With the rapidly increasing demand for and use of engineered nanoparticles (NPs) in agriculture and related sectors, concerns over the risks to agricultural systems and to crop safety have been the focus of a number of investigations. Significant evidence exists for NP accumulation in soils, including potential particle transformation in the rhizosphere and within terrestrial plants, resulting in subsequent uptake by plants that can yield physiological deficits and molecular alterations that directly undermine crop quality and food safety. In this review, we document in vitro and in vivo characterization of NPs in both growth media and biological matrices; discuss NP uptake patterns, biotransformation, and the underlying mechanisms of nanotoxicity; and summarize the environmental implications of the presence of NPs in agricultural ecosystems. A clear understanding of nano-impacts, including the advantages and disadvantages, on crop plants will help to optimize the safe and sustainable application of nanotechnology in agriculture for the purposes of enhanced yield production, disease suppression, and food quality.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anderson A, McLean JE, Jacobson AR, Britt D. 2017. CuO and ZnO nanoparticles modify interkingdom cell signaling processes relevant to crop production: a review. J. Agric. Food Chem. In press. https://doi.org/10.1021/acs.jafc.7b01302 [Crossref] [Google Scholar]
  2. Apel K, Hirt H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373–99 [Google Scholar]
  3. Asli S, Neumann PM. 2009. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–84 [Google Scholar]
  4. Atha DH, Wang H, Petersen EJ, Cleveland D, Holbrook RD. et al. 2012. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 46:1819–27 [Google Scholar]
  5. Baalousha M. 2009. Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 407:2093–101 [Google Scholar]
  6. Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR. 2008. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ. Toxicol. Chem. 27:1875–82 [Google Scholar]
  7. Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ. Sci. Technol. 44:1260–66 [Google Scholar]
  8. Bai Y, Du F, Liu H. 2010. Determination strategies of phytohormones: recent advances. Anal. Methods 2:1867–73 [Google Scholar]
  9. Bao D, Oh ZG, Chen Z. 2016. Characterization of silver nanoparticles internalized by Arabidopsis plants using single particle ICP-MS analysis. Front. Plant Sci. 7:32 [Google Scholar]
  10. Baoukina S, Monticelli L, Tieleman DP. 2013. Interaction of pristine and functionalized carbon nanotubes with lipid membranes. J. Phys. Chem. B 117:12113–23 [Google Scholar]
  11. Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo IA, Peralta-Videa JR, Gardea-Torresdey JL. 2016. Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci. Total Environ. 563:956–64 [Google Scholar]
  12. Bjorkland R, Tobias DA, Petersen EJ. 2017. Increasing evidence indicates low bioaccumulation of carbon nanotubes. Environ. Sci. Nano 4:747–66 [Google Scholar]
  13. Bradfield SJ, Kumar P, White JC, Ebbs SD. 2017. Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol. Biochem. 110:128–37 [Google Scholar]
  14. Burklew CE, Ashlock J, Winfrey WB, Zhang B. 2012. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotianatabacum). PLOS ONE 7:e34783 [Google Scholar]
  15. Cai F, Wu X, Zhang H, Shen X, Zhang M. et al. 2017. Impact of TiO2 nanoparticles on lead uptake and bioaccumulation in rice (Oryzasativa L.). NanoImpact 5:101–8 [Google Scholar]
  16. Cañas JE, Long M, Nations S, Vadan R, Dai L. et al. 2008. Effects of functionalized and nonfunctionalized single‐walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 27:1922–31 [Google Scholar]
