Acoustic energy as a form of physical energy has drawn the interests of both industry and scientific communities for its potential use as a food processing and preservation tool. Currently, most such applications deal with ultrasonic waves with relatively high intensities and acoustic power densities and are performed mostly in liquids. In this review, we briefly discuss the fundamentals of power ultrasound. We then summarize the physical and chemical effects of power ultrasound treatments based on the actions of acoustic cavitation and by looking into several ultrasound-assisted unit operations. Finally, we examine the biological effects of ultrasonication by focusing on its interactions with the miniature biological systems present in foods, i.e., microorganisms and food enzymes, as well as with selected macrobiological components.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ajlouni S, Sibrani H, Premier R, Tomkins B. 2006. Ultrasonication and fresh produce (Cos lettuce) preservation. J. Food Sci. 71:M62–68 [Google Scholar]
  2. Anese M, Mirolo G, Beraldo P, Lippe G. 2013. Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem. 136:458–63 [Google Scholar]
  3. Arends BJ, Blindt RA, Janssen J, MP. 2003. Crystallization process using ultrasound. US Patent No. 6630185 [Google Scholar]
  4. Arnold G, Leiteritz L, Zahn S, Rohm H. 2009. Ultrasonic cutting of cheese: composition effects cutting work reduction and energy demand. J. Food Eng. 70:165–70 [Google Scholar]
  5. Arnold G, Zahn S, Legler A, Rohm H. 2011. Ultrasonic cutting of foods with inclined moving blades. J. Food Eng. 103:394–400 [Google Scholar]
  6. Ashokkumar M, Lee J, Kentish S, Grieser F. 2007. Bubbles in an acoustic field: an overview. Ultrason. Sonochem. 14:470–75 [Google Scholar]
  7. Ashokkumar M, Lee J, Zisu B, Bhaskarcharya R, Palmer M, Kentish S. 2009. Hot topic: Sonication increases the heat stability of whey proteins. J. Dairy Sci. 92:5353–56 [Google Scholar]
  8. Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L. et al. 2008. Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov. Food Sci. Emerg. Technol. 9:155–60 [Google Scholar]
  9. Awad SB. 2011. High-power ultrasound in surface cleaning and decontamination. See Feng et al. 2011 545–58
  10. Awad SB, Nagarajan R. 2010. Ultrasonic cleaning. Development in Surface Contamination and Cleaning R Kohli, KL Mittal 225–80 New York: Elsevier [Google Scholar]
  11. Baumann A, Martin SE, Feng H. 2005. Power ultrasound treatment of Listeria monocytogenes in apple cider. J. Food Prot. 68:2333–40 [Google Scholar]
  12. Baumann A, Martin SE, Feng H. 2009. Removal of Listeria monocytogenes biofilms from stainless steel using ultrasound and ozone. J. Food Prot. 72:1306–9 [Google Scholar]
  13. Baxter JF, Morris GJ, Gaim-Marsoner G. 1997. Process for accelerating the polymorphic transformation of edible fats using ultrasonication. Eur. Patent No. 0765605A1 [Google Scholar]
  14. Boucher RMG, Weiner AL. 1963. Foam control by acoustic and aerodynamic means. Br. Chem. Eng. 8:808–12 [Google Scholar]
  15. Bund RK, Pandit AB. 2006. Sonocrystallization: effect on lactose recovery and crystal habit. Ultrason. Sonochem. 14:143–52 [Google Scholar]
  16. Chandrapala J, Zisu B, Palmer M, Kentish S, Ashokkumar M. 2011. Effects of ultrasound on the thermal and structural characteristics of proteins in reconstituted whey protein concentrate. Ultrason. Sonochem. 18:951–57 [Google Scholar]
