sequence typing of Cronobacter strains isolated from retail foods and environmental samples. Foodborne Pathog. Dis. 12:514–21 [Google Scholar]
  75. Kim H, Ryu JH, Beuchat LR. 2007. Effectiveness of disinfectants in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in a biofilm. Appl. Environ. Microbiol. 73:1256–65 [Google Scholar]
  76. Kim K, Kim KP, Choi J, Lim JA, Lee J. et al. 2010. Outer membrane proteins A (OmpA) and X (OmpX) are essential for basolateral invasion of Cronobacter sakazakii. Appl. Environ. Microbiol. 76:5188–98 [Google Scholar]
  77. Kim KP, Loessner MJ. 2008. Enterobacter sakazakii invasion in human intestinal Caco-2 cells requires the host cell cytoskeleton and is enhanced by disruption of tight junction. Infect. Immun. 76:562–70 [Google Scholar]
  78. Kothary MH, McCardell BA, Frazar CD, Deer D, Tall BD. 2007. Characterization of the zinc-containing metalloprotease encoded by zpx and development of a species-specific detection method for Enterobacter sakazakii. Appl. Environ. Microbiol. 73:4142–51 [Google Scholar]
  79. Kucerova E, Clifton SW, Xia X-Q, Long F, Porwollik S. et al. 2010. Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter species. PLOS ONE 5:e9556 [Google Scholar]
  80. Kucerova E, Joseph S, Forsythe S. 2011. The Cronobacter genus: ubiquity and diversity. Qual. Assess. Saf. Crops Foods 3:104–22 [Google Scholar]
  81. Kuzina LV, Peloquin JJ, Vacek DC, Miller TA. 2001. Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr. Microbiol. 42:290–94 [Google Scholar]
  82. Lai KK. 2001. Enterobacter sakazakii infections among neonates, infants, children, and adults. Case reports and a review of the literature. Medicine 80:113–22 [Google Scholar]
  83. Lehner A, Fricker-Feer C, Stephan R. 2012. Identification of the recently described Cronobacter condimenti by an rpoB-gene-based PCR system. J. Med. Microbiol. 61:1034–35 [Google Scholar]
  84. Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B. 2005. Biofilm formation, extracellular polysaccharide production, and cell-to-cell signaling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J. Food Prot. 68:2287–94 [Google Scholar]
  85. Lenati RF, O'Connor DL, Hébert KC, Farber JM, Pagotto FJ. 2008. Growth and survival of Enterobacter sakazakii in human breast milk with and without fortifiers as compared to powdered infant formula. Int. J. Food Microbiol. 122:171–79 [Google Scholar]
  86. Liu H, Yang Y, Cui J, Liu L, Liu H. et al. 2013. Evaluation and implementation of a membrane filter method for Cronobacter detection in drinking water. FEMS Microbiol. Lett. 344:60–68 [Google Scholar]
  87. Maclean LL, Vinogradov E, Pagotto F, Farber JM, Perry MB. 2010. The structure of the O-antigen of Cronobacter sakazakii HPB 2855 isolate involved in a neonatal infection. Carbohydr. Res. 345:1932–37 [Google Scholar]
  88. Maiden MC, van Rensburg MJ, Bray JE, Earle SG, Ford SA. et al. 2013. MLST revisited: the gene-by-gene approach to bacterial genomics. Nat. Rev. Microbiol. 11:728–36 [Google Scholar]
  89. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13:722–36 [Google Scholar]
  90. Masaki H, Asoh N, Tao M, Ikeda H, Degawa S. et al. 2001. Detection of gram-negative bacteria in patients and hospital environments at a room in geriatric wards under the infection control against MRSA. J. Jpn. Assoc. Infect. Dis. 75:144–50 [Google Scholar]
  91. Masood N, Moore K, Farbos A, Hariri S, Paszkiewicz K. et al. 2013. Draft genome sequence of the earliest Cronobacter sakazakii sequence type 4 strain NCIMB 8272. Genome Announc 2:e00585–14 [Google Scholar]
  92. Masood N, Moore K, Farbos A, Paszkiewicz K, Dickins B. et al. 2015. Genomic dissection of the 1994 Cronobacter sakazakii outbreak in a French neonatal intensive care unit. BMC Genom 16:750 [Google Scholar]
  93. Mittal R, Wang Y, Hunter CJ, Gonzalez-Gomez I, Prasadarao NV. 2009. Brain damage in newborn rat model of meningitis by Enterobacter sakazakii: a role for outer membrane protein A. Lab. Investig. 89:263–77 [Google Scholar]
  94. Mullane N, Healy B, Meade J, Whyte P, Wall PG, Fanning S. 2008. Dissemination of Cronobacter spp. (Enterobacter sakazakii) in a powdered milk protein manufacturing facility. Appl. Environ. Microbiol. 74:5913–17 [Google Scholar]