  17. Castillo-Michel HA, Larue C, del Real AEP, Cotte M, Sarret G. 2017. Practical review on the use of synchrotron based micro- and nano-X-ray fluorescence mapping and X-ray absorption spectroscopy to investigate the interactions between plants and engineered nanomaterials. Plant Physiol. Biochem. 110:13–32 [Google Scholar]
  18. Chen C, Unrine JM, Judy JD, Lewis RW, Guo J. et al. 2015. Toxicogenomic responses of the model legume Medicagotruncatula to aged biosolids containing a mixture of nanomaterials (TiO2, Ag, and ZnO) from a pilot wastewater treatment plant. Environ. Sci. Technol. 49:8759–68 [Google Scholar]
  19. Chen G, Ma C, Mukherjee A, Musante C, Zhang J. et al. 2016. Tannic acid alleviates bulk and nanoparticle Nd2O3 toxicity in pumpkin: a physiological and molecular response. Nanotoxicology 10:1243–53 [Google Scholar]
  20. Chhowalla M. 2017. Slow release nanofertilizers for bumper crops. ACS Cent. Sci. 3:156–57 [Google Scholar]
  21. Cornelis G, Hund-Rinke K, Kuhlbusch T, van den Brink N, Nickel C. 2014. Fate and bioavailability of engineered nanoparticles in soils: a review. Crit. Rev. Environ. Sci. Technol. 44:2720–64 [Google Scholar]
  22. Cornelis G, Pang L, Doolette C, Kirby JK, McLaughlin MJ. 2013. Transport of silver nanoparticles in saturated columns of natural soils. Sci. Total Environ. 463:120–30 [Google Scholar]
  23. de la Torre Roche R, Servin A, Hawthorne J, Xing B, Newman LA. et al. 2015. Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ. Sci. Technol. 49:11866–74 [Google Scholar]
  24. Deng Y, Eitzer B, White JC, Xing B. 2017. Impact of multiwall carbon nanotubes on the accumulation and distribution of carbamazepine in collard greens (Brassicaoleracea). Environ. Sci. Nano 4:149–59 [Google Scholar]
  25. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D. et al. 2002. Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and γ-glutamylcysteine synthetase expression. Nat. Biotechnol. 20:1140–45 [Google Scholar]
  26. Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ. 2015.a ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolusvulgaris). Nanotoxicology 9:271–78 [Google Scholar]
  27. Dimkpa CO, McLean JE, Britt DW, Anderson AJ. 2015.b Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology 24:119–29 [Google Scholar]
  28. Dimkpa CO, McLean JE, Martineau N, Britt DW, Haverkamp R, Anderson AJ. 2012. Silver nanoparticles disrupt wheat (Triticumaestivum L.) growth in a sand matrix. Environ. Sci. Technol. 47:1082–90 [Google Scholar]
  29. Doody MA, Wang D, Bais HP, Jin Y. 2016. Differential antimicrobial activity of silver nanoparticles to bacteria Bacillussubtilis and Escherichia coli, and toxicity to crop plant Zeamays and beneficial B. subtilis–inoculated Z. mays. J. Nanoparticle Res. 18:290 [Google Scholar]
  30. Doudrick K, Corson N, Oberdörster G, Eder AC, Herckes P. et al. 2013. Extraction and quantification of carbon nanotubes in biological matrices with application to rat lung tissue. ACS Nano 7:8849–56 [Google Scholar]
  31. Ebbs SD, Bradfield SJ, Kumar P, White JC, Ma X. 2016. Projected dietary intake of zinc, copper, and cerium from consumption of carrot (Daucuscarota) exposed to metal oxide nanoparticles or metal ions. Front. Plant Sci. 7:188 [Google Scholar]
  32. Etxeberria E, Gonzalez P, Baroja-Fernandez E, Romero JP. 2006. Fluid phase endocytic uptake of artificial nano-spheres and fluorescent quantum dots by sycamore cultured cells: evidence for the distribution of solutes to different intracellular compartments. Plant Signal. Behav. 1:196–200 [Google Scholar]
  33. Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J. 2013. Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J. Hazard. Mater. 250–251:318–32 [Google Scholar]
