Various methods are currently used by the food industry to investigate and prepare emulsions, encapsulates, and other structures. However, these techniques do not allow accurate control over processing variables, which can negatively impact the resultant product properties. In this context, microfluidic technology has been proposed as a powerful tool for the development of innovative food structures, given its use of small amounts of fluids and high reproducibility, resulting in monodisperse droplets and particles. These benefits prove useful when a researcher is interested in investigating the fundamental effects of specific variables while keeping the others under precise control. This review presents an overview of the use of microfluidic devices as technological tools for the preparation of innovative food products and discusses their potential for the development of tailored delivery systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abate AR, Thiele J, Weitz DA. 2011. One-step formation of multiple emulsions in microfluidics. Lab Chip 11:253–38 [Google Scholar]
  2. Abate AR, Weitz DA. 2009. High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5:2030–32 [Google Scholar]
  3. Abbaspourrad A, Carroll NJ, Kim S-H, Weitz DA. 2013.a Surface functionalized hydrophobic porous particles toward water treatment application. Adv. Mater. 25:3215–21 [Google Scholar]
  4. Abbaspourrad A, Carroll NJ, Kim S-H, Weitz DA. 2013.b Polymer microcapsules with programmable active release. J. Am. Chem. Soc. 135:7744–50 [Google Scholar]
  5. Abbaspourrad A, Datta SS, Weitz DA. 2013.c Controlling release from pH-responsive microcapsules. Langmuir 29:12697–702 [Google Scholar]
  6. Abbaspourrad A, Duncanson WJ, Lebedeva N, Kim S-H, Zhushma AP. et al. 2013.d Microfluidic fabrication of stable gas-filled microcapsules for acoustic contrast enhancement. Langmuir 29:12352–57 [Google Scholar]
  7. Adams LLA, Kodger TE, Kim S-H, Shum HC, Franke T, Weitz DA. 2012. Single step emulsification for the generation of multi-component double emulsions. Soft Matter 8:10719–24 [Google Scholar]
  8. Al-Yaari M, Hussein IA, Al-Sarkhi A, Abbad M, Chang F. 2015. Effect of water salinity on surfactant-stabilized water-oil emulsions flow characteristics. Exp. Therm. Fluid Sci. 64:54–61 [Google Scholar]
  9. Andreadou I, Iliodromitis EK, Mikros E, Constantinou M, Agalias A. et al. 2006. The olive constituent oleuropein exhibits anti-ischemic, antioxidative, and hypolipidemic effects in anesthetized rabbits. J. Nutr. 136:2213–19 [Google Scholar]
  10. Balbino TA, Aoki NT, Gasperini AAM, Oliveira CLP, Azzoni AR. et al. 2013. Continuous flow production of cationic liposomes at high lipid concentration in microfluidic devices for gene delivery applications. Chem. Eng. J. 226:423–33 [Google Scholar]
  11. Bangham AD, Horne RW. 1964. Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. Mol. Biol. 8:660–68 [Google Scholar]
  12. Baroud CN, Gallaire F, Dangla R. 2010. Dynamics of microfluidic droplets. Lab Chip 10:2032–45 [Google Scholar]
  13. Baroud CN, Willaime H. 2004. Multiphase flows in microfluidics. C. R. Phys. 5:547–55 [Google Scholar]
  14. Bauer W-AC, Fischlechner M, Abell C, Huck WTS. 2010. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 10:1814–19 [Google Scholar]
  15. Bawazer LA, McNally CS, Empson CJ, Marchant WJ, Comyn TP. et al. 2016. Combinatorial microfluidic droplet engineering for biomimetic material synthesis. Sci. Adv. 2:e1600567 [Google Scholar]
  16. Bosscher D, Van Caillie-Bertrand M, Deelstra H. 2001. Effect of thickening agents, based on soluble dietary fiber, on the availability of calcium, iron, and zinc from infant formulas. Nutrition 17:614–18 [Google Scholar]