  17. Chow R, Blindt R, Chivers R, Povey M. 2003. The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. Ultrasonics 41:595–604 [Google Scholar]
  18. Chow R, Blindt R, Chivers R, Povey M. 2005. A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics 43:227–30 [Google Scholar]
  19. Comandini P, Blanda G, Soto-Caballero MC, Sala V, Tylewicz U. et al. 2013. Effects of power ultrasound on immersion freezing parameters of potatoes. Innov. Food Sci. Emerg. Technol. 18:120–25 [Google Scholar]
  20. Dahlem O, Demaiffe V, Halloin V, Reisse J. 1998. Direct sonication system suitable for medium-scale sonochemical reactors. AIChE J. 44:2724–30 [Google Scholar]
  21. Dahlem O, Reisse J, Halloin V. 1999. The radially vibrating horn: a scaling-up possibility for sonochemical reactions. Chem. Eng. Sci. 54:2829–38 [Google Scholar]
  22. Dedhia AC, Ambulgekar PV, Pandit AB. 2004. Static foam destruction: role of ultrasound. Ultrason. Sonochem. 11:67–75 [Google Scholar]
  23. Dion J. 2011. Contamination-free sonoreactor for the food industry. See Feng et al. 2011 175–70
  24. Faïd F, Contamine F, Wilhelm AM, Delmas H. 1998. Comparison of ultrasound effects in different reactors at 20 kHz. Ultrason. Sonochem. 5:119–24 [Google Scholar]
  25. Feng H. 2011. The thermodynamic and kinetic aspects of power ultrasound processes. See Feng et al. 2011 107–24
  26. Feng H, Barbosa-Cánovas GV, Weiss J. 2011. Ultrasound Technologies for Food and Bioprocessing. New York: Springer [Google Scholar]
  27. Feng H, Yang W, Hielscher T. 2009. Power ultrasound. Food Sci. Technol. Int. 14:433–36 [Google Scholar]
  28. Freitas S, Hielscher G, Merkle HP, Gander B. 2006. Continuous contact- and contamination-free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrason. Sonochem. 13:76–85 [Google Scholar]
  29. Freudig B, Tesch S, Schubert H. 2002. Production of emulsions in high pressure homogenizers—Part 2: Significance of cavitation for size reduction droplets. Chemie Ingenieur Technik 74:880–84 [Google Scholar]
  30. Gale GW, Busnaina AA. 1995. Removal of particulate contaminants using ultrasonics and megasonics: a review. Particulate Sci. Technol. 13:197–211 [Google Scholar]
  31. Gallego-Juárez JA. 1999. High-power ultrasound. Wiley Encyclopedia of Electrical and Electronics Engineering JG Webster 49–59 New York: Wiley [Google Scholar]
  32. Genck WJ, Bayard M. 2001. Sonocrystallization. Comments. Chem. Eng. Prog. 97:8 [Google Scholar]
  33. Ghaedian R, Coupland JN, Decker EA, McClements DJ. 1998. Ultrasonic determination of fish composition. J. Food Eng. 35:323–37 [Google Scholar]
  34. Gogate PR. 2011. Application of hydrodynamic cavitation for food and bioprocessing. See Feng et al. 2011 141–74
  35. Gülseren İ, Güzey D, Bruce B, Weiss J. 2007. Structural and functional changes in ultrasonicated bovine serum albumin solutions. Ultrason. Sonochem. 14:173–83 [Google Scholar]
  36. Heffernan SP, Kelly AL, Mulvihill DM, Lambrich U, Schuchmann HP. 2011. Efficiency of a range of homogenisation technologies in the emulsification and stabilization of cream liqueurs. Innov. Food Sci. Emerg. Technol. 12:628–34 [Google Scholar]
  37. Henglein A, Gutierrez M. 1993. Sonochemistry and sonoluminescence: effects of external pressure. J. Phys. Chem. B 97:158–62 [Google Scholar]
  38. Hickling R. 1965. Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature 206:915–17 [Google Scholar]