  34. Ferretti M, Destro T, Tosatto S, La Rocca N, Rascio N, Masi A. 2009. γ‐Glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. New Phytol 181:115–26 [Google Scholar]
  35. Ge Y, Priester JH, Mortimer M, Chang CH, Ji Z. et al. 2016. Long-term effects of multiwalled carbon nanotubes and graphene on microbial communities in dry soil. Environ. Sci. Technol. 50:3965–74 [Google Scholar]
  36. Ge Y, Priester JH, van de Werfhorst LC, Walker SL, Nisbet RM. et al. 2014. Soybean plants modify metal oxide nanoparticle effects on soil bacterial communities. Environ. Sci. Technol. 48:13489–96 [Google Scholar]
  37. Ghosh M, Bandyopadhyay M, Mukherjee A. 2010. Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81:1253–62 [Google Scholar]
  38. Giannousi K, Avramidis I, Dendrinou-Samara C. 2013. Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthorainfestans. RSC Adv 3:21743–52 [Google Scholar]
  39. Gil-Díaz M, Alonso J, Rodríguez-Valdés E, Gallego J, Lobo M. 2017. Comparing different commercial zero valent iron nanoparticles to immobilize As and Hg in brownfield soil. Sci. Total Environ. 584:1324–32 [Google Scholar]
  40. Gil-Díaz M, Diez-Pascual S, González A, Alonso J, Rodríguez-Valdés E. et al. 2016. A nanoremediation strategy for the recovery of an As-polluted soil. Chemosphere 149:137–45 [Google Scholar]
  41. Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM. et al. 2014. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13:400–8 [Google Scholar]
  42. Guo H, Zhang Z, Xing B, Mukherjee A, Musante C. et al. 2015. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS). Environ. Sci. Technol. 49:4317–24 [Google Scholar]
  43. Hao Y, Yu F, Lv R, Ma C, Zhang Z. et al. 2016. Carbon nanotubes filled with different ferromagnetic alloys affect the growth and development of rice seedlings by changing the C:N ratio and plant hormones concentrations. PLOS ONE 11:e0157264 [Google Scholar]
  44. Hawthorne J, de la Torre Roche R, Xing B, Newman LA, Ma X. et al. 2014. Particle-size dependent accumulation and trophic transfer of cerium oxide through a terrestrial food chain. Environ. Sci. Technol. 48:13102–9 [Google Scholar]
  45. Hernandez-Viezcas JA, Castillo-Michel H, Andrews JC, Cotte M, Rico C. et al. 2013. In situ synchrotron X-ray fluorescence mapping and speciation of CeO2 and ZnO nanoparticles in soil cultivated soybean (Glycine max). ACS Nano 7:1415–23 [Google Scholar]
  46. Hernandez-Viezcas JA, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL. 2016. Interactions between CeO2 nanoparticles and the desert plant mesquite: a spectroscopy approach. ACS Sustain. Chem. Eng. 4:1187–92 [Google Scholar]
  47. Holden PA, Gardea-Torresdey JL, Klaessig F, Turco RF, Mortimer M. et al. 2016. Considerations of environmentally relevant test conditions for improved evaluation of ecological hazards of engineered nanomaterials. Environ. Sci. Technol. 50:6124–45 [Google Scholar]
  48. Hsiao I-L, Hsieh Y-K, Wang C-F, Chen I-C, Huang Y-J. 2015. Trojan-horse mechanism in the cellular uptake of silver nanoparticles verified by direct intra- and extracellular silver speciation analysis. Environ. Sci. Technol. 49:3813–21 [Google Scholar]
  49. Huang X-C, Inoue-Aono Y, Moriyasu Y, Hsieh P-Y, Tu W-M. et al. 2016. Plant cell wall–penetrable, redox-responsive silica nanoprobe for the imaging of starvation-induced vesicle trafficking. Anal. Chem. 88:10231–36 [Google Scholar]
  50. Iannone MF, Groppa MD, de Sousa ME, van Raap MBF, Benavides MP. 2016. Impact of magnetite iron oxide nanoparticles on wheat (Triticumaestivum L.) development: evaluation of oxidative damage. Environ. Exp. Bot. 131:77–88 [Google Scholar]
  51. Irin F, Shrestha B, Cañas JE, Saed MA, Green MJ. 2012. Detection of carbon nanotubes in biological samples through microwave-induced heating. Carbon 50:4441–49 [Google Scholar]