  17. Capretto L, Mazzitelli S, Balestra C, Tosi A, Nastruzzi C. 2008. Effect of the gelation process on the production of alginate microbeads by microfluidic chip technology. Lab Chip 8:617–21 [Google Scholar]
  18. Celli GB, Ghanem A, Brooks MS-L. 2015. Bioactive encapsulated powders for functional foods—a review of methods and current limitations. Food Bioprocess Technol 8:1825–37 [Google Scholar]
  19. Celli GB, Kalt W, Brooks MS-L. 2016. Gastroretentive systems—a proposed strategy to modulate anthocyanin release and absorption for the management of diabetes. Drug Deliv 23:1892–901 [Google Scholar]
  20. Che L, Li D, Wang L, Özkan N, Chen XD, Mao Z. 2007. Effect of high-pressure homogenization on the structure of cassava starch. Int. J. Food Prop. 10:911–22 [Google Scholar]
  21. Chen C-H, Shah RK, Abate AR, Weitz DA. 2009. Janus particles templated from double emulsion droplets generated using microfluidics. Langmuir 25:4320–23 [Google Scholar]
  22. Chi Y, Yin X, Sun K, Feng S, Liu J. et al. 2017. Redox-sensitive and hyaluronic acid functionalized liposomes for cytoplasmic drug delivery to osteosarcoma in animal models. J. Control. Release 261:113–25 [Google Scholar]
  23. Choi C-H, Jung J-H, Rhee YW, Kim D-P, Shim S-E, Lee C-S. 2007. Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed. Microdevices 9:855–62 [Google Scholar]
  24. Choi C-H, Lee H, Abbaspourrad A, Kim JH, Fan J. et al. 2016. Triple emulsion drops with an ultrathin water layer: high encapsulation efficiency and enhanced cargo retention in microcapsules. Adv. Mater. 28:3340–44 [Google Scholar]
  25. Christopher GF, Noharuddin NN, Taylor JA, Anna SL. 2008. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78:036317 [Google Scholar]
  26. Chu L-Y, Utada AS, Shah RK, Kim J-W, Weitz DA. 2007. Controllable monodisperse multiple emulsions. Angew. Chem. Int. Ed. 46:8970–74 [Google Scholar]
  27. Chuah AM, Kuroiwa T, Kobayashi I, Nakajima M. 2014. The influence of polysaccharide on the stability of protein stabilized oil-in-water emulsion prepared by microchannel emulsification technique. Colloids Surf. A 440:136–44 [Google Scholar]
  28. Cicero AFG, Gaddi A. 2001. Rice bran oil and γ-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother. Res. 15:277–89 [Google Scholar]
  29. Clime L, Hoa XD, Corneau N, Morton KJ, Luebbert C. et al. 2015. Microfluidic filtration and extraction of pathogens from food samples by hydrodynamic focusing and inertial lateral migration. Biomed. Microdevices 17:17 [Google Scholar]
  30. Comunian TA, Abbaspourrad A, Favaro-Trindade CS, Weitz DA. 2014. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chem 152:271–75 [Google Scholar]
  31. Comunian TA, Ravanfar R, de Castro IA, Dando R, Favaro-Trindade CS, Abbaspourrad A. 2017.a Improving oxidative stability of echium oil emulsions fabricated by microfluidics: effect of ionic gelation and phenolic compounds. Food Chem 233:125–34 [Google Scholar]
  32. Comunian TA, Ravanfar R, Selig MJ, Abbaspourrad A. 2017.b Influence of the protein type on the stability of fish oil in water emulsion obtained by glass microfluidic device. Food Hydrocoll In press [Google Scholar]
  33. Costa ALR, Gomes A, Cunha RL. 2017.a Studies of droplets formation regime and actual flow rate of liquid-liquid flows in flow-focusing microfluidic devices. Exp. Therm. Fluid Sci. 85:167–75 [Google Scholar]
  34. Costa ALR, Gomes A, Ushikubo FY, Cunha RL. 2017.b Gellan microgels produced in planar microfluidic devices. J. Food Eng. 209:18–25 [Google Scholar]
  35. Cuadros TR, Skurtys O, Aguilera JM. 2012. Mechanical properties of calcium alginate fibers produced with a microfluidic device. Carbohydr. Polym. 89:1198–206 [Google Scholar]