  39. Higaki K, Ueno S, Koyano T, Sato K. 2001. Effects of ultrasonic irradiation on crystallization behavior of tripalmitoylglycerol and cocoa butter. J. Am. Oil Chem. Soc. 78:513–18 [Google Scholar]
  40. Hodnett M, Choi MJ, Zeqiri B. 2007. Towards a reference ultrasonic cavitation vessel. Part 1: Preliminary investigation of the acoustic field distribution in a 25 kHz cylindrical cell. Ultrason. Sonochem. 14:29–40 [Google Scholar]
  41. Hopkins DL, Stanley DF, Ponnampalam EN. 2007. Relationship between real-time ultrasound and carcass measures and composition in heavy sheep. Aust. J. Exp. Agric. 47:1304–8 [Google Scholar]
  42. Hunter G, Lucas M, Watson I, Parton R. 2008. A radial mode ultrasonic horn for the inactivation of Escherichia coli K12. Ultrason. Sonochem. 15:101–9 [Google Scholar]
  43. Huppertz T. 2011. Other types of homogenizer (high-speed mixing, ultrasonics, microfluidizers, membrane emulsification). Encyclopedia of Dairy Sciences Fuquay JW, Fox PF, McSweeney PLH 761–64 San Diego: Academic, 2nd ed.. [Google Scholar]
  44. Iida Y, Tuziuti T, Yasui K, Towata A, Kozuka T. 2008. Control of viscosity in starch and polysaccharide solutions with ultrasound after gelatinization. Innov. Food Sci. Emerg. Technol. 9:140–46 [Google Scholar]
  45. Jambrak A, Herceg Z, Subaric D, Babic J, Brncic S. et al. 2010. Ultrasound effect on physical properties of corn starch. Carbohydr. Polym. 79:91–100 [Google Scholar]
  46. Jimmy B, Kentish S, Grieser F, Ashokkumar M. 2008. Ultrasonic nebulization in aqueous solutions and the role of interfacial adsorption dynamics in surfactant enrichment. Langmuir 24:10133–37 [Google Scholar]
  47. Juliano P, Kutter A, Cheng LJ, Swiergon P, Mawson R, Augustin MA. 2011. Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrason. Sonochem. 18:963–73 [Google Scholar]
  48. Juliano P, Swiergon P, Lee KH, Gee PT, Clarke PT, Augustin MA. 2013. Effects of pilot plant-scale ultrasound on palm oil separation and oil quality. J. Am. Oil Chem. Soc. 90:81253–60 [Google Scholar]
  49. Karaman S, Yilmaz MT, Ertugay MF, Baslar M, Kayacier A. 2012. Effect of ultrasound treatment on steady and dynamic shear properties of glucomannan based salep dispersions: optimization of amplitude level, sonication time and temperature using response surface methodology. Ultrason. Sonochem. 19:928–38 [Google Scholar]
  50. Kazachek MV, Gordeychuk TV. 2009. Estimation of the cavitation peak pressure using the Na D-line structure in the sonoluminescence spectra. Tech. Phys. Lett. 35:193–96 [Google Scholar]
  51. Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L. 2008. The use of ultrasonics for nanoemulsion preparation. Innov. Food Sci. Emerg. Technol. 9:170–75 [Google Scholar]
  52. Kiani H, Sun D-W, Zhang Z, Al-Rubeai M, Naciri M. 2013. Ultrasound-assisted freezing of Lactobacillus plantarum subsp. plantarum: the freezing process and cell viability. Innov. Food Sci. Emerg. Technol. 18:138–44 [Google Scholar]
  53. Kim HJ, Feng H, Kushad MM, Fan X. 2006. Effects of ultrasound, irradiation, and acidic electrolyzed water on germination of alfalfa and broccoli seeds and Escherichia coli O157:H7. J. Food Sci. 71:168–73 [Google Scholar]
  54. Kresic G, Lelas V, Jambrak AR, Herceg Z, Brncic SR. 2008. Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. J. Food Eng. 87:64–73 [Google Scholar]
  55. Kritzler S, Sava A. 1999. Improved disinfection method. Worldw. Patent No. WO 99/66961 [Google Scholar]
