The design of new food products and increased agricultural activities have produced a diversity of waste streams or by-products that contain a high load of organic matter. The underutilization of these streams presents a serious threat to the environment and to the financial viability of the agricultural sector and the food industry. Oleaginous microorganisms, such as yeast and microalgae, have been used to convert the organic matter present in many agricultural waste streams into an oil-rich biomass. Filamentous fungi are promising oleaginous microorganisms because of their high lipid accumulation potential and simple biomass recovery, the latter being related to their pellet-like growth morphology in submerged cultivation. This review highlights the use of oleaginous filamentous fungi to convert food by-products into value-added components, including the effect of cultivation conditions on biomass yield and composition. Special attention is given to downstream processing for the commercial production of fungal oil. Also discussed are innovative techniques to optimize the biomass oil yield and to minimize the challenges associated with biomass harvesting and oil extraction at industrial scale.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Akpinar-Bayizit A. 2014. Fungal lipids: the biochemistry of lipid accumulation. Int. J. Chem. Eng. Appl. 5:5409–14 [Google Scholar]
  2. Albu S, Joyce E, Paniwnyk L, Lorimer JP, Mason TJ. 2004. Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrason. Sonochem. 11:3–4261–65 [Google Scholar]
  3. Ali TH, El-Ghonemy DH. 2014. Optimization of culture conditions for the highest lipid production from some oleaginous fungi for biodiesel preparation. Asian J. Appl. Sci. 2:5600–9 [Google Scholar]
  4. Archer DB, Connerton IF, MacKenzie DA. 2008. Filamentous fungi for production of food additives and processing aids. Adv. Biochem. Eng. Biotechnol. 111:99–147 [Google Scholar]
  5. Balassa LL. 1975. Process for facilitating wound healing with N-acetylated partially depolymerized chitin materials. US Patent No. 3914413 [Google Scholar]
  6. Balasubramanian S, Allen JD, Kanitkar A, Boldor D. 2011. Oil extraction from Scenedesmus obliquus using a continuous microwave system: design, optimization, and quality characterization. Bioresour. Technol. 102:33396–403 [Google Scholar]
  7. Bartnicki-Garcia S, Lippman E. 1972. The bursting tendency of hyphal tips of fungi: presumptive evidence for a delicate balance between wall synthesis and wall lysis in apical growth. Microbiology 73:3487–500 [Google Scholar]
  8. Bijl HL, Wolf JH, Schaap A, Visser JMJ. 2001. Microbial polyunsaturated fatty acid containing oil from pasteurised biomass. US Patent No. 6255505B1 [Google Scholar]
  9. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML. et al. 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154:387–97 [Google Scholar]
  10. Bowman SM, Free SJ. 2006. The structure and synthesis of the fungal cell wall. BioEssays 28:8799–808 [Google Scholar]
  11. Brown DE, Halsted DJ. 1975. The effect of acid pH on the growth kinetics of Trichoderma viride. Biotechnol. Bioeng. 17:81199–210 [Google Scholar]
  12. Campbell KA, Glatz CE, Johnson LA, Jung S, de Moura JMLN. et al. 2011. Advances in aqueous extraction processing of soybeans. J. Am. Oil Chem. Soc. 88:4449–65 [Google Scholar]
  13. Cardoso A, Lins CIM, dos Santos ER, Freitas Silva MC, Campos-Takaki GM. 2012. Microbial enhance of chitosan production by Rhizopus arrhizus using agroindustrial substrates. Molecules 17:54904–14 [Google Scholar]
