This review examines the applications of omics technologies in food microbiology, with a primary focus on high-throughput sequencing (HTS) technologies. We discuss the different sequencing approaches applicable to the study of food-related microbial isolates and mixed microbial communities in foods, and we provide an overview of the sequencing platforms suitable for each approach. We highlight the potential for genomics, metagenomics, and metatranscriptomics to guide efforts to optimize food fermentations. Additionally, we explore the use of comparative and functional genomics to further our understanding of the mechanisms of probiotic action and we describe the applicability of HTS as a food safety measure. Finally, we consider the use of HTS to investigate the effects that ingested microbes have on the human gut microbiota.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aldridge BB, Rhee KY. 2014. Microbial metabolomics: innovation, application, insight. Curr. Opin. Microbiol. 19:90–96 [Google Scholar]
  2. Alkema W, Boekhorst J, Wels M, van Hijum SA. 2016. Microbial bioinformatics for food safety and production. Brief. Bioinform. 17:283–92 [Google Scholar]
  3. Allard G, Ryan FJ, Jeffery IB, Claesson MJ. 2015. SPINGO: a rapid species-classifier for microbial amplicon sequences. BMC Bioinform 16:1 [Google Scholar]
  4. Allard MW, Strain E, Melka D, Bunning K, Musser SM. et al. 2016. The PRACTICAL value of food pathogen traceability through BUILDING a whole-genome sequencing network and database. J. Clin. Microbiol. 54:1075–83 [Google Scholar]
  5. Ashton PM, Nair S, Dallman T, Rubino S, Rabsch W. et al. 2015. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Nat. Biotechnol. 33:296–300 [Google Scholar]
  6. Bachmann H, Pronk JT, Kleerebezem M, Teusink B. 2015. Evolutionary engineering to enhance starter culture performance in food fermentations. Curr. Opin. Biotechnol. 32:1–7 [Google Scholar]
  7. Bachmann H, Starrenburg MJ, Molenaar D, Kleerebezem M, van Hylckama Vlieg JE. 2012. Microbial domestication signatures of Lactococcus lactis can be reproduced by experimental evolution. Genome Res 22:115–24 [Google Scholar]
  8. Benitez-Paez A, Portune K, Sanz Y. 2015. Species level resolution of 16S rRNA gene amplicons sequenced throughMinIONTM portable nanopore sequencer. GigaScience 5:4 [Google Scholar]
  9. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J. et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456:53–59 [Google Scholar]
  10. Bermudez-Brito M, Plaza-Díaz J, Muñoz-Quezada S, Gómez-Llorente C, Gil A. 2012. Probiotic mechanisms of action. Ann. Nutr. Metab. 61:160–74 [Google Scholar]
  11. Betteridge A, Grbin P, Jiranek V. 2015. Improving Oenococcus oeni to overcome challenges of wine malolactic fermentation. Trends Biotechnol 33:547–53 [Google Scholar]
  12. Bienenstock J, Gibson G, Klaenhammer TR, Walker WA, Neish AS. 2013. New insights into probiotic mechanisms: a harvest from functional and metagenomic studies. Gut Microbes 4:94–100 [Google Scholar]
  13. Bokulich NA, Bamforth CW, Mills DA. 2012. Brewhouse-resident microbiota are responsible for multi-stage fermentation of American coolship ale. PLOS ONE 7:e35507 [Google Scholar]
  14. Bokulich NA, Bergsveinson J, Ziola B, Mills DA. 2015. Mapping microbial ecosystems and spoilage–gene flow in breweries highlights patterns of contamination and resistance. eLife 4:e04634 [Google Scholar]
  15. Bokulich NA, Lewis ZT, Boundy-Mills K, Mills DA. 2016. A new perspective on microbial landscapes within food production. Curr. Opin. Biotechnol. 37:182–89 [Google Scholar]
  16. Bokulich NA, Mills DA. 2013. Facility-specific “house” microbiome drives microbial landscapes of artisan cheesemaking plants. Appl. Environ. Microbiol. 79:5214–23 [Google Scholar]
  17. Borneman AR, Pretorius IS, Chambers PJ. 2013. Comparative genomics: a revolutionary tool for wine yeast strain development. Curr. Opin. Biotechnol. 24:192–99 [Google Scholar]