  52. Jain A, Ranjan S, Dasgupta N, Ramalingam C. 2016. Nanomaterials in food and agriculture: an overview on their safety concerns and regulatory issues. Crit. Rev. Food Sci. Nutr. 6:1–21 [Google Scholar]
  53. Ji Y, Zhou Y, Ma C, Feng Y, Hao Y. et al. 2017. Jointed toxicity of TiO2 NPs and Cd to rice seedlings: NPs alleviated Cd toxicity and Cd promoted NPs uptake. Plant Physiol. Biochem. 110:82–93 [Google Scholar]
  54. Jiang S, Win KY, Liu S, Teng CP, Zheng Y, Han M-Y. 2013. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 5:3127–48 [Google Scholar]
  55. Judy JD, Kirby JK, McLaughlin MJ, McNear D, Bertsch PM. 2016. Symbiosis between nitrogen-fixing bacteria and Medicagotruncatula is not significantly affected by silver and silver sulfide nanomaterials. Environ. Pollut. 214:731–36 [Google Scholar]
  56. Judy JD, Unrine JM, Bertsch PM. 2010. Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ. Sci. Technol. 45:776–81 [Google Scholar]
  57. Kaveh R, Li Y-S, Ranjbar S, Tehrani R, Brueck CL, Van Aken B. 2013. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 47:10637–44 [Google Scholar]
  58. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H. 2012. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–35 [Google Scholar]
  59. Kim H-J, Phenrat T, Tilton RD, Lowry GV. 2012. Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media. J. Colloid Interface Sci. 370:1–10 [Google Scholar]
  60. Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA. et al. 2017. Urea-hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–21 [Google Scholar]
  61. Landa P, Prerostova S, Petrova S, Knirsch V, Vankova R, Vanek T. 2015. The transcriptomic response of Arabidopsis thaliana to zinc oxide: a comparison of the impact of nanoparticle, bulk, and ionic zinc. Environ. Sci. Technol. 49:14537–45 [Google Scholar]
  62. Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S. et al. 2014. Foliar exposure of the crop Lactucasativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J. Hazard. Mater. 264:98–106 [Google Scholar]
  63. Larue C, Castillo-Michel H, Stein RJ, Fayard B, Pouyet E. et al. 2016. Innovative combination of spectroscopic techniques to reveal nanoparticle fate in a crop plant. Spectrochim. Acta B 119:17–24 [Google Scholar]
  64. Larue C, Pinault M, Czarny B, Georgin D, Jaillard D. et al. 2012. Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J. Hazard. Mater. 227:155–63 [Google Scholar]
  65. Lesniak A, Fenaroli F, Monopoli MP, Åberg C, Dawson KA, Salvati A. 2012. Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells. ACS Nano 6:5845–57 [Google Scholar]
  66. Le Van N Ma C, Rui Y, Cao W, Deng Y. et al. 2015.a The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic cotton. Front. Plant Sci. 6:1253 [Google Scholar]
  67. Le Van N Ma C, Rui Y, Liu S, Li X, Xing B, Liu L. 2015.b Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci. Rep. 5:11618 [Google Scholar]
  68. Le Van N Ma C, Shang J, Rui Y, Liu S, Xing B. 2016. Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–70 [Google Scholar]
  69. Levard C, Hotze EM, Lowry GV, Brown GE Jr. 2012. Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ. Sci. Technol. 46:6900–14 [Google Scholar]
  70. Li M, Wang P, Dang F, Zhou D-M. 2017. The transformation and fate of silver nanoparticles in paddy soil: effects of soil organic matter and redox conditions. Environ. Sci. Nano 4:919–28 [Google Scholar]
  71. Lin S, Reppert J, Hu Q, Hudson JS, Reid ML. et al. 2009. Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5:1128–32 [Google Scholar]
  72. Liu H, Ma C, Chen G, White JC, Wang Z. et al. 2017. Titanium dioxide nanoparticles alleviate tetracycline toxicity to Arabidopsis thaliana (L.). ACS Sustain. Chem. Eng. 5:3204–13 [Google Scholar]