  36. Datta SS, Abbaspourrad A, Amstad E, Fan J, Kim S-H. et al. 2014.a Double emulsion templated solid microcapsules: mechanics and controlled release. Adv. Mater. 26:2205–18 [Google Scholar]
  37. Datta SS, Abbaspourrad A, Weitz DA. 2014.b Expansion and rupture of charged microcapsules. Mater. Horiz. 1:92–95 [Google Scholar]
  38. De Menech M, Garstecki P, Jousse F, Stone HA. 2008. Transition from squeezing to dripping in a microfluidic T-shaped junction. J. Fluid Mech. 595:141–61 [Google Scholar]
  39. DiLauro AM, Abbaspourrad A, Weitz DA, Phillips ST. 2013. Stimuli-responsive core-shell microcapsules with tunable rates of release by using a depolymerizable poly(phthalaldehyde) membrane. Macromolecules 46:3309–13 [Google Scholar]
  40. Duncanson WJ, Lin T, Abate AR, Seiffert S, Shah RK, Weitz DA. 2012. Microfluidic synthesis of advanced microparticles for encapsulation and controlled release. Lab Chip 12:2135–45 [Google Scholar]
  41. Elizarov AM, Meinhart C, Miraghaie R, van Dam RM, Huang J. et al. 2011. Flow optimization study of a batch microfluidics PET tracer synthesizing device. Biomed. Microdevices 13:231–42 [Google Scholar]
  42. Elizarov AM, van Dam RM, Shin YS, Kolb HC, Padgett HC. et al. 2010. Design and optimization of coin-shaped microreactor chips for PET radiopharmaceutical synthesis. J. Nucl. Med. 51:282–87 [Google Scholar]
  43. Fang A, Cathala B. 2011. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release. Colloids Surf. B 82:81–86 [Google Scholar]
  44. Floury J, Desrumaux A, Lardières J. 2000. Effect of high-pressure homogenization on droplet size distributions and rheological properties of model oil-in-water emulsions. Innov. Food Sci. Emerg. Technol. 1:127–34 [Google Scholar]
  45. Fujiu KB, Kobayashi I, Uemura K, Nakajima M. 2011. Temperature effect on microchannel oil-in-water emulsification. Microfluid. Nanofluid. 10:773–83 [Google Scholar]
  46. Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM. 2006. Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6:437–46 [Google Scholar]
  47. Günther A, Jensen KF. 2006. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis. Lab Chip 6:1487–503 [Google Scholar]
  48. Guo MT, Rotem A, Heyman JA, Weitz DA. 2012. Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–55 [Google Scholar]
  49. Håkansson A, Chaudhry Z, Innings F. 2016. Model emulsions to study the mechanism of industrial mayonnaise emulsification. Food Bioprod. Process. 98:189–95 [Google Scholar]
  50. Hamedi MM, Ünal B, Kerr E, Glavan AC, Fernandez-Abedul MT, Whitesides GM. 2016. Coated and uncoated cellophane as materials for microplates and open-channel microfluidics devices. Lab Chip 16:3885–97 [Google Scholar]
  51. He Y, Battat S, Fan J, Abbaspourrad A, Weitz DA. 2017. Preparation of microparticles through co-flowing of partially miscible liquids. Chem. Eng. J. 320:144–50 [Google Scholar]
  52. Hou L, Ren Y, Jia Y, Deng X, Tang Z. et al. 2017. A simple microfluidic method for one-step encapsulation of reagents with varying concentrations in double emulsion drops for nanoliter-scale reactions and analyses. Anal. Methods 9:2511–16 [Google Scholar]
  53. Hu Y, Wang Q, Wang J, Zhu J, Wang H, Yang Y. 2012. Shape controllable microgel particles prepared by microfluidic combining external ionic crosslinking. Biomicrofluidics 6:026502 [Google Scholar]
  54. Hu Y, Wang S, Abbaspourrad A, Ardekani AM. 2015. Fabrication of shape controllable Janus alginate/pNIPAAm microgels via microfluidics technique and off-chip ionic cross-linking. Langmuir 31:1885–91 [Google Scholar]
  55. Ishii S, Segawa T, Okabe S. 2013. Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Appl. Environ. Microbiol. 79:2891–98 [Google Scholar]