  14. Carvalho AKF, Rivaldi JD, Barbosa JC, de Castro HF. 2015. Biosynthesis, characterization and enzymatic transesterification of single cell oil of Mucor circinelloides: a sustainable pathway for biofuel production. Bioresour. Technol. 181:47–53 [Google Scholar]
  15. Castrillo JI, Ugalde U. 2004. Mycoprotein and related microbial protein products. Fungal Biotechnology in Agricultural, Food and Environmental Applications K Arora 247–55 New York: Dekker [Google Scholar]
  16. Certik M, Horenitzky R. 1999. Supercritical CO2 extraction of fungal oil containing γ-linolenic acid. Biotechnol. Tech. 13:111–15 [Google Scholar]
  17. Chatterjee S, Guha AK. 2014. A study on biochemical changes during cultivation of Rhizopus oryzae in deproteinized whey medium in relation to chitosan production. Lett. Appl. Microbiol. 59:2155–60 [Google Scholar]
  18. Chen L, Liu T, Zhang W, Chen X, Wang J. 2012. Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresour. Technol. 111:208–14 [Google Scholar]
  19. Chisti Y, Moo-Young M. 1986. Disruption of microbial cells for intracellular products. Enzyme Microb. Technol. 8:4194–204 [Google Scholar]
  20. Clarke KG, Williams PC, Smit MS, Harrison STL. 2006. Enhancement and repression of the volumetric oxygen transfer coefficient through hydrocarbon addition and its influence on oxygen transfer rate in stirred tank bioreactors. Biochem. Eng. J. 28:3237–42 [Google Scholar]
  21. Couto SR, Sanromán . 2006. Application of solid-state fermentation to food industry: a review. J. Food Eng. 76:3291–302 [Google Scholar]
  22. Dai C, Tao J, Xie F, Dai Y, Zhao M. 2007. Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. Afr. J. Biotechnol. 6:182130–34 [Google Scholar]
  23. Danalewich JR, Papagiannis TG, Belyea RL, Tumbleson ME, Raskin L. 1998. Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res 32:123555–68 [Google Scholar]
  24. Das H, Singh SK. 2004. Useful byproducts from cellulosic wastes of agriculture and food industry: a critical appraisal. Crit. Rev. Food Sci. Nutr. 44:277–89 [Google Scholar]
  25. Davis R, Kinchin C, Markham J, Tan E, Laurens L. et al. 2014. Process design and economics for the conversion of algal biomass to biofuels: algal biomass fractionation to lipid- and carbohydrate-derived fuel products NREL Rep 5100–62368 Natl. Renew. Energy Lab Golden, CO: [Google Scholar]
  26. de Boer K, Moheimani NR, Borowitzka MA, Bahri PA. 2012. Extraction and conversion pathways for microalgae to biodiesel: a review focused on energy consumption. J. Appl. Phycol. 24:61681–98 [Google Scholar]
  27. Demir M, Turhan I, Kucukcetin A, Alpkent Z. 2013. Oil production by Mortierella isabellina from whey treated with lactase. Bioresour. Technol. 128:365–69 [Google Scholar]
  28. de Moura JMLN, Maurer D, Jung S, Johnson LA. 2011. Pilot-plant proof-of-concept for integrated, countercurrent, two-stage, enzyme-assisted aqueous extraction of soybeans. J. Am. Oil Chem. Soc. 88:101649 [Google Scholar]
  29. Dowhan W. 2013. Functional roles of lipids in membranes. Encyclopedia of Biophysics GCK Roberts 868–75 Berlin: Springer [Google Scholar]
  30. Edwards DG, Cummings JH. 2010. The protein quality of mycoprotein. Proc. Nutr. Soc. 69:1 [Google Scholar]
  31. El-Enshasy HA. 2007. Filamentous fungal cultures: process characteristics, products, and applications. Bioprocessing Value-Added Products from Renewable Resources: New Technologies and Applications S-T Yang 225–61 Netherlands: Elsevier [Google Scholar]
  32. Eroshin VK, Satroutdinov AD, Dedyukhina EG, Chistyakova TI. 2000. Arachidonic acid production by Mortierella alpina with growth-coupled lipid synthesis. Process Biochem 35:101171–75 [Google Scholar]