  73. Liu Q, Chen B, Wang Q, Shi X, Xiao Z. et al. 2009. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9:1007–10 [Google Scholar]
  74. Lowry GV, Gregory KB, Apte SC, Lead JR. 2012. Transformations of nanomaterials in the environment. Environ. Sci. Technol. 46:6893–99 [Google Scholar]
  75. Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. 2008. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. PNAS 105:14265–70 [Google Scholar]
  76. Ma C, Chhikara S, Minocha R, Long S, Musante C. et al. 2015.a Reduced silver nanoparticle phytotoxicity in Crambeabyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase. Environ. Sci. Technol. 49:10117–26 [Google Scholar]
  77. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP. 2013. Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain. Chem. Eng. 1:768–78 [Google Scholar]
  78. Ma C, Liu H, Guo H, Musante C, Coskun SH. et al. 2016. Defense mechanisms and nutrient displacement in Arabidopsis thaliana upon exposure to CeO2 and In2O3 nanoparticles. Environ. Sci. Nano 3:1369–79 [Google Scholar]
  79. Ma C, White JC, Dhankher OP, Xing B. 2015.b Metal-based nanotoxicity and detoxification pathways in higher plants. Environ. Sci. Technol. 49:7109–22 [Google Scholar]
  80. Ma Y, He X, Zhang P, Zhang Z, Ding Y. et al. 2017. Xylem and phloem based transport of CeO2 nanoparticles in hydroponic cucumber plants. Environ. Sci. Technol. 51:5215–21 [Google Scholar]
  81. Ma Y, Zhang P, Zhang Z, He X, Zhang J. et al. 2015.c Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place. Environ. Sci. Technol. 49:10667–74 [Google Scholar]
  82. Majedi SM, Lee HK. 2016. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment. Trends Anal. Chem. 75:183–96 [Google Scholar]
  83. Majumdar S, Almeida IC, Arigi EA, Choi H, VerBerkmoes NC. et al. 2015. Environmental effects of nanoceria on seed production of common bean (Phaseolusvulgaris): a proteomic analysis. Environ. Sci. Technol. 49:13283–93 [Google Scholar]
  84. Majumdar S, Trujillo-Reyes J, Hernandez-Viezcas JA, White JC, Peralta-Videa JR, Gardea-Torresdey JL. 2016. Cerium biomagnification in a terrestrial food chain: influence of particle size and growth stage. Environ. Sci. Technol. 50:6782–92 [Google Scholar]
  85. Marmiroli M, Pagano L, Savo Sardaro ML, Villani M, Marmiroli N. 2014. Genome-wide approach in Arabidopsis thaliana to assess the toxicity of cadmium sulfide quantum dots. Environ. Sci. Technol. 48:5902–9 [Google Scholar]
  86. Martinoia E, Massonneau A, Frangne N. 2000. Transport processes of solutes across the vacuolar membrane of higher plants. Plant Cell Physiol 41:1175–86 [Google Scholar]
  87. Maurer-Jones MA, Mousavi MP, Chen LD, Bühlmann P, Haynes CL. 2013. Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanellaoneidensis. Chem. Sci. 4:2564–72 [Google Scholar]
  88. Meurer R, Kemper S, Knopp S, Eichert T, Jakob F. et al. 2017. Biofunctional microgel-based fertilizers for controlled foliar delivery of nutrients to plants. Angew. Chem. Int. Ed. 56:7380–86 [Google Scholar]
  89. Miralles P, Johnson E, Church TL, Harris AT. 2012. Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J. R. Soc. Interface 9:3514–27 [Google Scholar]
  90. Mittler R. 2017. ROS are good. Trends Plant Sci 22:11–19 [Google Scholar]
  91. Mittler R, Blumwald E. 2015. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 27:64–70 [Google Scholar]
  92. Molina RM, Konduru NV, Jimenez RJ, Pyrgiotakis G, Demokritou P. et al. 2014. Bioavailability, distribution and clearance of tracheally instilled, gavaged or injected cerium dioxide nanoparticles and ionic cerium. Environ. Sci. Nano 1:561–73 [Google Scholar]