  18. Bourdichon F, Casaregola S, Farrokh C, Frisvad JC, Gerds ML. et al. 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154:87–97 [Google Scholar]
  19. Bourrie BCT, Willing BP, Cotter PD. 2016. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 7:647 [Google Scholar]
  20. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L. et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–8 [Google Scholar]
  21. Bull MJ, Jolley KA, Bray JE, Aerts M, Vandamme P. et al. 2014. The domestication of the probiotic bacterium Lactobacillus acidophilus. Sci. Rep. 4:7202 [Google Scholar]
  22. Çakar ZP, Seker UO, Tamerler C, Sonderegger M, Sauer U. 2005. Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res. 5:569–78 [Google Scholar]
  23. Çakar ZP, Turanli‐Yildiz B, Alkım C, Yilmaz Ü. 2012. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res 12:171–82 [Google Scholar]
  24. Caplice E, Fitzgerald GF. 1999. Food fermentations: role of microorganisms in food production and preservation. Int. J. Food Microbiol. 50:131–49 [Google Scholar]
  25. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA. et al. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–22 [Google Scholar]
  26. Chaillou S, Chaulot-Talmon A, Caekebeke H, Cardinal M, Christieans S. et al. 2014. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J 9:1105–18 [Google Scholar]
  27. Chakravorty S, Bhattacharya S, Chatzinotas A, Chakraborty W, Bhattacharya D, Gachhui R. 2016. Kombucha tea fermentation: microbial and biochemical dynamics. Int. J. Food Microbiol. 220:63–72 [Google Scholar]
  28. Chan BK, Abedon ST, Loc-Carrillo C. 2013. Phage cocktails and the future of phage therapy. Future Microbiol 8:769–83 [Google Scholar]
  29. Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J. et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10:563–69 [Google Scholar]
  30. Cocolin L, Ercolini D. 2015. Zooming into food-associated microbial consortia: a “cultural” evolution. Curr. Opin. Food Sci. 2:43–50 [Google Scholar]
  31. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–76 [Google Scholar]
  32. Dallman TJ, Byrne L, Ashton PM, Cowley LA, Perry NT. et al. 2015. Whole-genome sequencing for national surveillance of Shiga toxin–producing Escherichia coli O157. Clin. Infect. Dis. 61:305–12 [Google Scholar]
  33. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  34. De Filippis F, Genovese A, Ferranti P, Gilbert JA, Ercolini D. 2016. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci. Rep. 6:21871 [Google Scholar]
  35. De Filippis F, La Storia A, Villani F, Ercolini D. 2013. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLOS ONE 8:e70222 [Google Scholar]
  36. De Pasquale I, Di Cagno R, Buchin S, De Angelis M, Gobbetti M. 2014. Microbial ecology dynamics reveal a succession in the core microbiota involved in the ripening of pasta filata caciocavallo pugliese cheese. Appl. Environ. Microbiol. 80:6243–55 [Google Scholar]
  37. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J. et al. 2014. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. Emerg. Infect. Dis. 20:1306 [Google Scholar]
  38. Derrien M, van Hylckama Vlieg JE. 2015. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:354–66 [Google Scholar]
  39. dos Santos FB, de Vos WM, Teusink B. 2013. Towards metagenome-scale models for industrial applications: the case of lactic acid bacteria. Curr. Opin. Biotechnol. 24:200–6 [Google Scholar]
  40. Drissi F, Merhej V, Angelakis E, El Kaoutari A, Carrière F. et al. 2014. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr. Diabetes 4:e109 [Google Scholar]
  41. Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V. et al. 2015. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLOS ONE 10:e0124360 [Google Scholar]
  42. Duitama J, Sánchez-Rodríguez A, Goovaerts A, Pulido-Tamayo S, Hubmann G. et al. 2014. Improved linkage analysis of quantitative trait loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genom 15:1 [Google Scholar]