  33. Espinosa-Ortiz EJ, Rene ER, Pakshirajan K, van Hullebusch ED, Lens PNL. 2016. Fungal pelleted reactors in wastewater treatment: applications and perspectives. Chem. Eng. J. 283:553–71 [Google Scholar]
  34. Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G. 2007. Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzyme Microb. Technol. 40:51321–27 [Google Scholar]
  35. Ferreira JA, Lennartsson PR, Taherzadeh MJ. 2015. Production of ethanol and biomass from thin stillage by Neurospora intermedia: a pilot study for process diversification. Eng. Life Sci. 15:8751–59 [Google Scholar]
  36. Finnigan TJA. 2011. Mycoproteins: origins, production, and properties. Handbook of Food Proteins GO Phillips, PA Williams 335–52 Cambridge: Woodhead [Google Scholar]
  37. FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. 2010. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 101:238915–22 [Google Scholar]
  38. Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. 2017. FTIR spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLOS ONE 12:1e0170611 [Google Scholar]
  39. Gema H, Kavadia A, Dimou D, Tsagou V, Komaitis M, Aggelis G. 2002. Production of γ-linolenic acid by Cunninghamella echinulata cultivated on glucose and orange peel. Appl. Microbiol. Biotechnol. 58:3303–7 [Google Scholar]
  40. Gibbs PA, Seviour RJ, Schmid F. 2000. Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit. Rev. Biotechnol. 20:117–48 [Google Scholar]
  41. Greasham R. 2013. Growth kinetics and fermentation scaleup. Biotechnology of Filamentous Fungi: Technology and Products D Finkelstein 65–89 Oxford: Butterworth-Heinemann [Google Scholar]
  42. Grima E, Belarbi EH, Fernández FG, Medina A, Chisti Y. 2003. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20:7–8491–515 [Google Scholar]
  43. Grimm LH, Kelly S, Krull R, Hempel DC. 2005. Morphology and productivity of filamentous fungi. Appl. Microbiol. Biotechnol. 69:4375 [Google Scholar]
  44. Gultom SO, Hu B. 2013. Review of microalgae harvesting via co-pelletization with filamentous fungus. Energies 6:115921–39 [Google Scholar]
  45. Gultom SO, Zamalloa C, Hu B. 2014. Microalgae harvest through fungal palletization: co-culture of Chlorella vulgaris and Aspergillus niger. Energies 7:74417–29 [Google Scholar]
  46. Hang YD. 1990. Chitosan production from Rhizopus oryzae mycelia. Biotechnol. Lett. 12:12911–12 [Google Scholar]
  47. Hansson L, Dostálek M. 1988. Effect of culture conditions on mycelial growth and production of γ-linolenic acid by the fungus Mortierella ramanniana. Appl. Microbiol. Biotechnol. 28:3240–246 [Google Scholar]
  48. Heger M. 2009. A new processing scheme for algae biofuels. MIT Technol. Rev. https://www.technologyreview.com/s/413325/a-new-processing-scheme-for-algae-biofuels/ [Google Scholar]
  49. Hensirisak P, Parasukulsatid P, Agblevor FA, Cundiff JS, Velander WH. 2002. Scale-up of microbubble dispersion generator for aerobic fermentation. Appl. Biochem. Biotechnol. 101:3211–27 [Google Scholar]
  50. Hosseini M, Shojaosadati SA, Towfighi J. 2003. Application of a bubble-column reactor for the production of a single-cell protein from cheese whey. Ind. Eng. Chem. Res. 42:4764–66 [Google Scholar]
  51. Jasti N, Rasmussen ML, Khanal SK, Pometto AL, van Leeuwen JH. 2009. Influence of selected operating parameters on fungal biomass production in corn-ethanol wastewater. J. Environ. Eng. 135:111106–14 [Google Scholar]
  52. Jin B, van Leeuwen JH, Patel B. 1999. Mycelial morphology and fungal protein production from starch processing wastewater in submerged cultures of Aspergillus oryzae. Process Biochem 34:4335–40 [Google Scholar]