  93. Monreal C, DeRosa M, Mallubhotla S, Bindraban P, Dimkpa C. 2016. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fertil. Soils 52:423–37 [Google Scholar]
  94. Mukherjee A, Hawthorne J, White JC, Kelsey JW. 2017. Nanoparticle silver coexposure reduces the accumulation of weathered persistent pesticides by earthworms. Environ. Toxicol. Chem. 36:1864–71 [Google Scholar]
  95. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao L, Gardea-Torresdey JL. 2014. Physiological effects of nanoparticulate ZnO in green peas (Pisumsativum L.) cultivated in soil. Metallomics 6:132–38 [Google Scholar]
  96. Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. Science 311:622–27 [Google Scholar]
  97. Nhan LV, Ma C, Rui Y, Liu S, Li X. et al. 2015. Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci. Rep. 5:11618 [Google Scholar]
  98. Ostermeyer A-K, Kostigen Mumuper C, Semprini L, Radniecki T. 2013. Influence of bovine serum albumin and alginate on silver nanoparticle dissolution and toxicity to Nitrosomonaseuropaea. Environ. Sci. Technol. 47:14403–10 [Google Scholar]
  99. Pagano L, Servin AD. Torre-Roche R, Mukherjee A, Majumdar S. , de la et al. 2016. Molecular response of crop plants to engineered nanomaterials. Environ. Sci. Technol. 50:7198–207 [Google Scholar]
  100. Panda KK, Achary VMM, Krishnaveni R, Padhi BK, Sarangi SN. et al. 2011. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol. Vitro 25:1097–105 [Google Scholar]
  101. Paret ML, Palmateer AJ, Knox GW. 2013. Evaluation of a light-activated nanoparticle formulation of titanium dioxide with zinc for management of bacterial leaf spot on Rosa ‘Noare.’. HortScience 48189–92
  102. Parsons JG, Lopez ML, Gonzalez CM, Peralta‐Videa JR, Gardea‐Torresdey JL. 2010. Toxicity and biotransformation of uncoated and coated nickel hydroxide nanoparticles on mesquite plants. Environ. Toxicol. Chem. 29:1146–54 [Google Scholar]
  103. Patlolla AK, Berry A, May L, Tchounwou PB. 2012. Genotoxicity of silver nanoparticles in Viciafaba: a pilot study on the environmental monitoring of nanoparticles. Int. J. Environ. Res. Public Health 9:1649–62 [Google Scholar]
  104. Peng C, Xu C, Liu Q, Sun L, Luo Y, Shi J. 2017. Fate and transformation of CuO nanoparticles in the soil-rice system during the life cycle of rice plants. Environ. Sci. Technol. 51:4907–17 [Google Scholar]
  105. Pradas del Real AE, Vidal V, Carrière M, Castillo-Michel HA, Levard C. et al. 2017. Silver nanoparticles and wheat roots: a complex interplay. Environ. Sci. Technol. 51:5774–82 [Google Scholar]
  106. Raliya R, Tarafdar JC. 2013. ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in clusterbean (Cyamopsistetragonoloba L.). Agric. Res. 2:48–57 [Google Scholar]
  107. Ramos MA, Yan W, Li X-Q, Koel BE, Zhang W-X. 2009. Simultaneous oxidation and reduction of arsenic by zero-valent iron nanoparticles: understanding the significance of the core-shell structure. J. Phys. Chem. C 113:14591–94 [Google Scholar]
  108. Rico CM, Hong J, Morales MI, Zhao L, Barrios AC. et al. 2013.a Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ. Sci. Technol. 47:5635–42 [Google Scholar]
  109. Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC. et al. 2013.b Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ. Sci. Technol. 47:14110–18 [Google Scholar]
  110. Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M. et al. 2017. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J. Hazard. Mater. 322:2–16 [Google Scholar]
  111. Rodrigues S, Trindade T, Duarte A, Pereira E, Koopmans G, Römkens P. 2016. A framework to measure the availability of engineered nanoparticles in soils: trends in soil tests and analytical tools. Trends Anal. Chem. 75:129–40 [Google Scholar]