  56. Kvame T, Vangen O. 2007. Selection for lean weight based on ultrasound and CT in a meat line of sheep. Livestock Sci. 106:232–42 [Google Scholar]
  57. Kyllonen HM, Pirkonen P, Nystrom M. 2005. Membrane filtration enhanced by ultrasound: a review. Desalination 181:319–35 [Google Scholar]
  58. Lang RJ. 1962. Experimental study of thin liquid film ultrasonic atomization. J. Acoust. Soc. Am. 34:6–9 [Google Scholar]
  59. Lee H, Kim H, Cadwalladera KR, Feng H, Martin SE. 2013. Sonication in combination with heat and low pressure as an alternative pasteurization treatment—effect on Escherichia coli K12 inactivation and quality of apple cider. Ultrason. Sonochem. 20:1131–38 [Google Scholar]
  60. Lee H, Zhou B, Liang W, Feng H, Martin S. 2009. Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: microbial responses and kinetics modeling. J. Food Eng. 93:354–64 [Google Scholar]
  61. Lee J, Tuziuti T, Yasui K, Kentish S, Grieser F. et al. 2007. Influence of surface-active solutes on the coalescence, clustering, and fragmentation of acoustic bubbles confined in a microspace. J. Phys. Chem. C 111:19015–23 [Google Scholar]
  62. Lee JW, Feng H, Kushad MM. 2005. Effect of manothermosonication (MTS) on quality of orange juice. Proceedings of AIChE 2005 Annual Meeting Am. Inst. Chem. Eng. Cincinnati, OH: Am. Inst. Chem. Eng. [Google Scholar]
  63. Leighton TG. 1994. The Acoustic Bubble San Diego: Academic [Google Scholar]
  64. Leong T, Ashokkumar M, Kentish SE. 2011. The fundamentals of power ultrasound—a review. Acoustics Aust. 39:43–52 [Google Scholar]
  65. Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M. 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 16:721–27 [Google Scholar]
  66. Li H, Li H, Guo Z, Liu Y. 2006. The application of power ultrasound to reaction crystallization. Ultrason. Sonochem. 13:359–63 [Google Scholar]
  67. Li MK, Fogler HS. 1978. Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. J. Fluid Mech. 88:513–28 [Google Scholar]
  68. Li PH, Chiang BH. 2012. Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason. Sonochem. 19:192–97 [Google Scholar]
  69. Lillard HS. 1994. Decontamination of poultry skin by sonication. Food Technol. 48:72–73 [Google Scholar]
  70. Lim KS, Barigou M. 2005a. Pneumatic foam generation in the presence of a high-intensity ultrasound field. Ultrason. Sonochem. 12:385–93 [Google Scholar]
  71. Lim KS, Barigou M. 2005b. Ultrasound-assisted generation of foam. Ind. Eng. Chem. Res. 44:3312–20 [Google Scholar]
  72. Lorimer JP, Mason TJ, Cuthbert TC, Brookfield EA. 1995. Effect of ultrasound on the degradation of aqueous native dextran. Ultrason. Sonochem. 2:55–57 [Google Scholar]
  73. Luque de Castro MD, Priego-Capote F. 2007. Ultrasound-assisted crystallization (sonocrystallization). Ultrason. Sonochem. 14:717–24 [Google Scholar]
  74. Martini S, Suzuki AH, Hartel RW. 2008. Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. J. Am. Oil Chem. Soc. 85:621–28 [Google Scholar]
  75. Mason TJ. 2007. Developments in ultrasound—non-medical. Prog. Biophys. Mol. Biol. 93:166–75 [Google Scholar]
  76. Mason TJ, Lorimer JP. 2002. Applied Sonochemistry Darmstadt, Ger.: Wiley-VCH [Google Scholar]
  77. Mawson R, Gamage M, Terefe NS, Knoerzer K. 2011. Ultrasound in enzyme activation and inactivation. See Feng et al. 2011 369–404
  78. McClements DJ. 1997. Ultrasonic characterization of foods and drinks: principles, methods, and applications. Crit. Rev. Food Sci. Nutr. 37:1–46 [Google Scholar]