  43. Eloe-Fadrosh EA, Brady A, Crabtree J, Drabek EF, Ma B. et al. 2015. Functional dynamics of the gut microbiome in elderly people during probiotic consumption. mBio 6:e00231–15 [Google Scholar]
  44. Endersen L, O'Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A. 2014. Phage therapy in the food industry. Annu. Rev. Food Sci. Technol. 5:327–49 [Google Scholar]
  45. Ercolini D. 2013. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79:3148–55 [Google Scholar]
  46. Escobar-Zepeda A, Sanchez-Flores A, Baruch MQ. 2016. Metagenomic analysis of a Mexican ripened cheese reveals a unique complex microbiota. Food Microbiol 57:116–27 [Google Scholar]
  47. Ferrocino I, Greppi A, La Storia A, Rantsiou K, Ercolini D, Cocolin L. 2016. Impact of nisin-activated packaging on microbiota of beef burgers during storage. Appl. Environ. Microbiol. 82:549–59 [Google Scholar]
  48. Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST. et al. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. PNAS 109:21390–95 [Google Scholar]
  49. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G. et al. 2015. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13:360–72 [Google Scholar]
  50. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC. et al. 2008. Microbial community gene expression in ocean surface waters. PNAS 105:3805–10 [Google Scholar]
  51. Galimberti A, Bruno A, Mezzasalma V, De Mattia F, Bruni I, Labra M. 2015. Emerging DNA-based technologies to characterize food ecosystems. Food Res. Int. 69:424–33 [Google Scholar]
  52. Gibbons JG, Rinker DC. 2015. The genomics of microbial domestication in the fermented food environment. Curr. Opin. Genet. Dev. 35:1–8 [Google Scholar]
  53. Hanage WP. 2014. Microbiome science needs a healthy dose of scepticism. Nature 512:247–48 [Google Scholar]
  54. Hayes BJ, Lewin HA, Goddard ME. 2013. The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends Genet 29:206–14 [Google Scholar]
  55. Herrero J, Muffato M, Beal K, Fitzgerald S, Gordon L. et al. 2016. Ensembl comparative genomics resources. Database 2016:bav096 [Google Scholar]
  56. Hettich RL, Sharma R, Chourey K, Giannone RJ. 2012. Microbial metaproteomics: identifying the repertoire of proteins that microorganisms use to compete and cooperate in complex environmental communities. Curr. Opin. Microbiol. 15:373–80 [Google Scholar]
  57. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ. et al. 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–14 [Google Scholar]
  58. Hong X, Chen J, Liu L, Wu H, Tan H. et al. 2016. Metagenomic sequencing reveals the relationship between microbiota composition and quality of Chinese rice wine. Sci. Rep. 6:26621 [Google Scholar]
  59. Hultman J, Rahkila R, Ali J, Rousu J, Björkroth KJ. 2015. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl. Environ. Microbiol. 81:7088–97 [Google Scholar]
  60. Hum. Microbiome Proj. Consort. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  61. Illeghems K, Weckx S, De Vuyst L. 2015. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiol 50:54–63 [Google Scholar]
  62. Ito M, Kim Y-G, Tsuji H, Takahashi T, Kiwaki M. et al. 2014. Transposon mutagenesis of probiotic Lactobacillus casei identifies asnH, an asparagine synthetase gene involved in its immune-activating capacity. PLOS ONE 9:e83876 [Google Scholar]
  63. Jääskeläinen E, Hultman J, Parshintsev J, Riekkola M-L, Björkroth J. 2016. Development of spoilage bacterial community and volatile compounds in chilled beef under vacuum or high oxygen atmospheres. Int. J. Food Microbiol. 223:25–32 [Google Scholar]
  64. Jeong SH, Jung JY, Lee SH, Jin HM, Jeon CO. 2013. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. Int. J. Food Microbiol. 164:46–53 [Google Scholar]
  65. Johnson BR, Klaenhammer TR. 2014. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie van Leeuwenhoek 106:141–56 [Google Scholar]
  66. Joyce AR, Palsson . 2006. The model organism as a system: integrating ‘omics’ data sets. Nat. Rev. Mol. Cell Biol. 7:198–210 [Google Scholar]