  95. Müller A, Stephan R, Fricker-Feer C, Lehner A. 2013. Genetic diversity of Cronobacter sakazakii isolates collected from a Swiss infant formula production facility. J. Food Protect. 76:883–87 [Google Scholar]
  96. Muytjens HL, Roelofs-Willems H, Jaspar GH. 1988. Quality of powdered substitutes for breast milk with regard to members of the family Enterobacteriaceae. J. Clin. Microbiol. 26:743–46 [Google Scholar]
  97. Muytjens HL, van Der Ros-van de Repe J, van Druten HA. 1984. Enzymatic profiles of Enterobacter sakazakii and related species with special reference to the alpha-glucosidase reaction and reproducibility of the test system. J. Clin. Microbiol. 20:684–86 [Google Scholar]
  98. Nadon C, Van Walle I, Gerner-Smidt P, Campos J, Chinen I, Concepcion-Acevedo J. 2017. PulseNet International: vision for the implementation of whole genome sequencing (WGS) for global food-borne disease surveillance. Eurosurveillance 22:23pii30544 [Google Scholar]
  99. Nair MK, Venkitanarayanan KS. 2006. Cloning and sequencing of the ompA gene of Enterobacter sakazakii and development of an ompA-targeted PCR for rapid detection of Enterobacter sakazakii in infant formula. Appl. Environ. Microbiol. 72:2539–46 [Google Scholar]
  100. Nazarowec-White M, Farber JM. 1997. Thermal resistance of Enterobacter sakazakii in reconstituted dried-infant formula. Lett. Appl. Microbiol. 24:9–13 [Google Scholar]
  101. Nazarowec-White M, Farber JM. 1999. Phenotypic and genotypic typing of food and clinical isolates of Enterobacter sakazakii. J. Med. Microbiol. 48:559–67 [Google Scholar]
  102. Ogrodzki P, Forsythe S. 2015. Capsular profiling of the Cronobacter genus and the association of specific Cronobacter sakazakii and C. malonaticus capsule types with neonatal meningitis and necrotizing enterocolitis. BMC Genom 16:758 [Google Scholar]
  103. Ogrodzki P, Forsythe SJ. 2016. Clustered regularly interspaced short palindromic repeats (CRISPRs)-cas loci profiling of Cronobacter sakazakii pathovars. Future Microbiol 11:1507–19 [Google Scholar]
  104. Ogrodski P, Forsythe SJ. 2017. DNA-sequence based typing of the Cronobacter genus using MLST, CRISPR-cas array, and capsular profiling. Front. Microbiol. 8:1875 [Google Scholar]
  105. Osaili T, Forsythe S. 2009. Desiccation resistance and persistence of Cronobacter species in infant formula. Int. J. Food Microbiol. 136:214–20 [Google Scholar]
  106. Pagotto FJ, Nazarowec-White M, Bidawid S, Farber JM. 2003. Enterobacter sakazakii: infectivity and enterotoxin production in vitro and in vivo. J. Food Prot. 66:370–75 [Google Scholar]
  107. Patrick ME, Mahon BE, Greene SA, Rounds J, Cronquist A. et al. 2014. Incidence of Cronobacter spp. infections, United States, 2003–2009. Emerg. Infect. Dis. 20:1520–23 [Google Scholar]
  108. Pava-Ripoll M, Goeriz Pearson RE, Miller AK, Ziobro GC. 2012. Prevalence and relative risk of Cronobacter spp., Salmonella spp., and Listeria monocytogenes associated with the body surfaces and guts of individual filth flies. Appl. Environ. Microbiol. 78:7891–902 [Google Scholar]
  109. Pitout JD, Moland ES, Sanders CC, Thomson KS, Fitzsimmons SR. 1997. Beta-lactamases and detection of beta-lactam resistance in Enterobacter spp. Antimicrob. Agents Chem. 41:35–39 [Google Scholar]
  110. Power KA, Yan Q, Fox EM, Cooney S, Fanning S. 2013. Genome sequence of Cronobacter sakazakii SP291, a persistent thermotolerant isolate derived from a factory producing powdered infant formula. Genome Announc 1:13 [Google Scholar]
  111. Proudy I, Bougle D, Coton E, Coton M, Leclercq R, Vergnaud M. 2008. Genotypic characterization of Enterobacter sakazakii isolates by PFGE, BOX-PCR and sequencing of the fliC gene. J. Appl. Microbiol. 104:26–34 [Google Scholar]
  112. Reich F, König R, von Wiese W, Klein G. 2010. Prevalence of Cronobacter spp. in a powdered infant formula processing environment. Int. J. Food Microbiol. 140:214–17 [Google Scholar]
  113. Riedel K, Lehner A. 2007. Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7:1217–31 [Google Scholar]
  114. Santos RFS, da Silva N, Junqueira VCA, Kajsik M, Forsythe S, Pereira JL. 2013. Screening for Cronobacter species in powdered and reconstituted infant formulas and from equipment used in formula preparation in maternity hospitals. Ann. Nutr. Metab. 63:62–68 [Google Scholar]