  79. McClements DJ. 2011. Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–316 [Google Scholar]
  80. Memoli G, Gélat PN, Hodnett M, Zeqiri B. 2012. Characterisation and improvement of a reference cylindrical sonoreactor. Ultrason. Sonochem. 19:939–52 [Google Scholar]
  81. Monin G. 1998. Recent methods for predicting quality of whole meat. Meat Sci. 49:S231–43 [Google Scholar]
  82. Montalbo-Lomboy M, Khanal SK, van Leeuwen J, Raj Raman D, Dunn L Jr, Grewell D. 2010. Ultrasonic pretreatment of corn slurry for saccharification: a comparison of batch and continuous systems. Ultrason. Sonochem. 17:939–46 [Google Scholar]
  83. Muthukumaran S, Kentish S, Lalchandani S, Ashokkumar M, Mawson R. et al. 2005. The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrason. Sonochem. 12:29–35 [Google Scholar]
  84. Nalajala VS, Moholkar VS. 2011. Investigations in the physical mechanism of sonocrystallization. Ultrason. Sonochem. 18:345–55 [Google Scholar]
  85. Nii S, Kikumoto S, Tokuyama H. 2009. Quantitative approach to ultrasonic emulsion separation. Ultrason. Sonochem. 16:145–49 [Google Scholar]
  86. Nii S, Matsuura K, Fukazu T, Toki M, Kawaizumi F. 2006. A novel method to separate organic compounds through ultrasonic atomization. Chem. Eng. Res. Des. 84:412–15 [Google Scholar]
  87. Ninoles L, Mulet A, Ventanas S, Benedito J. 2010. Ultrasonic assessment of the melting behaviour in fat from Iberian dry-cured hams. Meat Sci. 85:26–32 [Google Scholar]
  88. O'Donnell CP, Tiwari BK, Bourke P, Cullen PJ. 2010. Effect of ultrasonic processing on food enzymes of industrail importance. Trends Food Sci. Technol. 21:358–67 [Google Scholar]
  89. Pandit AB, Kumar PS, Kumar MS. 1999. Improve reactions with hydrodynamic cavitation. Chem. Eng. Prog. 95:43–50 [Google Scholar]
  90. Patel SR, Murthy ZVP. 2012. Lactose recovery processes from whey: a comparative study based on sonocrystallization. Sep. Purif. Rev. 41:251–66 [Google Scholar]
  91. Patist A, Bates D. 2008. Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov. Food Sci. Emerg. Technol. 9:147–54 [Google Scholar]
  92. Prokic M. 2011. Wideband multi-frequency, multimode, and modulated (MMM) ultrasonic technology. See Feng et al. 2011 125–40
  93. Rao JJ, McClements DJ. 2011. Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J. Agric. Food Chem. 59:5026–35 [Google Scholar]
  94. Raso J, Pagán R, Condón S, Sala FJ. 1998. Influence of temperature and pressure on the lethality of ultrasound. Appl. Environ. Microbiol. 64:465–71 [Google Scholar]
  95. Rassokhin DN. 1998. Accumulation of surface-active solutes in the aerosol particles generated by ultrasound. J. Phys. Chem. B 102:4337–41 [Google Scholar]
  96. Ratsimba B, Biscans B, Delmas H, Jenck J. 1999. Sonocrystallization: the end of empiricism? A review on the fundamental investigations and the industrial developments. KONA 17:38–48 [Google Scholar]
  97. Riera E, Gallego-Juarez JA, Mason TJ. 2006. Airborne ultrasound for the precipitation of smokes and powders and the destruction of foams. Ultrason. Sonochem. 13:107–16 [Google Scholar]
  98. Rock C, Yang W, Nooji J, Teixeira A, Feng H. 2010. Evaluation of Roma tomatoes (Solanum lycopersicum) peeling methods: conventional versus power ultrasound. Proc. Fla. State Hortic. Soc. 123:241–45 [Google Scholar]
  99. Ruecroft G. 2007. Ultrasound, crystallisation & drug formulation. Spec. Chem. Mag. 27:60–62 [Google Scholar]