  56. Jafari SM, He Y, Bhandari B. 2007. Optimization of nano-emulsions production by microfluidization. Eur. Food Res. Technol. 225:733–41 [Google Scholar]
  57. Jahn A, Reiner JE, Vreeland WN, DeVoe DL, Locascio LE, Gaitan M. 2008. Preparation of nanoparticles by continuous-flow microfluidics. J. Nanopart. Res. 10:925–34 [Google Scholar]
  58. Jahn A, Stavis SM, Hong JS, Vreeland WN, DeVoe DL, Gaitan M. 2010. Microfluidic mixing and the formation of nanoscale lipid vesicles. ACS Nano 4:2077–87 [Google Scholar]
  59. Jamieson HM. 2013. Carotenoids and health. FASEB J 27:638.10 [Google Scholar]
  60. Katouzian I, Jafari SM. 2016. Nano-encapsulation as a promising approach for targeted delivery and controlled release of vitamins. Trends Food Sci. Technol. 53:34–48 [Google Scholar]
  61. Khalid N, Kobayashi I, Wang Z, Neves MA, Uemura K. et al. 2015. Formulation characteristics of triacylglycerol oil-in-water emulsions loaded with ergocalciferol using microchannel emulsification. RSC Adv 5:97151–62 [Google Scholar]
  62. Khoo BL, Warkiani ME, Tan DS-W, Bhagat AAS, Irwin D. et al. 2014. Clinical validation of an ultra high-throughput spiral microfluidics for the detection and enrichment of viable circulating tumor cells. PLOS ONE 9:e99409 [Google Scholar]
  63. Kim B, Lee TY, Abbaspourrad A, Kim S-H. 2014. Perforated microcapsules with selective permeability created by confined phase separation of polymer blends. Chem. Mater. 26:7166–71 [Google Scholar]
  64. Kim S-H, Kim JW, Cho J-C, Weitz DA. 2011. Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 11:3162–66 [Google Scholar]
  65. Kim YW, Yoo JY. 2015. Bidirectional inward migration of particles lagging behind a Poiseuille flow in a rectangular microchannel for 3D particle focusing. J. Micromech. Microeng. 25:027002 [Google Scholar]
  66. Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fujita H. 2002. Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE J 48:1639–44 [Google Scholar]
  67. Kobayashi I, Takano T, Maeda R, Wada Y, Uemura K, Nakajima M. 2008. Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid. Nanofluid. 4:167–77 [Google Scholar]
  68. Kobayashi I, Uemura K, Nakajima M. 2007. Formulation of monodisperse emulsions using submicron-channel arrays. Colloids Surf. A 296:285–89 [Google Scholar]
  69. Lee H, Choi C-H, Abbaspourrad A, Wesner C, Caggioni M. et al. 2016. Encapsulation and enhanced retention of fragrance in polymer microcapsules. ACS Appl. Mater. Interfaces 8:4007–13 [Google Scholar]
  70. Lee SS, Abbaspourrad A, Kim S-H. 2014. Nonspherical double emulsions with multiple distinct cores enveloped by ultrathin shells. ACS Appl. Mater. Interfaces 6:1294–300 [Google Scholar]
  71. Lee W, Walker LM, Anna SL. 2009. Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys. Fluids 21:032103 [Google Scholar]
  72. Leonte II, Sehra G, Cole M, Hesketh P, Gardner JW. 2006. Taste sensors utilizing high-frequency SH-SAW devices. Sens. Actuators B. Chem. 118:349–55 [Google Scholar]
  73. Li X, Chen W, Liu G, Fu J. 2014. Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachines microfiltration membranes. Lab Chip 14:2565–75 [Google Scholar]
  74. Liu H, Li G, Sun X, He Y, Sun S, Ma H. 2015. Microfluidic generation of uniform quantum dot-encoded microbeads by gelation of alginate. RSC Adv 5:62706–12 [Google Scholar]
  75. Liu K, Ding H-J, Liu J, Chen Y, Zhao X-Z. 2006. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device. Langmuir 22:9453–57 [Google Scholar]
  76. Liu L, Wu F, Ju X-J, Xie R, Wang W. et al. 2013. Preparation of monodisperse calcium alginate microcapsules via internal gelation in microfluidic-generated double emulsions. J. Colloid Interface Sci. 404:85–90 [Google Scholar]