  53. Jin B, Yan XQ, Yu Q, van Leeuwen JH. 2002. A comprehensive pilot plant system for fungal biomass protein production and wastewater reclamation. Adv. Environ. Res. 6:2179–89 [Google Scholar]
  54. Jin G, Yang F, Hu C, Shen H, Zhao ZK. 2012. Enzyme-assisted extraction of lipids directly from the culture of the oleaginous yeast Rhodosporidium toruloides. Bioresour. Technol. 111:378–82 [Google Scholar]
  55. Johnson LA, Lusas EW. 1983. Comparison of alternative solvents for oils extraction. J. Am. Oil Chem. Soc. 60:2229–42 [Google Scholar]
  56. Jung S, de Moura JMLN, Campbell K, Johnson L. 2011. Enzyme-assisted aqueous extraction of oilseeds. Enhancing Extraction Processes in the Food Industry477–518 Boca Raton, FL: CRC Press [Google Scholar]
  57. Kantarci N, Borak F, Ulgen KO. 2005. Bubble column reactors. Process Biochem 40:72263–83 [Google Scholar]
  58. Kaur S, Dhillon GS. 2014. The versatile biopolymer chitosan: potential sources, evaluation of extraction methods and applications. Crit. Rev. Microbiol. 40:2155–75 [Google Scholar]
  59. Khot M, Kamat S, Zinjarde S, Pant A, Chopade B, RaviKumar A. 2012. Single cell oil of oleaginous fungi from the tropical mangrove wetlands as a potential feedstock for biodiesel. Microb. Cell Fact. 11:71 [Google Scholar]
  60. Kim J, Yoo G, Lee H, Lim J, Kim K. et al. 2013. Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31:6862–76 [Google Scholar]
  61. Klimek-Ochab M, Brzezińska-Rodak M, Żymańczyk-Duda E, Lejczak B, Kafarski P. 2011. Comparative study of fungal cell disruption: scope and limitations of the methods. Folia Microbiol 56:5469 [Google Scholar]
  62. Koza CR, Norton GA, van Leeuwen JH. 2017. Dewatering investigations on fungal biomass grown in thin stillage from a dry-mill corn ethanol plant. Biomass Bioenergy 97:65–69 [Google Scholar]
  63. Kwiatkowski JR, McAloon AJ, Taylor F, Johnston DB. 2006. Modeling the process and costs of fuel ethanol production by the corn dry-grind process. Ind. Crops Prod. 23:3288–96 [Google Scholar]
  64. Laoteng K, Anjard C, Rachadawong S, Tanticharoen M, Maresca B, Cheevadhanarak S. 1999. Mucor rouxii Δ9-desaturase gene is transcriptionally regulated during cell growth and by low temperature. Mol. Cell Biol. Commun. 1:136–43 [Google Scholar]
  65. Laoteng K, Čertík M, Cheevadhanark S. 2011. Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem. Pap. 65:297–103 [Google Scholar]
  66. Lardon L, Hélias A, Sialve B, Steyer J-P, Bernard O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43:176475–81 [Google Scholar]
  67. Lebeau JLD, Venkatachalam M, Fouillaud M, Dufossé L, Caro Y. 2016. Extraction of fungal polyketide pigments using ionic liquids Presented at Int Conf. Pigments Food., 8th Cluj-Napoca, Romania: [Google Scholar]
  68. Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM. 2010. Comparison of several methods for effective lipid extraction from microalgae. Bioresour. Technol. 101:Suppl. 175–77 [Google Scholar]
  69. Liang K, Zhang Q, Cong W. 2012. Enzyme-assisted aqueous extraction of lipid from microalgae. J. Agric. Food Chem. 60:4711771–76 [Google Scholar]
  70. Liang YJ, Jiang JG. 2015. Characterization of malic enzyme and the regulation of its activity and metabolic engineering on lipid production. RSC Adv 5:5645558–70 [Google Scholar]
  71. Liu Y, Liao W, Chen S. 2008. Study of pellet formation of filamentous fungi Rhizopus oryzae using a multiple logistic regression model. Biotechnol. Bioeng. 99:1117–28 [Google Scholar]