  67. Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO. 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int. J. Food Microbiol. 163:171–79 [Google Scholar]
  68. Jung JY, Lee SH, Kim JM, Park MS, Bae J-W. et al. 2011. Metagenomic analysis of kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 77:2264–74 [Google Scholar]
  69. Kao RR, Haydon DT, Lycett SJ, Murcia PR. 2014. Supersize me: how whole-genome sequencing and big data are transforming epidemiology. Trends Microbiol 22:282–91 [Google Scholar]
  70. Kelleher P, Murphy J, Mahony J, van Sinderen D. 2015. Next-generation sequencing as an approach to dairy starter selection. Dairy Sci. Technol. 95:545–68 [Google Scholar]
  71. Kergourlay G, Taminiau B, Daube G, Champomier Verges MC. 2015. Metagenomic insights into the dynamics of microbial communities in food. Int. J. Food Microbiol. 213:31–39 [Google Scholar]
  72. Kim S-W, Suda W, Kim S, Oshima K, Fukuda S. et al. 2013. Robustness of gut microbiota of healthy adults in response to probiotic intervention revealed by high-throughput pyrosequencing. DNA Res 20:241–53 [Google Scholar]
  73. Knight R, Jansson J, Field D, Fierer N, Desai N. et al. 2012. Unlocking the potential of metagenomics through replicated experimental design. Nat. Biotechnol. 30:513–20 [Google Scholar]
  74. Knights D, Kuczynski J, Charlson ES, Zaneveld J, Mozer MC. et al. 2011. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 8:761–63 [Google Scholar]
  75. Koboldt DC, Steinberg KM, Larson DE, Wilson RK, Mardis ER. 2013. The next-generation sequencing revolution and its impact on genomics. Cell 155:27–38 [Google Scholar]
  76. Koren S, Phillippy AM. 2015. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr. Opin. Microbiol. 23:110–20 [Google Scholar]
  77. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY. et al. 2015. Prospective whole genome sequencing enhances national surveillance of Listeria monocytogenes. J. Clin. Microbiol. 54:333–42 [Google Scholar]
  78. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  79. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D. et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31:814–21 [Google Scholar]
  80. Larsen N, Vogensen FK, Gøbel R, Michaelsen KF, Al-Soud WA. et al. 2011. Predominant genera of fecal microbiota in children with atopic dermatitis are not altered by intake of probiotic bacteria Lactobacillus acidophilus NCFM and Bifidobacterium animalis subsp. lactis Bi-07. FEMS Microbiol. Ecol 75:482–96 [Google Scholar]
  81. Lee SH, Jung JY, Jeon CO. 2014. Microbial successions and metabolite changes during fermentation of salted shrimp (saeu-jeot) with different salt concentrations. PLOS ONE 9:e90115 [Google Scholar]
  82. Lee SH, Jung JY, Jeon CO. 2015. Bacterial community dynamics and metabolite changes in myeolchi-aekjeot, a Korean traditional fermented fish sauce, during fermentation. Int. J. Food Microbiol. 203:15–22 [Google Scholar]
  83. Legras JL, Merdinoglu D, Cornuet J, Karst F. 2007. Bread, beer and wine: Saccharomycescerevisiae diversity reflects human history. Mol. Ecol. 16:2091–102 [Google Scholar]
  84. Lei R, Ye K, Gu Z, Sun X. 2015. Diminishing returns in next-generation sequencing (NGS) transcriptome data. Gene 557:82–87 [Google Scholar]
  85. Leonard SR, Mammel MK, Lacher DW, Elkins CA. 2015. Application of metagenomic sequencing to food safety: detection of Shiga toxin–producing Escherichia coli on fresh bagged spinach. Appl. Environ. Microbiol. 81:8183–91 [Google Scholar]
  86. Lessard M-H, Viel C, Boyle B, St-Gelais D, Labrie S. 2014. Metatranscriptome analysis of fungal strains Penicilliumcamemberti and Geotrichum candidum reveal cheese matrix breakdown and potential development of sensory properties of ripened Camembert-type cheese. BMC Genomics 15:235 [Google Scholar]
  87. Li J, Sung CYJ, Lee N, Ni Y, Pihlajamäki J. et al. 2016. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. PNAS 113:E1306–15 [Google Scholar]