  100. Ruecroft G, Hipkiss D, Ly T, Maxted N, Cains PW. 2005. Sonocrystallization: the use of ultrasound for improved industrial crystallization. Org. Process Res. Dev. 9:923–32 [Google Scholar]
  101. Sato M, Matsuura K, Fujii T. 2001. Ethanol separation from ethanol-water solution by ultrasonic atomization and its proposed mechanism based on parametric decay instability of capillary wave. J. Chem. Phys. 114:2382–86 [Google Scholar]
  102. Sauter C, Emin MA, Schuchmann HP, Tavman S. 2008. Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and deagglomeration of nano-particles. Ultrason. Sonochem. 15:517–23 [Google Scholar]
  103. Schneider Y, Zahn S, Linke L. 2002. Qualitative process evaluation for ultrasonic cutting of food. Eng. Life Sci. 6:153–57 [Google Scholar]
  104. Schneider Y, Zahn S, Rohm H. 2011. Ultrasonic cutting of foods. See Feng et al. 2011, pp. 211–37
  105. Scouten AJ, Beuchat LR. 2002. Combined effects of chemical, heat and ultrasound treatments to kill Salmonella and Escherichia coli O157:H7 on alfalfa seeds. J. Appl. Microbiol. 92:668–74 [Google Scholar]
  106. Sehgal C, Steer RP, Sutherland RG, Verrall RE. 1979. Sonoluminescence of argon saturated alkali metal salt solutions as a probe of acoustic cavitation. J. Chem. Phys. 70:2242–48 [Google Scholar]
  107. Seshadri R, Weiss J, Hulbert GJ, Mount J. 2003. Ultrasonic processing influences rheological and optical properties of high-methoxyl pectin dispersions. Food Hydrocoll. 17:191–97 [Google Scholar]
  108. Silva HD, Cerqueira MA, Vicente AA. 2012. Nanoemulsions for food applications: development and characterization. Food Bioproc. Technol. 5:854–67 [Google Scholar]
  109. Stathopulos PB, Guenter AS, Young-Mi H, Rumfeldt JAO, Lepock JR, Meiering EM. 2004. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 13:3017–27 [Google Scholar]
  110. Suslick KS, Didenko Y, Feng MM, Hyeon T, Kolbeck KJ. et al. 1999. Acoustic cavitation and its chemical consequences. Philos. Trans. R. Soc. Lond. A 357:335–53 [Google Scholar]
  111. Suslick KS, Grinstaff MW. 1990. Protein microencapsulation of nonaqueous liquids. J. Am. Chem. Soc. 112:7807–9 [Google Scholar]
  112. Suslick KS, Grinstaff MW, Kolbeck KJ, Wong M. 1994. Characterization of sonochemically prepared proteinaceous microspheres. Ultrason. Sonochem. 1:S65–68 [Google Scholar]
  113. Suzuki AH, Lee J, Padilla SG, Martini S. 2010. Altering functional properties of fats using power ultrasound. J. Food Sci. 75:E208–14 [Google Scholar]
  114. Suzuki K, Arashi K, Nii S. 2012. Determination of droplet and vapor ratio of ultrasonically-atomized aqueous ethanol solution. J. Chem. Eng. Jpn. 45:337–42 [Google Scholar]
  115. Suzuki K, Kirpalani DM, McCracken TW. 2006. Experimental investigation of ethanol enrichment behavior in batch and continuous feed ultrasonic atomization systems. Chem. Eng. Technol. 29:44–49 [Google Scholar]
  116. Szent-Györgyi A. 1933. Chemical and biological effects of ultra-sonic radiation. Nature 131:278 [Google Scholar]
  117. Tho P, Manasseh R, Ooi A. 2007. Cavitation microstreaming patterns in single and multiple bubble systems. J. Fluid Mech. 576:191–233 [Google Scholar]
  118. Tiwari BK, Mason TJ. 2012. Ultrasound processing of fluid foods. Novel Thermal and Non-Thermal Technologies for Fluid Foods PJ Cullen, BK Tiwari, V Valdramidis 135–65 New York: Elsevier [Google Scholar]
  119. Ueno S, Ristic RI, Higaki K, Sato K. 2003. In situ studies of ultrasound-stimulated fat crystallization using synchrotron radiation. J. Phys. Chem. B 107:4927–35 [Google Scholar]