  72. Magnuson JK, Lasure LL. 2004. Organic acid production by filamentous fungi. Advances in Fungal Biotechnology for Industry, Agriculture, and Medicine JS Tkacz, L Lange 307–40 Boston: Springer [Google Scholar]
  73. Mahboubi A, Ferreira JA, Taherzadeh MJ, Lennartsson PR. 2017. Value-added products from dairy waste using edible fungi. Waste Manag 59:518–25 [Google Scholar]
  74. Mamatha SS, Ravi R, Venkateswaran G. 2008. Medium optimization of gamma linolenic acid production in Mucor rouxii CFR-G15 using RSM. Food Bioprocess Technol 1:4405–9 [Google Scholar]
  75. Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14:1217–32 [Google Scholar]
  76. Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. 2009. Biodiesel production from oleaginous microorganisms. Renew. Energy. 34:11–5 [Google Scholar]
  77. Mercer P, Armenta RE. 2011. Developments in oil extraction from microalgae. Eur. J. Lipid Sci. Technol. 113:5539–47 [Google Scholar]
  78. Merchuk J, Garcia Camacho F, Flickinger MC. 2009. Bioreactors: airlift reactors. Encyclopedia of Industrial Biotechnology Vol. 7, ed. M Flickinger 851–912 Hoboken, NJ: Wiley [Google Scholar]
  79. Michinaka Y, Aki T, Shimauchi T, Nakajima T, Kawamoto S. et al. 2003. Differential response to low temperature of two Δ6 fatty acid desaturases from Mucor circinelloides. Appl. Microbiol. Biotechnol. 62:4362–68 [Google Scholar]
  80. Middelberg APJ. 1995. Process-scale disruption of microorganisms. Biotechnol. Adv. 13:3491–551 [Google Scholar]
  81. Mirón AS, Camacho FG, Gómez AC, Grima EM, Chisti Y. 2000. Bubble-column and airlift photobioreactors for algal culture. AIChE J 46:91872–87 [Google Scholar]
  82. Mishra BK, Arora A. 2004. Optimization of a biological process for treating potato chips industry wastewater using a mixed culture of Aspergillus foetidus and Aspergillus niger. Bioresour. Technol. 94:19–12 [Google Scholar]
  83. Mitra D, Rasmussen ML, Chand P, Chintareddy VR, Yao L. et al. 2012. Value-added oil and animal feed production from corn-ethanol stillage using the oleaginous fungus Mucor circinelloides. Bioresour. Technol. 107:368–75 [Google Scholar]
  84. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S. 2013. Experimental determination of the volumetric mass transfer coefficient. J. Chem. Technol. Metall. 48:4351–56 [Google Scholar]
  85. Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J. 2013. Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res 47:103477–83 [Google Scholar]
  86. Musoni M, Destain J, Thonart P, Bahama J-B, Delvigne F. 2015. Bioreactor design and implementation strategies for the cultivation of filamentous fungi and the production of fungal metabolites: from traditional methods to engineered systems. Biotechnol. Agron. Soc. Environ. Gembloux 19:4430–42 [Google Scholar]
  87. Nair RB, Lennartsson PR, Taherzadeh MJ. 2016. Mycelial pellet formation by edible ascomycete filamentous fungi. Neurospora intermedia. AMB Express 6:131 [Google Scholar]
  88. Nair RB, Taherzadeh MJ. 2016. Valorization of sugar-to-ethanol process waste vinasse: a novel biorefinery approach using edible ascomycetes filamentous fungi. Bioresour. Technol. 221:469–76 [Google Scholar]
  89. Nisha A, Udaya Sankar K, Venkateswaran G. 2012. Supercritical CO2 extraction of Mortierella alpina single cell oil: Comparison with organic solvent extraction. Food Chem 133:1220–26 [Google Scholar]
  90. Nitayavardhana S, Issarapayup K, Pavasant P, Khanal SK. 2013. Production of protein-rich fungal biomass in an airlift bioreactor using vinasse as substrate. Bioresour. Technol. 133:301–6 [Google Scholar]
  91. Nørregaard A, Stocks SM, Woodley JM, Gernaey KV. 2014. Filamentous fungi fermentation. Industrial Scale Suspension Culture of Living Cells HP Meyer, DR Schmidhalter 130–62 Weinheim, Ger: Wiley-VCH [Google Scholar]