  77. Maan AA, Schroën K, Boom R. 2013. Monodispersed water-in-oil emulsions prepared with semi-metal microfluidic EDGE systems. Microfluid. Nanofluid. 14:187–96 [Google Scholar]
  78. Marquis M, Alix V, Capron I, Cuenot S, Zykwinska A. 2016. Microfluidic encapsulation of Pickering oil microdroplets into alginate microgels for lipophilic compound delivery. ACS Biomater. Sci. Eng. 2:535–43 [Google Scholar]
  79. Mazutis L, Vasiliauskas R, Weitz DA. 2015. Microfluidic production of alginate hydrogel particles for antibody encapsulation and release. Macromol. Biosci. 15:1641–46 [Google Scholar]
  80. Michelon M, Oliveira DRB, Furtado GF, de la Torre LG, Cunha RL. 2017. High-throughput continuous production of liposomes using hydrodynamic flow-focusing microfluidic devices. Colloids Surf. B 156:349–57 [Google Scholar]
  81. Mitropoulos AN, Perotto G, Kim S, Marelli B, Kaplan DL, Omenetto FG. 2014. Synthesis of silk fibroin micro- and submicron spheres using a co-flow capillary device. Adv. Mater 26:1105–10 [Google Scholar]
  82. Muijlwijk K, Colijn I, Harsono H, Krebs T, Berton-Carabin C, Schroën K. 2017. Coalescence of protein-stabilised emulsions studied with microfluidics. Food Hydrocoll 70:96–104 [Google Scholar]
  83. Neves MA, Ribeiro HS, Fujiu KB, Kobayashi I, Nakajima M. 2008.a Formulation of controlled size PUFA-loaded oil-in-water emulsions by microchannel emulsification using β-carotene-rich palm oil. Ind. Eng. Chem. Res. 47:6405–11 [Google Scholar]
  84. Neves MA, Ribeiro HS, Kobayashi I, Nakajima M. 2008.b Encapsulation of lipophilic bioactive molecules by microchannel emulsification. Food Biophys 3:126–31 [Google Scholar]
  85. Nisisako T, Torii T. 2007. Formation of biphasic Janus droplets in a microfabricated channel for the synthesis of shape-controlled polymer microparticles. Adv. Mater. 19:1489–93 [Google Scholar]
  86. Nisisako T, Torii T. 2008. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–93 [Google Scholar]
  87. Nisisako T, Torii T, Higuchi T. 2002. Droplet formation in a microchannel network. Lab Chip 2:24–26 [Google Scholar]
  88. Nisisako T, Torii T, Takahashi T, Takizawa Y. 2006. Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv. Mater. 18:1152–56 [Google Scholar]
  89. Obeid PJ, Christopoulos TK, Crabtree HJ, Backhouse CJ. 2003. Microfabricated device for DNA and RNA amplification by continuous-flow polymerase chain reaction and reverse transcription-polymerase chain reaction with cycle number selection. Anal. Chem. 75:288–95 [Google Scholar]
  90. Okushima S, Nisisako T, Torii T, Higuchi T. 2004. Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–8 [Google Scholar]
  91. Ortiz D, Rocheford T, Ferruzzi MG. 2016. Influence of temperature and humidity on the stability of carotenoids in biofortified maize (Zea mays L.) genotypes during controlled postharvest storage. J. Agric. Food Chem. 64:2727–36 [Google Scholar]
  92. Othman R, Vladisavljević GT, Bandulasena HCH, Nagy ZK. 2015. Production of polymeric nanoparticles by micromixing in a co-flow microfluidic glass capillary device. Chem. Eng. J. 280:316–29 [Google Scholar]
  93. Perez A, Hernández R, Velasco D, Voicu D, Mijangos C. 2015. Poly (lactic-co-glycolic acid) particles prepared by microfluidics and conventional methods. Modulated particle size and rheology. J. Colloid. Interface Sci. 441:90–97 [Google Scholar]
  94. Pessi J, Santos HA, Miroshnyk I, Yliruusi J, Weitz DA, Mirza S. 2014. Microfluidics-assisted engineering of polymeric microcapsules with high encapsulation efficiency for protein drug delivery. Int. J. Pharm. 472:82–87 [Google Scholar]