  112. Rui M, Ma C, Hao Y, Guo J, Rui Y. et al. 2016. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachishypogaea). Front. Plant Sci. 7:815 [Google Scholar]
  113. Serag MF, Kaji N, Gaillard C, Okamoto Y, Terasaka K. et al. 2010. Trafficking and subcellular localization of multiwalled carbon nanotubes in plant cells. ACS Nano 5:493–99 [Google Scholar]
  114. Servin AD, Morales MI, Castillo-Michel H, Hernandez-Viezcas JA, Munoz B. et al. 2013. Synchrotron verification of TiO2 accumulation in cucumber fruit: a possible pathway of TiO2 nanoparticle transfer from soil into the food chain. Environ. Sci. Technol. 47:11592–98 [Google Scholar]
  115. Servin AD, Pagano L, Castillo-Michel H, de la Torre-Roche R, Hawthorne J. et al. 2016. Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicology 11:98–111 [Google Scholar]
  116. Singh RP, Ramarao P. 2012. Cellular uptake, intracellular trafficking and cytotoxicity of silver nanoparticles. Toxicol. Lett. 213:249–59 [Google Scholar]
  117. Speranza A, Crinelli R, Scoccianti V, Taddei AR, Iacobucci M. et al. 2013. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ. Pollut. 179:258–67 [Google Scholar]
  118. Stamm P, Kumar PP. 2010. The phytohormone signal network regulating elongation growth during shade avoidance. J. Exp. Bot. 61:2889–903 [Google Scholar]
  119. Stankus DP, Lohse SE, Hutchison JE, Nason JA. 2010. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ. Sci. Technol. 45:3238–44 [Google Scholar]
  120. Stegemeier JP, Colman BP, Schwab F, Wiesner MR, Lowry GV. 2017. Uptake and distribution of silver in the aquatic plant Landoltiapunctata (duckweed) exposed to silver and silver sulfide nanoparticles. Environ. Sci. Technol. 51:4936–43 [Google Scholar]
  121. Sun D, Hussain HI, Yi Z, Siegele R, Cresswell T. et al. 2014. Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–402 [Google Scholar]
  122. Taylor AF, Rylott EL, Anderson CW, Bruce NC. 2014. Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLOS ONE 9:e93793 [Google Scholar]
  123. Torney F, Trewyn BG, Lin VS-Y, Wang K. 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat. Nanotechnol. 2:295–300 [Google Scholar]
  124. Tou F, Yang Y, Feng J, Niu Z, Pan H. et al. 2017. Environmental risk implications of metals in sludges from waste water treatment plants: the discovery of vast stores of metal-containing nanoparticles. Environ. Sci. Technol. 51:4831–40 [Google Scholar]
  125. Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X. 2016.a Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maize plants—a soil microcosm experiment. Chemosphere 147:88–97 [Google Scholar]
  126. Wang P, Lombi E, Zhao F-J, Kopittke PM. 2016.b Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21:699–712 [Google Scholar]
  127. Wang P, Menzies NW, Dennis PG, Guo J, Forstner C. et al. 2016.c Silver nanoparticles entering soils via the wastewater-sludge-soil pathway pose low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ. Sci. Technol. 50:8274–81 [Google Scholar]
  128. Wang T, Bai J, Jiang X, Nienhaus GU. 2012.a Cellular uptake of nanoparticles by membrane penetration: a study combining confocal microscopy with FTIR spectroelectrochemistry. ACS Nano 6:1251–59 [Google Scholar]
  129. Wang W, Vinocur B, Shoseyov O, Altman A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–52 [Google Scholar]
  130. Wang Y, Fang Z, Kang Y, Tsang EP. 2014. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. J. Hazard. Mater. 275:230–37 [Google Scholar]
  131. Wang Z, Xie X, Zhao J, Liu X, Feng W. et al. 2012.b Xylem- and phloem-based transport of CuO nanoparticles in maize (Zeamays L.). Environ. Sci. Technol. 46:4434–41 [Google Scholar]