  92. Ochoa F, Gomez E. 2009. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27:2153–76 [Google Scholar]
  93. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C. 2016. Production strategies and applications of microbial single cell oils. Front. Microbiol. 7:1539 [Google Scholar]
  94. Orr VCA, Rehmann L. 2016. Ionic liquids for the fractionation of microalgae biomass. Curr. Opin. Green Sustain. Chem. 2:22–27 [Google Scholar]
  95. Ozsoy HD, Arikan EB, Cinkir C, Eryilmaz GD, Kucuk D, van Leeuwen JH. 2015. Fungal oil production from oleaginous fungi Mucor circinelloides and Aspergillus oryzae cultivated on sugar beet pulp. APJES 3:735–41 [Google Scholar]
  96. Pan J, Muppaneni T, Sun Y, Reddy HK, Fu J. et al. 2016. Microwave-assisted extraction of lipids from microalgae using an ionic liquid solvent [BMIM][HSO4]. Fuel 178:49–55 [Google Scholar]
  97. Pant D, Adholeya A. 2007. Biological approaches for treatment of distillery wastewater: a review. Bioresour. Technol. 98:122321–34 [Google Scholar]
  98. Pietrzak W, Kawa-Rygielska J, Król B, Lennartsson PR, Taherzadeh MJ. 2016. Ethanol, feed components and fungal biomass production from field bean (Vicia faba var. equina) seeds in an integrated process. Bioresour. Technol 216:69–76 [Google Scholar]
  99. Pochanavanich P, Suntornsuk W. 2002. Fungal chitosan production and its characterization. Lett. Appl. Microbiol. 35:117–21 [Google Scholar]
  100. Prabakaran P, Ravindran AD. 2011. A comparative study on effective cell disruption methods for lipid extraction from microalgae. Lett. Appl. Microbiol. 53:2150–54 [Google Scholar]
  101. Rane KD, Hoover DG. 1993. An evaluation of alkali and acid treatments for chitosan extraction from fungi. Process Biochem 28:2115–18 [Google Scholar]
  102. Rasmussen ML, Khanal SK, Pometto AL 3rd, van Leeuwen JH. 2014. Water reclamation and value-added animal feed from corn-ethanol stillage by fungal processing. Bioresour. Technol. 151:284–90 [Google Scholar]
  103. Ratledge C. 2002. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem. Soc. Trans. 30:61047–50 [Google Scholar]
  104. Rengel A, Zoughaib A, Dron D, Clodic D. 2012. Hydrodynamic study of an internal airlift reactor for microalgae culture. Appl. Microbiol. Biotechnol. 93:1117–29 [Google Scholar]
  105. Rodrigues MI, Iemma AF. 2014. Experimental Design and Process Optimization Boca Raton, FL: CRC Press [Google Scholar]
  106. Rols JL, Goma G. 1989. Enhancement of oxygen transfer rates in fermentation using oxygen-vectors. Biotechnol. Adv. 7:11–14 [Google Scholar]
  107. Rosales L, Camacho FG, Mirón AS, Beato E, Chisti Y, Grima E. 2016. Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresour. Technol. 216:845–55 [Google Scholar]
  108. Roukas T, Varzakakou M, Kotzekidou P. 2015. From cheese whey to carotenes by Blakeslea trispora in a bubble column reactor. Appl. Biochem. Biotechnol. 175:1182–93 [Google Scholar]
  109. Sakaki K, Yokochi T, Suzuki O, Hakuta T. 1990. Supercritical fluid extraction of fungal oil using CO2, N2O, CHF3 and SF6. J. Am. Oil Chem. Soc. 67:9553–57 [Google Scholar]
  110. Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL 3rd, van Leeuwen JH. 2010. Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit. Rev. Environ. Sci. Technol. 40:5400–49 [Google Scholar]
  111. Satari B, Karimi K, Taherzadeh MJ, Zamani A. 2016. Co-production of fungal biomass derived constituents and ethanol from citrus wastes free sugars without auxiliary nutrients in airlift bioreactor. Int. J. Mol. Sci. 17:3302 [Google Scholar]