  88. Li R, Hsieh C-L, Young A, Zhang Z, Ren X, Zhao Z. 2015. Illumina synthetic long read sequencing allows recovery of missing sequences even in the “finished” C. elegans genome. Sci. Rep. 5:10814 [Google Scholar]
  89. Licandro-Seraut H, Scornec H, Pédron T, Cavin J-F, Sansonetti PJ. 2014. Functional genomics of Lactobacillus casei establishment in the gut. PNAS 111:E3101–9 [Google Scholar]
  90. Lindgreen S, Adair KL, Gardner PP. 2016. An evaluation of the accuracy and speed of metagenome analysis tools. Sci. Rep. 6:19233 [Google Scholar]
  91. Liu SP, Yu JX, Wei XL, Ji ZW, Zhou ZL. et al. 2016. Sequencing-based screening of functional microorganism to decrease the formation of biogenic amines in Chinese rice wine. Food Control 64:98–104 [Google Scholar]
  92. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE. et al. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30:434–39 [Google Scholar]
  93. Loman NJ, Pallen MJ. 2015. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 13:787–94 [Google Scholar]
  94. Mahony J, McDonnell B, Casey E, van Sinderen D. 2016. Phage-host interactions of cheese-making lactic acid bacteria. Annu. Rev. Food Sci. Technol. 7:267–85 [Google Scholar]
  95. Mahony J, van Sinderen D. 2015. Novel strategies to prevent or exploit phages in fermentations, insights from phage-host interactions. Curr. Opin. Biotechnol. 32:8–13 [Google Scholar]
  96. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS. et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–80 [Google Scholar]
  97. Marsh AJ, Hill C, Ross RP, Cotter PD. 2014. Fermented beverages with health-promoting potential: past and future perspectives. Trends Food Sci. Technol. 38:113–24 [Google Scholar]
  98. Mayo B, Rachid CTC, Alegría Á, Leite AM, Peixoto RS, Delgado S. 2014. Impact of next generation sequencing techniques in food microbiology. Curr. Genom. 15:293 [Google Scholar]
  99. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD. et al. 2011. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3:106ra106 [Google Scholar]
  100. McPherson JD. 2014. A defining decade in DNA sequencing. Nat. Methods 11:1003–5 [Google Scholar]
  101. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR. et al. 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104: H4 outbreak by rapid next generation sequencing technology. PLOS ONE 6:e22751 [Google Scholar]
  102. Minervini F, Lattanzi A, De Angelis M, Celano G, Gobbetti M. 2015. House microbiotas as sources of lactic acid bacteria and yeasts in traditional Italian sourdoughs. Food Microbiol 52:66–76 [Google Scholar]
  103. Monnet C, Dugat-Bony E, Swennen D, Beckerich J-M, Irlinger F. et al. 2016. Investigation of the activity of the microorganisms in a Reblochon-style cheese by metatranscriptomic analysis. Front. Microbiol. 7:536 [Google Scholar]
  104. Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A. et al. 2013. Sizing up metatranscriptomics. ISME J 7:237–43 [Google Scholar]
  105. Mosher JJ, Bowman B, Bernberg EL, Shevchenko O, Kan J. et al. 2014. Improved performance of the PacBio SMRT technology for 16S rDNA sequencing. J. Microbiol. Methods 104:59–60 [Google Scholar]
  106. Motherway MOC, Zomer A, Leahy SC, Reunanen J, Bottacini F. et al. 2011. Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. PNAS 108:11217–22 [Google Scholar]
  107. Murphy J, Bottacini F, Mahony J, Kelleher P, Neve H. et al. 2016. Comparative genomics and functional analysis of the 936 group of lactococcal Siphoviridae phages. Sci. Rep. 6:21345 [Google Scholar]
  108. Nalbantoglu U, Cakar A, Dogan H, Abaci N, Ustek D. et al. 2014. Metagenomic analysis of the microbial community in kefir grains. Food Microbiol 41:42–51 [Google Scholar]
  109. Nam YD, Lee SY, Lim SI. 2012. Microbial community analysis of Korean soybean pastes by next-generation sequencing. Int. J. Food Microbiol. 155:36–42 [Google Scholar]
