1932

Abstract

Microrheology provides a technique to probe the local viscoelastic properties and dynamics of soft materials at the microscopic level by observing the motion of tracer particles embedded within them. It is divided into passive and active microrheology according to the force exerted on the embedded particles. Particles are driven by thermal fluctuations in passive microrheology, and the linear viscoelasticity of samples can be obtained on the basis of the generalized Stokes-Einstein equation. In active microrheology, tracer particles are controlled by external forces, and measurements can be extended to the nonlinear regime. Microrheology techniques have many advantages such as the need for only small sample amounts and a wider measurable frequency range. In particular, microrheology is able to examine the spatial heterogeneity of samples at the microlevel, which is not possible using traditional rheology. Therefore, microrheology has considerable potential for studying the local mechanical properties and dynamics of soft matter, particularly complex fluids, including solutions, dispersions, and other colloidal systems. Food products such as emulsions, foams, or gels are complex fluids with multiple ingredients and phases. Their macroscopic properties, such as stability and texture, are closely related to the structure and mechanical properties at the microlevel. In this article, the basic principles and methods of microrheology are reviewed, and the latest developments and achievements of microrheology in the field of food science are presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030216-025859
2017-02-28
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/food/8/1/annurev-food-030216-025859.html?itemId=/content/journals/10.1146/annurev-food-030216-025859&mimeType=html&fmt=ahah