  112. Schlagermann P, Göttlicher G, Dillschneider R, Rosello-Sastre R, Posten C. 2012. Composition of algal oil and its potential as biofuel. J. Combust. 2012:285185 [Google Scholar]
  113. Schneider T, Graeff-Hönninger S, French WT, Hernandez R, Claupein W. et al. 2012. Screening of industrial wastewaters as feedstock for the microbial production of oils for biodiesel production and high-quality pigments. J. Combust 2012:153410 [Google Scholar]
  114. Sergeeva YE, Galanina LA, Andrianova DA, Feofilova EP. 2008. Lipids of filamentous fungi as a material for producing biodiesel fuel. Appl. Biochem. Microbiol. 44:5523–27 [Google Scholar]
  115. Shamlou PA, Pollard DJ, Ison AP. 1995. Volumetric mass transfer coefficient in concentric-tube airlift bioreactors. Chem. Eng. Sci. 50:101579–90 [Google Scholar]
  116. Shen Z, Palmer MV, Ting SST, Fairclough RJ. 1997. Pilot scale extraction and fractionation of rice bran oil using supercritical carbon dioxide. J. Agric. Food Chem. 45:124540–44 [Google Scholar]
  117. Show KY, Lee DJ, Tay JH, Lee TM, Chang JS. 2015. Microalgal drying and cell disruption - recent advances. Bioresour. Technol. 184:258–66 [Google Scholar]
  118. Soccol CR, Dalmas Neto CJ, Soccol VT, Sydney EB, da Costa ESF. et al. 2017. Pilot scale biodiesel production from microbial oil of Rhodosporidium toruloides DEBB 5533 using sugarcane juice: performance in diesel engine and preliminary economic study. Bioresour. Technol. 223:259–68 [Google Scholar]
  119. Souza Filho PF, Zamani A, Taherzadeh MJ. 2017. Production of edible fungi from potato protein liquor (PPL) in airlift bioreactor. Fermentation 3:112 [Google Scholar]
  120. Streit F, Koch F, Laranjeira MCM, Ninow JL. 2009. Production of fungal chitosan in liquid cultivation using apple pomace as substrate. Braz. J. Microbiol. 40:120–25 [Google Scholar]
  121. Subramaniam R, Dufreche S, Zappi M, Bajpai R. 2010. Microbial lipids from renewable resources: production and characterization. J. Ind. Microbiol. Biotechnol. 37:121271–87 [Google Scholar]
  122. Taher H, Al-Zuhair S, Al-Marzouqi AH, Haik Y, Farid M. 2014. Effective extraction of microalgae lipids from wet biomass for biodiesel production. Biomass Bioenergy 66:159–67 [Google Scholar]
  123. Tauk-Tornisielo SM, Arasato LS, de Almeida AF, Govone JS, Malagutti EN. 2009. Lipid formation and γ-linolenic acid production by Mucor circinelloides and Rhizopus sp., grown on vegetable oil. Braz. J. Microbiol. 40:2342–45 [Google Scholar]
  124. Tobajas M, García-Calvo E, Siegel MH, Apitz SE. 1999. Hydrodynamics and mass transfer prediction in a three-phase airlift reactor for marine sediment biotreatment. Chem. Eng. Sci. 54:215347–54 [Google Scholar]
  125. Toma M, Vinatoru M, Paniwnyk L, Mason TJ. 2001. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 8:2137–42 [Google Scholar]
  126. Truong QT, Miyata N, Iwahori K. 2004. Growth of Aspergillus oryzae during treatment of cassava starch processing wastewater with high content of suspended solids. J. Biosci. Bioeng. 97:5329–35 [Google Scholar]
  127. Vamvakaki A-N, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S. 2010. Cheese whey as a renewable substrate for microbial lipid and biomass production by zygomycetes. Eng. Life Sci. 10:4348–60 [Google Scholar]
  128. Van der Westhuizen TH, Pretorius WA. 1998. Use of filamentous fungi for the purification of industrial effluents WRC Report No. 535/1/98 WRC, Pretoria South Africa: [Google Scholar]
  129. Van Leeuwen J, Khanal SK, Pometto AL, Rasmussen ML, Mitra D. 2010. Fungi cultivation on alcohol fermentation stillage for useful products and energy savings. US Patent No. 20100196994A1 [Google Scholar]