  120. Ugarte-Romero E, Feng H, Martin S, Cadwallader KR. 2006. Inactivation of Escherichia coli with power ultrasound in apple cider. J. Food Sci. 71:2102–8 [Google Scholar]
  121. Vardar C, Ilhan K, Karabulut OA. 2012. The application of various disinfectants by fogging for decreasing postharvest diseases of strawberry. Postharvest Biol. Technol. 66:30–34 [Google Scholar]
  122. Vercet A, Lopez P, Burgos J. 1999. Inactivation of heat-resistant pectinmethylesterase from orange by manothermosonication. J. Agric. Food Chem. 47:432–37 [Google Scholar]
  123. Vilkhu K, Mawson R, Simons L, Bates D. 2008. Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov. Food Sci. Emerg. Technol. 9:161–69 [Google Scholar]
  124. Vo HS, Kentish S, Ashokkumar M. 2011. The enhancement of foam generated by low power ultrasound and its application to foam fractionation. Colloids Surf. A 380:35–40 [Google Scholar]
  125. Wohlgemuth K, Ruether F, Schembecker G. 2009. Sonocrystallization and crystallization with gassing of adipic acid. Chem. Eng. Sci. 65:1016–27 [Google Scholar]
  126. Xu L, Lin S, Hu W. 2011. Optimization design of high power ultrasonic circular ring radiator in coupled vibration. Ultrasonics 51:815–23 [Google Scholar]
  127. Yap A, Schmid F, Jiranek V, Grbin P, Bates D. 2008. Inactivation of Brettanomyces/Dekkera in wine barrels by high power ultrasound. Wine Ind. J. 23:32–40 [Google Scholar]
  128. Zahid N, Ali A, Manickam S, Siddiqui Y, Maqbool M. 2012. Potential of chitosan-loaded nanoemulsions to control different Colletotrichum spp. and maintain quality of tropical fruits during cold storage. J. Appl. Microbiol. 113:925–39 [Google Scholar]
  129. Zhang Z, Feng H, Niu Y, Eckhoff SR. 2005a. Starch recovery from degermed corn flour and hominy feed using power ultrasound. Cereal Chem. 82:447–49 [Google Scholar]
  130. Zhang Z, Niu Y, Eckhoff SR, Feng H. 2005b. Sonication enhanced starch separation in a milling process and its effect on the resulting starch. Starch 57:240–45 [Google Scholar]
  131. Zhou B, Feng H, Luo Y. 2009. Ultrasound enhanced sanitizer efficacy in reduction of Escherichia coli O157:H7 population on spinach leaves. J. Food Sci. 74:308–13 [Google Scholar]
  132. Zhou B, Feng H, Pearlstein AJ. 2012a. Continuous-flow ultrasonic washing system for fresh produce surface decontamination. Innov. Food Sci. Emerg. Technol. 16:427–35 [Google Scholar]
  133. Zhou B, Luo Y, Millner P, Feng H. 2012b. Sanitation and design of lettuce coring knives for minimizing Escherichia coli O157:H7 contamination. J. Food Prot. 75:563–66 [Google Scholar]
  134. Zisu B, Bhaskaracharya R, Kentish S, Ashokkumar M. 2010. Ultrasonic processing of dairy systems in large scale reactors. Ultrason. Sonochem. 17:1075–81 [Google Scholar]
  135. Zisu B, Lee J, Chandrapala J, Bhaskaracharya R, Palmer M. et al. 2011. Effect of ultrasound on the physical and functional properties of reconstituted whey protein powders. J. Dairy Res. 78:226–32 [Google Scholar]
  136. Zuniga RN, Kulozik U, Aguilera JM. 2011. Ultrasonic generation of aerated gelatin gels stabilized by whey protein beta-lactoglobulin. Food Hydrocoll. 25:958–67 [Google Scholar]
  137. Zuo JY, Knoerzer K, Mawson R, Kentish S, Ashokkumar M. 2009. The pasting properties of sonicated waxy rice starch suspensions. Ultrason. Sonochem. 16:462–68 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error