  95. Ravanfar R, Comunian TA, Dando R, Abbaspourrad A. 2018. Optimization of microcapsules shell structure to preserve labile compounds: a comparison between microfluidics and conventional homogenization method. Food Chem 241:460–67 [Google Scholar]
  96. Ren P-W, Ju X-J, Xie R, Chu L-Y. 2010. Monodisperse alginate microcapsules with oil core generated from a microfluidic device. J. Colloid Interface Sci. 343:392–95 [Google Scholar]
  97. Rodríguez-Roque MJ, de Ancos B, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O. 2015. Impact of food matrix and processing on the in vitro bioaccessibility of vitamin C, phenolic compounds, and hydrophilic antioxidant activity from fruit juice-based beverages. J. Funct. Foods 14:33–43 [Google Scholar]
  98. Romanowsky MB, Abate AR, Rotem A, Holtze C, Weitz DA. 2012. High throughput production of single core double emulsions in a parallelized microfluidic device. Lab Chip 12:802–7 [Google Scholar]
  99. Ruxton CHS, Reed SC, Simpson MJA, Millington KJ. 2004. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Diet. 17:449–59 [Google Scholar]
  100. Sahin S, Schroën K. 2015. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes. Lab Chip 15:2486–95 [Google Scholar]
  101. Sánchez MT, Ruiz MA, Lasserrot A, Hormigo M, Morales ME. 2017. An improved ionic gelation method to encapsulate Lactobacillus spp. bacteria: protection, survival and stability study. Food Hydrocoll 69:67–75 [Google Scholar]
  102. Schemberg J, Grodrian A, Römer R, Gastrock G, Lemke K. 2010. Application of segmented flow for quality control of food using microfluidic tools. Phys. Status Solidi 207:904–12 [Google Scholar]
  103. Schweiggert RM, Kopec RE, Villalobos-Gutierrez MG, Högel J, Quesada S. et al. 2014. Carotenoids are more bioavailable from papaya than from tomato and carrot in humans: a randomised cross-over study. Brit. J. Nutr. 111:490–98 [Google Scholar]
  104. Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M. et al. 2006. Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules. Langmuir 22:8618–22 [Google Scholar]
  105. Shi W, Qin J, Ye N, Lin B. 2008. Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab Chip 8:1432–35 [Google Scholar]
  106. Shui L, Eijkel JCT, van den Berg A. 2007. Multiphase flow in microfluidic systems—control and applications of droplets and interfaces. Adv. Colloid Interface Sci. 133:35–49 [Google Scholar]
  107. Silva EK, Gomes MTMS, Hubinger MD, Cunha RL, Meireles MAA. 2015. Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocoll 47:1–13 [Google Scholar]
  108. Sjostrom SL, Bai Y, Huang M, Liu Z, Nielsen J. et al. 2014. High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14:806–13 [Google Scholar]
  109. Skurtys O, Aguilera JM. 2008. Applications of microfluidic devices in food engineering. Food Biophys 3:1–15 [Google Scholar]
  110. Smith GI, Julliand S, Reeds DN, Sinacore DR, Klein S, Mittendorfer B. 2015. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 102:115–22 [Google Scholar]
  111. Souilem S, Kobayashi I, Neves MA, Jlaiel L, Isoda H. et al. 2014. Interfacial characteristics and microchannel emulsification of oleuropein-containing triglyceride oil-water systems. Food Res. Int. 62:467–75 [Google Scholar]
  112. Squires TM, Quake SR. 2005. Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77:977–1026 [Google Scholar]
  113. Stabler SP. 2013. Vitamin B12 deficiency. N. Engl. J. Med. 368:149–60 [Google Scholar]
  114. Steegmans MLJ, Schroën KGPH, Boom RM. 2009.a Characterization of emulsification at flat microchannel Y junctions. Langmuir 25:3396–401 [Google Scholar]
  115. Steegmans MLJ, Warmerdam A, Schroën KGPH, Boom RM. 2009.b Dynamic interfacial tension measurements with microfluidic Y-junctions. Langmuir 25:9751–58 [Google Scholar]