  110. O'Sullivan DJ, Giblin L, McSweeney PL, Sheehan JJ, Cotter PD. 2013. Nucleic acid–based approaches to investigate microbial-related cheese quality defects. Front. Microbiol. 4:1 [Google Scholar]
  111. Papadimitriou K, Pot B, Tsakalidou E. 2015a. How microbes adapt to a diversity of food niches. Curr. Opin. Food Sci. 2:29–35 [Google Scholar]
  112. Papadimitriou K, Zoumpopoulou G, Foligné B, Alexandraki V, Kazou M. et al. 2015b. Discovering probiotic microorganisms: in vitro, in vivo, genetic and omics approaches. Front. Microbiol. 6:58 [Google Scholar]
  113. Park K-Y, Jeong J-K, Lee Y-E, Daily JW III. 2014. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J. Med. Food 176–20 [Google Scholar]
  114. Połka J, Rebecchi A, Pisacane V, Morelli L, Puglisi E. 2015. Bacterial diversity in typical Italian salami at different ripening stages as revealed by high-throughput sequencing of 16S rRNA amplicons. Food Microbiol 46:342–56 [Google Scholar]
  115. Pothakos V, Stellato G, Ercolini D, Devlieghere F. 2015. Processing environment and ingredients are both sources of Leuconostoc gelidum, which emerges as a major spoiler in ready-to-eat meals. Appl. Environ. Microbiol. 81:3529–41 [Google Scholar]
  116. Pothakos V, Taminiau B, Huys G, Nezer C, Daube G, Devlieghere F. 2014. Psychrotrophic lactic acid bacteria associated with production batch recalls and sporadic cases of early spoilage in Belgium between 2010 and 2014. Int. J. Food Microbiol. 191:157–63 [Google Scholar]
  117. Quick J, Ashton P, Calus S, Chatt C, Gossain S. et al. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16:114 [Google Scholar]
  118. Quigley L, O'Sullivan O, Beresford TP, Ross RP, Fitzgerald GF, Cotter PD. 2012. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl. Environ. Microbiol. 78:5717–23 [Google Scholar]
  119. Quigley L, O'Sullivan DJ, Daly D, O'Sullivan O, Burdikova Z. et al. 2016. Thermus and the pink discoloration defect in cheese. mSystems 1:00023–16 [Google Scholar]
  120. Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC. et al. 2016. Using “omics” and integrated multi-omics approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases. Front. Microbiol. 7:68 [Google Scholar]
  121. Remenant B, Jaffrès E, Dousset X, Pilet M-F, Zagorec M. 2015. Bacterial spoilers of food: behavior, fitness and functional properties. Food Microbiol 45:45–53 [Google Scholar]
  122. Reuter JA, Spacek DV, Snyder MP. 2015. High-throughput sequencing technologies. Mol. Cell 58:586–97 [Google Scholar]
  123. Roetzer A, Diel R, Kohl TA, Rückert C, Nübel U. et al. 2013. Whole genome sequencing versus traditional genotyping for investigation of a Mycobacterium tuberculosis outbreak: a longitudinal molecular epidemiological study. PLOS Med 10:e1001387 [Google Scholar]
  124. Roos S, Dicksved J, Tarasco V, Locatelli E, Ricceri F. et al. 2013. 454 pyrosequencing analysis on faecal samples from a randomized DBPC trial of colicky infants treated with Lactobacillus reuteri DSM 17938. PLOS ONE 8:e56710 [Google Scholar]
  125. Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W. et al. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–52 [Google Scholar]
  126. Salipante SJ, Kawashima T, Rosenthal C, Hoogestraat DR, Cummings LA. et al. 2014. Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl. Environ. Microbiol. 80:7583–91 [Google Scholar]
  127. Samson JE, Moineau S. 2013. Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu. Rev. Food Sci. Technol. 4:347–68 [Google Scholar]
  128. Scallan E, Hoekstra R, Mahon B, Jones T, Griffin P. 2015. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol. Infect. 143:2795–804 [Google Scholar]
  129. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL. et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–46 [Google Scholar]
  130. Smid E, Hugenholtz J. 2010. Functional genomics for food fermentation processes. Annu. Rev. Food Sci. Technol. 1:497–519 [Google Scholar]
  131. Stasiewicz MJ, den Bakker HC, Wiedmann M. 2015. Genomics tools in microbial food safety. Curr. Opin. Food Sci. 4:105–10 [Google Scholar]