  130. Van Leeuwen J, Rasmussen ML, Sankaran S, Koza CR, Erickson DT. et al. 2012. Fungal treatment of crop processing wastewaters with value-added co-products. Sustainable Bioenergy and Bioproducts K Gopalakrishnan, J van Leeuwen, RC Brown 13–44 London: Springer [Google Scholar]
  131. Venkata SG, Venkata MS. 2011. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour. Technol. 102:199286–90 [Google Scholar]
  132. Venkata SG, Venkata MS. 2014. Lipid accumulation for biodiesel production by oleaginous fungus Aspergillus awamori: influence of critical factors. Fuel 116:509–15 [Google Scholar]
  133. Vicente G, Bautista LF, Gutiérrez FJ, Rodríguez R, Martínez V. et al. 2010. Direct transformation of fungal biomass from submerged cultures into biodiesel. Energy Fuels 24:53173–78 [Google Scholar]
  134. Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I. et al. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 48:122–27 [Google Scholar]
  135. Vieira JPF, Ienczak JL, Costa PS, Rossell CEV, Franco TT, Pradella JGC. 2016. Single cell oil production integrated to a sugarcane-mill: conceptual design, process specifications and economic analysis using molasses as raw material. Ind. Crops Prod. 89:478–85 [Google Scholar]
  136. Wahlen BD, Morgan MR, McCurdy AT, Willis RM, Morgan MD. et al. 2013. Biodiesel from microalgae, yeast, and bacteria: engine performance and exhaust emissions. Energy Fuels 27:1220–28 [Google Scholar]
  137. Wrede D, Taha M, Miranda AF, Kadali K, Stevenson T. et al. 2014. Co-cultivation of fungal and microalgal cells as an efficient system for harvesting microalgal cells, lipid production and wastewater treatment. PLOS ONE 9:11e113497 [Google Scholar]
  138. Xia C, Zhang J, Zhang W, Hu B. 2011. A new cultivation method for microbial oil production: cell pelletization and lipid accumulation by Mucor circinelloides. Biotechnol. Biofuels 4:15 [Google Scholar]
  139. Ying K, Gilmour DJ, Shi Y, Zimmerman WB. 2013. Growth enhancement of Dunaliella salina by microbubble induced airlift loop bioreactor (ALB): the relation between mass transfer and growth rate. J. Biomater. Nanobiotechnol. 4:21–9 [Google Scholar]
  140. Yoo G, Park W-K, Kim CW, Choi Y-E, Yang J-W. 2012. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock. Bioresour. Technol. 123:717–22 [Google Scholar]
  141. Yu X, Dong T, Zheng Y, Miao C, Chen S. 2015. Investigations on cell disruption of oleaginous microorganisms: hydrochloric acid digestion is an effective method for lipid extraction. Eur. J. Lipid Sci. Technol. 117:5730–37 [Google Scholar]
  142. Zhang X, Yan S, Tyagi RD, Drogui P, Surampalli RY. 2014. Ultrasonication assisted lipid extraction from oleaginous microorganisms. Bioresour. Technol. 158:253–61 [Google Scholar]
  143. Zhang ZY, Jin B, Bai ZH, Wang XY. 2008. Production of fungal biomass protein using microfungi from winery wastewater treatment. Bioresour. Technol. 99:93871–76 [Google Scholar]
  144. Zhang ZY, Jin B, Kelly JM. 2007. Effects of cultivation parameters on the morphology of Rhizopus arrhizus and the lactic acid production in a bubble column reactor. Eng. Life Sci. 7:5490–96 [Google Scholar]
  145. Zimmerman WB, Zandi M, Bandulasena HC, Tesař V, Gilmour D, Ying K. 2011. Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina. Appl. Energy 88:103357–69 [Google Scholar]
  146. Zuorro A, Maffei G, Lavecchia R. 2016. Optimization of enzyme-assisted lipid extraction from Nannochloropsis microalgae. J. Taiwan Inst. Chem. Eng. 67:106–14 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error