  116. Suea-Ngam A, Rattanarat P, Chailapakul O, Srisa-Art M. 2015. Electrochemical droplet-based microfluidics using chip-based carbon paste electrodes for high-throughput analysis in pharmaceutical applications. Anal. Chim. Acta 883:45–54 [Google Scholar]
  117. Sugaya S, Yamada M, Hori A, Seki M. 2013. Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent. Biomicrofluidics 7:054120 [Google Scholar]
  118. Sugiura S, Nakajima M, Iwamoto S, Seki M. 2001. Interfacial tension driven monodispersed droplet formation from microfabricated channel array. Langmuir 17:5562–66 [Google Scholar]
  119. Sugiura S, Nakajima M, Seki M. 2002.a Effect of channel structure on microchannel emulsification. Langmuir 18:5708–12 [Google Scholar]
  120. Sugiura S, Nakajima M, Seki M. 2002.b Preparation of monodispersed emulsion with large droplets using microchannel emulsification. J. Am. Oil Chem. Soc. 79:515–19 [Google Scholar]
  121. Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M. et al. 2005. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26:3327–31 [Google Scholar]
  122. Sun BJ, Shum HC, Holtze C, Weitz DA. 2010. Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl. Mater. Interfaces 2:3411–16 [Google Scholar]
  123. Tan W-H, Takeuchi S. 2007. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv. Mater. 19:2696–701 [Google Scholar]
  124. Tetradis-Meris G, Rossetti D, de Torres CP, Cao R, Lian G, Janes R. 2009. Novel parallel integration of microfluidic device network for emulsion formation. Ind. Eng. Chem. Res. 48:8881–89 [Google Scholar]
  125. Thompson AK, Couchoud A, Singh H. 2009. Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci. Technol. 89:99–113 [Google Scholar]
  126. Thorsen T, Roberts RW, Arnold FH, Quake SR. 2001. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86:4163–66 [Google Scholar]
  127. Ushikubo FY, Birribilli FS, Oliveira DRB, Cunha RL. 2014. Y- and T-junction microfluidic devices: effect of fluids and interface properties and operating conditions. Microfluid. Nanofluid. 17:711–20 [Google Scholar]
  128. Ushikubo FY, Oliveira DRB, Michelon M, Cunha RL. 2015. Designing food structure using microfluidics. Food Eng. Rev. 7:393–416 [Google Scholar]
  129. Utada AS, Fernandez-Nieves A, Stone HA, Weitz DA. 2007. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99:094502 [Google Scholar]
  130. Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA. 2005. Monodisperse double emulsions generated from a microcapillary device. Science 308:537–41 [Google Scholar]
  131. van der Graaf S, Nisisako T, Schroën CGPH, van der Sman RGM, Boom RM. 2006. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel. Langmuir 22:4144–52 [Google Scholar]
  132. van der Graaf S, Steegmans MLJ, van der Sman RGM, Schroën CGPH, Boom RM. 2005. Droplet formation in a T-shaped microchannel junction: a model system for membrane emulsification. Colloids Surf. A 266:106–16 [Google Scholar]
  133. van Dijke KC, de Ruiter R, Schroën K, Boom R. 2010.a The mechanism of droplet formation in microfluidic EDGE systems. Soft Matter 6:321–30 [Google Scholar]
  134. van Dijke KC, Schroën K, van der Padt A, Boom R. 2010.b EDGE emulsification for food-grade dispersions. J. Food Eng. 97:348–54 [Google Scholar]
  135. van Swaay D, deMello A. 2013. Microfluidic methods for forming liposomes. Lab Chip 13:752–67 [Google Scholar]
  136. Vladisavljević GT, Laouini A, Charcosset C, Fessi H, Bandulasena HCH, Holdich RG. 2014. Production of liposomes using microengineered membrane and co-flow microfluidic device. Colloids Surf. A 458:168–77 [Google Scholar]
  137. Walker RM, Decker EA, McClements DJ. 2015. Physical and oxidative stability of fish oil nanoemulsions produced by spontaneous emulsification: effect of surfactant concentration and particle size. J. Food Eng. 164:10–20 [Google Scholar]