  132. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. 2014. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38:947–95 [Google Scholar]
  133. Steensels J, Verstrepen KJ. 2014. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu. Rev. Microbiol. 68:61–80 [Google Scholar]
  134. Steyer D, Ambroset C, Brion C, Claudel P, Delobel P. et al. 2012. QTL mapping of the production of wine aroma compounds by yeast. BMC Genom 13:573 [Google Scholar]
  135. Strachan NJ, Rotariu O, Lopes B, MacRae M, Fairley S. et al. 2015. Whole genome sequencing demonstrates that geographic variation of Escherichia coli O157 genotypes dominates host association. Sci. Rep. 5:14145 [Google Scholar]
  136. Sun Z, Harris HM, McCann A, Guo C, Argimón S. et al. 2015. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 6:8322 [Google Scholar]
  137. Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential expression in RNA-seq: a matter of depth. Genome Res 21:2213–23 [Google Scholar]
  138. Taylor AJ, Lappi V, Wolfgang WJ, Lapierre P, Palumbo MJ. et al. 2015. Characterization of foodborne outbreaks of Salmonella enterica serovar Enteritidis with whole-genome sequencing single nucleotide polymorphism–based analysis for surveillance and outbreak detection. J. Clin. Microbiol. 53:3334–40 [Google Scholar]
  139. Veiga P, Pons N, Agrawal A, Oozeer R, Guyonnet D. et al. 2014. Changes of the human gut microbiome induced by a fermented milk product. Sci. Rep. 4:6328 [Google Scholar]
  140. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR. et al. 2009. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat. Rev. Microbiol. 7:61–71 [Google Scholar]
  141. Walsh AM, Crispie F, Kilcawley K, O'Sullivan O, O'Sullivan MG. et al. 2016. Microbial succession and flavor production in the fermented dairy beverage kefir. mSystems http://dx.doi.org/10.1128/mSystems.00052-16
  142. Wang J, Tang H, Zhang C, Zhao Y, Derrien M. et al. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J 9:1–15 [Google Scholar]
  143. Wang Z-M, Lu Z-M, Shi J-S, Xu Z-H. 2016. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar. Sci. Rep. 6:26818 [Google Scholar]
  144. Wei Y-X, Zhang Z-Y, Liu C, Malakar PK, Guo X-K. 2012. Safety assessment of Bifidobacterium longum JDM301 based on complete genome sequences. World J. Gastroenterol. 18:479–88 [Google Scholar]
  145. Winkler JD, Kao KC. 2014. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104:406–11 [Google Scholar]
  146. Wolfe BE, Button JE, Santarelli M, Dutton RJ. 2014. Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158:422–33 [Google Scholar]
  147. Wu Q, Cheung CK, Shah NP. 2015. Towards galactose accumulation in dairy foods fermented by conventional starter cultures: challenges and strategies. Trends Food Sci. Technol. 41:24–36 [Google Scholar]
  148. Yang X, Noyes NR, Doster E, Martin JN, Linke LM. et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl. Environ. Microbiol. 82:2433–43 [Google Scholar]
  149. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J. et al. 2015. The soil microbiome influences grapevine-associated microbiota. mBio 6:e02527–14 [Google Scholar]
  150. Zhang C, Derrien M, Levenez F, Brazeilles R, Ballal SA. et al. 2016. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J 10:2235–45 [Google Scholar]
  151. Zhang S, Yin Y, Jones MB, Zhang Z, Kaiser BLD. et al. 2015. Salmonella serotype determination utilizing high-throughput genome sequencing data. J. Clin. Microbiol. 53:1685–92 [Google Scholar]
  152. Zhao M, Zhang D-L, Su X-Q, Duan S-M, Wan J-Q. et al. 2015. An integrated metagenomics/metaproteomics investigation of the microbial communities and enzymes in solid-state fermentation of Pu-erh tea. Sci. Rep. 5:10117 [Google Scholar]
  153. Zheng J, Zhao X, Lin XB, Gänzle M. 2015. Comparative genomics Lactobacillus reuteri from sourdough reveals adaptation of an intestinal symbiont to food fermentations. Sci. Rep. 5:18234 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error