  115. Scheepe-Leberkuhne M, Wagner F. 1986. Optimization and preliminary characterization of an exopolysaccharide synthezised by Enterobacter sakazakii. Biotechnol. Lett. 8:695–700 [Google Scholar]
  116. Sonbol H, Joseph S, McAuley C, Craven H, Forsythe SJ. 2013. Multilocus sequence typing of Cronobacter spp. from powdered infant formula and milk powder production factories. Int. Dairy J. 30:1–7 [Google Scholar]
  117. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V. et al. 2014. Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris, and Enterobacter turicensis as members of Cronobacter and description of Siccibacter turicensis com. nov., Franconibacter helveticus comb. nov., and Franconibacter pulveris com. nov. Int. J. Syst. Evol. Microbiol. 64:3402–10 [Google Scholar]
  118. Stoll B, Hansen N, Fanaroff A, Lemons J. 2004. Enterobacter sakazakii is a rare cause of neonatal septicaemia or meningitis in VLBW infants. J. Pediatr. 144:821–23 [Google Scholar]
  119. Stoop B, Lehner A, Iversen C, Fanning S, Stephan R. 2009. Development and evaluation of rpoB based PCR systems to differentiate the six proposed species within the genus Cronobacter. Int. J. Food Microbiol. 136:165–68 [Google Scholar]
  120. Sun Y, Wang M, Liu H, Wang J, He X. et al. 2011. Development of an O-antigen serotyping scheme for Cronobacter sakazakii. Appl. Environ. Microbiol. 77:2209–14 [Google Scholar]
  121. Sun Y, Wang M, Wang Q, Cao B, He X. et al. 2012. Genetic analysis of the Cronobacter sakazakii O4 to O7 O-antigen gene clusters and development of a PCR assay for identification of all C. sakazakii O serotypes. Appl. Environ. Microbiol. 78:3966–74 [Google Scholar]
  122. Townsend S, Hurrell E, Forsythe S. 2008. Virulence studies of Enterobacter sakazakii isolates associated with a neonatal intensive care unit outbreak. BMC Microbiol 8:64 [Google Scholar]
  123. Townsend SM, Hurrell E, Gonzalez-Gomez I, Lowe J, Frye JG. et al. 2007. Enterobacter sakazakii invades brain capillary endothelial cells, persists in human macrophages influencing cytokine secretion and induces severe brain pathology in the neonatal rat. Microbiology 153:3538–47 [Google Scholar]
  124. Turcovsky I, Kunikova K, Drahovska H, Kaclikova E. 2011. Biochemical and molecular characterization of Cronobacter spp. (formerly Enterobacter sakazakii) isolated from foods. Anton. Leeuw. Int. J. Gen. Mol. Microbiol. 99:257–69 [Google Scholar]
  125. van Acker J, de Smet F, Muyldermans G, Bougatef A, Naessens A, Lauwers S. 2001. Outbreak of necrotizing enterocolitis associated with Enterobacter sakazakii in powdered milk formula. J. Clin. Microbiol. 39:293–97 [Google Scholar]
  126. Vlach J, Javurkova B, Karamonova L, Blazkova M, Fukal L. 2017. Novel PCR-RFLP system based on rpoB gene for differentiation of Cronobacter species. Food Microbiol 62:1–8 [Google Scholar]
  127. Vojkovska H, Karpiskova R, Orieskova M, Drahovska H. 2016. Characterization of Cronobacter spp. isolated from food of plant origin and environmental samples collected from farms and from supermarkets in the Czech Republic. Int. J. Food Microbiol. 217:130–36 [Google Scholar]
  128. World Health Organ. (WHO). 2007. Guidelines for the Safe Preparation, Storage and Handling of Powdered Infant Formula Geneva, Switz.: WHO [Google Scholar]
  129. Xu YZh, Metris A, Stasinopoulis D, Forsythe SJ, Sutherland JP. 2015. Effect of heat shock and recovery temperature on variability of single cell lag time of Cronobacter. Food Microbiol. Spec. Issue Predict. Model. Food 45:195–204 [Google Scholar]
  130. Yan Q, Power KA, Cooney S, Fox E, Gopinath GR. et al. 2013. Complete genome sequence and phenotype microarray analysis of Cronobacter sakazakii SP291: a persistent isolate cultured from a powdered infant formula production facility. Front Microbiol 4:256 [Google Scholar]
  131. Zeng H, Zhang J, Li C, Xie T, Ling N. et al. 2017. The driving force of prophages and CRISPR-Cas system in the evolution of Cronobacter sakazakii. Sci. Rep. 7:40206 [Google Scholar]
  132. Zogaj X, Bokranz W, Nimtz M, Römling U. 2003. Production of cellulose and curli fimbriae by members of the Family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immun. 71:4151–58 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error