  138. Wang GR, Yang F, Zhao W. 2014. There can be turbulence in microfluidics at low Reynolds number. Lab Chip 14:1452–58 [Google Scholar]
  139. Wang L, Pileni M-P. 2016. Encapsulation of zwitterionic Au nanocrystals into liposomes by reverse phase evaporation method: influence of the surface charge. Langmuir 32:12370–77 [Google Scholar]
  140. Whitesides GM. 2006. The origins and the future of microfluidics. Nature 442:368–73 [Google Scholar]
  141. Xi H-D, Guo W, Leniart M, Chong ZZ, Tan SH. 2016. AC electric field induced droplet deformation in a microfluidic T-junction. Lab Chip 16:2982–86 [Google Scholar]
  142. Xia N, Hunt TP, Mayers BT, Alsberg E, Whitesides GM. et al. 2006. Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices 8:299–308 [Google Scholar]
  143. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS. et al. 2009. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery. Small 5:1575–81 [Google Scholar]
  144. Xu S, Nie Z, Seo M, Lewis P, Kumacheva E. et al. 2005. Generation of monodisperse particles by using microfluidics: control over size, shape, and composition. Angew. Chem. Int. Ed. 117:734–38 [Google Scholar]
  145. Ye N, Qin J, Shi W, Liu X, Lin B. 2007. Cell-based high content screening using an integrated microfluidic device. Lab Chip 7:1696–704 [Google Scholar]
  146. Yeh C-H, Zhao Q, Lee S-J, Lin Y-C. 2009. Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles. Sens. Actuators A Phys. 151:231–36 [Google Scholar]
  147. Yuan Y, Gao Y, Zhao J, Mao L. 2008. Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res. Int. 41:61–68 [Google Scholar]
  148. Zeeb B, Saberi AH, Weiss J, McClements DJ. 2015. Retention and release of oil-in-water emulsions from filled hydrogel beads composed of calcium alginate: impact of emulsifier type and pH. Soft Matter 11:2228–36 [Google Scholar]
  149. Zhang H, Tumarkin E, Peerani R, Nie Z, Sullan RMA. et al. 2006. Microfluidic production of biopolymer microcapsules with controlled morphology. J. Am. Chem. Soc. 128:12205–10 [Google Scholar]
  150. Zhang H, Tumarkin E, Sullan RMA, Walker GC, Kumacheva E. 2007. Exploring microfluidic routes to microgels of biological polymers. Macromol. Rapid Commun. 28:527–38 [Google Scholar]
  151. Zhang JM, Aguirre-Pablo AA, Li EQ, Buttner U, Thoroddsen ST. 2016.a Droplet generation in cross-flow for cost-effective 3D-printed “plug-and-play” microfluidic devices. RSC Adv 6:81120–29 [Google Scholar]
  152. Zhang R, Zhang Z, Zou L, Xiao H, Zhang G. et al. 2016.b Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets. Food Funct 7:93–103 [Google Scholar]
  153. Zhang W, Abbaspourrad A, Chen D, Campbell E, Zhao H. et al. 2017. Osmotic pressure triggered rapid release of encapsulated enzymes with enhanced activity. Adv. Funct. Mater. 2017:1700975 [Google Scholar]
  154. Zhang Y, Kobayashi I, Neves MA, Uemura K, Nakajima M. 2015.a Effects of surface treatment and storage conditions of silicon microchannel emulsification plates on their surface hydrophilicity and preparation of soybean oil-in-water emulsion droplets. J. Food Eng. 167:106–13 [Google Scholar]
  155. Zhang Z, Zhang R, Decker EA, McClements DJ. 2015.b Development of food-grade filled hydrogels for oral delivery of lipophilic active ingredients: pH-triggered release. Food Hydrocoll 44:345–52 [Google Scholar]
  156. Zou L, Liu W, Liu C, Xiao H, McClements DJ. 2015. Utilizing food matrix effects to enhance nutraceutical bioavailability: increase of curcumin bioaccessibility using excipient emulsions. J. Agric. Food Chem. 63:2052–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error