  132. Wang Z, Xu L, Zhao J, Wang X, White JC, Xing B. 2016.d CuO nanoparticle interaction with Arabidopsis thaliana: toxicity, parent-progeny transfer, and gene expression. Environ. Sci. Technol. 50:6008–16 [Google Scholar]
  133. Waychunas GA, Kim CS, Banfield JF. 2005. Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J. Nanoparticle Res. 7:409–33 [Google Scholar]
  134. Yin L, Cheng Y, Espinasse B, Colman BP, Auffan M. et al. 2011. More than the ions: the effects of silver nanoparticles on Loliummultiflorum. Environ. Sci. Technol. 45:2360–67 [Google Scholar]
  135. Yin Y, Tan Z, Hu L, Yu S, Liu J, Jiang G. 2017. Isotope tracers to study the environmental fate and bioaccumulation of metal-containing engineered nanoparticles: techniques and applications. Chem. Rev 117:4462–87 [Google Scholar]
  136. Yuan J, He A, Huang S, Hua J, Sheng GD. 2016. Internalization and phytotoxic effects of CuO nanoparticles in Arabidopsis thaliana as revealed by fatty acid profiles. Environ. Sci. Technol. 50:10437–47 [Google Scholar]
  137. Yue L, Ma C, Zhan X, White JC, Xing B. 2017. Molecular mechanisms of maize seedling response to La2O3 NP exposure: water uptake, aquaporin gene expression and signal transduction. Environ. Sci. Nano 4:843–55 [Google Scholar]
  138. Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A. et al. 2015. Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactucasativa. J. Agric. Food Chem. 63:6876–82 [Google Scholar]
  139. Zhang Z, He X, Zhang H, Ma Y, Zhang P. et al. 2011. Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3:816–22 [Google Scholar]
  140. Zhao F-J, Moore KL, Lombi E, Zhu Y-G. 2014. Imaging element distribution and speciation in plant cells. Trends Plant Sci 19:183–92 [Google Scholar]
  141. Zhao L, Huang Y, Hu J, Zhou H, Adeleye AS, Keller AA. 2016.a 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress. Environ. Sci. Technol. 50:2000–10 [Google Scholar]
  142. Zhao L, Huang Y, Keller AA. 2017.a Comparative metabolic response between cucumber (Cucumissativus) and corn (Zeamays) to a Cu(OH)2 nanopesticide. J. Agric. Food Chem. In press. https://doi.org/10.1021/acs.jafc.7b01306 [Crossref] [Google Scholar]
  143. Zhao L, Huang Y, Zhou H, Adeleye AS, Wang H. et al. 2016.b GC-TOF-MS based metabolomics and ICP-MS based metallomics of cucumber (Cucumissativus) fruits reveal alteration of metabolites profile and biological pathway disruption induced by nano copper. Environ. Sci. Nano 3:1114–23 [Google Scholar]
  144. Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H. et al. 2016.c Metabolomics to detect response of lettuce (Lactucasativa) to Cu(OH)2 nanopesticides: oxidative stress response and detoxification mechanisms. Environ. Sci. Technol. 50:9697–707 [Google Scholar]
  145. Zhao L, Peng B, Hernandez-Viezcas JA, Rico C, Sun Y. et al. 2012. Stress response and tolerance of Zeamays to CeO2 nanoparticles: cross talk among H2O2, heat shock protein, and lipid peroxidation. ACS Nano 6:9615–22 [Google Scholar]
  146. Zhao L, Sun Y, Hernandez-Viezcas JA, Hong J, Majumdar S. et al. 2015. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zeamays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ. Sci. Technol. 49:2921–28 [Google Scholar]
  147. Zhao Q, Ma C, White JC, Dhankher OP, Zhang X. et al. 2017.b Quantitative evaluation of multi-wall carbon nanotube uptake by terrestrial plants. Carbon 114:661–70 [Google Scholar]
  148. Zhu Y, Liu W, Sheng Y, Zhang J, Chiu T. et al. 2015. ABA affects brassinosteroid-induced antioxidant defense via ZmMAP65‐1a in maize plants. Plant Cell Physiol 56:1442–55 [Google Scholar]
  149. Zhu Z-J, Wang H, Yan B, Zheng H, Jiang Y. et al. 2012. Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ. Sci. Technol. 46:12391–98 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error