Literature Cited

  1. Abdala AA, Amin S, Van Zanten JH, Khan SA. 2015. Tracer microrheology study of a hydrophobically modified comblike associative polymer. Langmuir 31:3944–51 [Google Scholar]
  2. Alcaraz J, Buscemi L, Grabulosa M, Trepat X, Fabry B. et al. 2003. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84:2071–79 [Google Scholar]
  3. Alexander M, Dalgleish DG. 2005. Interactions between denatured milk serum proteins and casein micelles studied by diffusing wave spectroscopy. Langmuir 21:11380–86 [Google Scholar]
  4. Alexander M, Dalgleish DG. 2007. Diffusing wave spectroscopy of aggregating and gelling systems. Curr. Opin. Colloid Interface Sci. 12:179–86 [Google Scholar]
  5. Allan DB, Firester DM, Allard VP, Reich DH, Stebe KJ, Leheny RL. 2014. Linear and nonlinear microrheology of lysozyme layers forming at the air-water interface. Soft Matter 10:7051–60 [Google Scholar]
  6. Amin S, Blake S, Kenyon S, Kennel R, Lewis E. 2014. A novel combination of DLS-optical microrheology and low frequency Raman spectroscopy to reveal underlying biopolymer self-assembly and gelation mechanisms. J. Chem. Phys. 141:234201 [Google Scholar]
  7. Apgar J, Tseng Y, Fedorov E, Herwig MB, Almo SC, Wirtz D. 2000. Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. Biophys. J. 79:1095–106 [Google Scholar]
  8. Balakrishnan G, Durand D, Nicolai T. 2011. Particle diffusion in globular protein gels in relation to the gel structure. Biomacromolecules 12:450–56 [Google Scholar]
  9. Balakrishnan G, Nicolai T, Durand D. 2012. Relation between the gel structure and the mobility of tracers in globular protein gels. J. Colloid Interface Sci. 388:293–99 [Google Scholar]
  10. Bansil R, Celli JP, Hardcastle JM, Turner BS. 2013. The influence of mucus microstructure and rheology in Helicobacter pylori infection. Front. Immunol. 4:310 [Google Scholar]
  11. Bausch AR, Möller W, Sackmann E. 1999. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76:573–79 [Google Scholar]
  12. Benmouna F, Johannsmann D. 2004. Viscoelasticity of gelatin surfaces probed by AFM noise analysis. Langmuir 20:188–93 [Google Scholar]
  13. Blijdenstein T, Zoet F, van Vliet T, van der Linden E, van Aken G. 2004. Dextran-induced depletion flocculation in oil-in-water emulsions in the presence of sucrose. Food Hydrocoll 18:857–63 [Google Scholar]
  14. Blijdenstein TB, Hendriks WP, van der Linden E, van Vliet T, van Aken GA. 2003. Control of strength and stability of emulsion gels by a combination of long- and short-range interactions. Langmuir 19:6657–63 [Google Scholar]
  15. Bonakdar N, Schilling A, Gerum R, Alonso JL, Goldmann WH. 2016. Innovations in measuring cellular mechanics. Vascular Engineering: New Prospects of Vascular Medicine and Biology with a Multidisciplinary Approach K Tanishita, K Yamamoto 267–81 New York: Springer [Google Scholar]
  16. Brasovs A, Cïmurs J, Ërglis K, Zeltins A, Berret J-F, Cëbers A. 2015. Magnetic microrods as a tool for microrheology. Soft Matter 11:2563–69 [Google Scholar]
  17. Brown W. 1993. Dynamic Light Scattering: The Method and Some Applications New York: Oxford Univ. Press [Google Scholar]
  18. Butt H-J, Cappella B, Kappl M. 2005. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59:1–152 [Google Scholar]
  19. Caggioni M, Spicer P, Blair D, Lindberg S, Weitz D. 2007. Rheology and microrheology of a microstructured fluid: the gellan gum case. J. Rheol. 51:851–65 [Google Scholar]
  20. Campo-Deaño L, Dullens RP, Aarts DG, Pinho FT, Oliveira MS. 2013. Viscoelasticity of blood and viscoelastic blood analogues for use in polydymethylsiloxane in vitro models of the circulatory system. Biomicrofluidics 7:034102 [Google Scholar]
  21. Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH. et al. 2007. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8:1580–86 [Google Scholar]
  22. Chae BS, Furst EM. 2005. Probe surface chemistry dependence and local polymer network structure in F-actin microrheology. Langmuir 21:3084–89 [Google Scholar]
  23. Chapman CD, Robertson-Anderson RM. 2014. Nonlinear microrheology reveals entanglement-driven molecular-level viscoelasticity of concentrated DNA. Phys. Rev. Lett. 113:098303 [Google Scholar]
  24. Choi S, Steltenkamp S, Zasadzinski J, Squires T. 2011. Active microrheology and simultaneous visualization of sheared phospholipid monolayers. Nat. Commun. 2:312 [Google Scholar]
  25. Chyasnavichyus M, Young SL, Tsukruk VV. 2015. Recent advances in micromechanical characterization of polymer, biomaterial, and cell surfaces with atomic force microscopy. Jpn. J. Appl. Phys. 54:8S2 [Google Scholar]
  26. Cohen I, Weihs D. 2010. Rheology and microrheology of natural and reduced-calorie Israeli honeys as a model for high-viscosity Newtonian liquids. J. Food Eng. 100:366–71 [Google Scholar]
  27. Corredig M, Alexander M. 2008. Food emulsions studied by DWS: recent advances. Trends Food Sci. Technol. 19:67–75 [Google Scholar]
  28. Corrigan AM, Donald AM. 2009. Passive microrheology of solvent-induced fibrillar protein networks. Langmuir 25:8599–605 [Google Scholar]
  29. Crater JS, Carrier RL. 2010. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 10:1473–83 [Google Scholar]
  30. Crielaard B, Yousefi A, Schillemans J, Vermehren C, Buyens K. et al. 2011. An in vitro assay based on surface plasmon resonance to predict the in vivo circulation kinetics of liposomes. J. Control. Release 156:307–14 [Google Scholar]
  31. Crocker JC, Grier DG. 1996. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179:298–310 [Google Scholar]
  32. Crocker JC, Hoffman BD. 2007. Multiple‐particle tracking and two‐point microrheology in cells. Methods Cell Biol 83:141–78 [Google Scholar]
  33. Crocker JC, Valentine MT, Weeks ER, Gisler T, Kaplan PD. et al. 2000. Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett. 85:888–91 [Google Scholar]
  34. Cucheval AS, Vincent RR, Hemar Y, Otter D, Williams MA. 2009. Multiple particle tracking investigations of acid milk gels using tracer particles with designed surface chemistries and comparison with diffusing wave spectroscopy studies. Langmuir 25:11827–34 [Google Scholar]
  35. Cybulska J, Zdunek A, Psonka-Antonczyk KM, Stokke BT. 2013. The relation of apple texture with cell wall nanostructure studied using an atomic force microscope. Carbohydr. Polym. 92:128–37 [Google Scholar]
  36. Dasgupta BR, Tee S-Y, Crocker JC, Frisken B, Weitz D. 2002. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys. Rev. E 65:051505 [Google Scholar]
  37. Dasgupta BR, Weitz D. 2005. Microrheology of cross-linked polyacrylamide networks. Phys. Rev. E 71:021504 [Google Scholar]
  38. De Vlaminck I, Dekker C. 2012. Recent advances in magnetic tweezers. Annu. Rev. Biophys. 41:453–72 [Google Scholar]
  39. Dholakia K, MacDonald M, Spalding G. 2002. Optical tweezers: the next generation. Phys. World 15:31 [Google Scholar]
  40. Dickinson E. 1992. An Introduction to Food Colloids New York: Oxford Univ. Press [Google Scholar]
  41. Dickinson E. 2011. Food colloids research: historical perspective and outlook. Adv. Colloid Interface Sci. 165:7–13 [Google Scholar]
  42. Djabourov M, Nishinari K, Ross-Murphy SB. 2013. Physical Gels from Biological and Synthetic Polymers New York: Cambridge Univ. Press [Google Scholar]
  43. Doi M. 2015. Soft Matter Physics New York: Oxford Univ. Press [Google Scholar]
  44. Eliot C, Horne DS, Dickinson E. 2005. Understanding temperature-sensitive caseinate emulsions: new information from diffusing wave spectroscopy. Food Hydrocoll 19:279–87 [Google Scholar]
  45. Fischer P, Windhab EJ. 2011. Rheology of food materials. Curr. Opin. Colloid Interface Sci. 16:36–40 [Google Scholar]
  46. Freundlich H, Seifriz W. 1923. Über die Elästizitaet von Solen und Gelen. Z. Phys. Chem. 104:233–61 [Google Scholar]
  47. Fricks J, Yao L, Elston TC, Forest MG. 2009. Time-domain methods for diffusive transport in soft matter. SIAM J. Appl. Math. 69:1277–308 [Google Scholar]
  48. Furst EM. 2005. Applications of laser tweezers in complex fluid rheology. Curr. Opin. Colloid Interface Sci. 10:79–86 [Google Scholar]
  49. Gardel M, Valentine M, Crocker JC, Bausch A, Weitz D. 2003. Microrheology of entangled F-actin solutions. Phys. Rev. Lett. 91:158302 [Google Scholar]
  50. Georgiades P, Pudney PD, Thornton DJ, Waigh TA. 2014. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 101:366–77 [Google Scholar]
  51. Gittes F, Schnurr B, Olmsted P, MacKintosh F, Schmidt C. 1997. Microscopic viscoelasticity: shear moduli of soft materials determined from thermal fluctuations. Phys. Rev. Lett. 79:3286 [Google Scholar]
  52. Gómez-González M, del Álamo JC. 2016. Two-point particle tracking microrheology of nematic complex fluids. Soft Matter 12:5758–79 [Google Scholar]
  53. Gordon M, Hunter SC, Love JA, Ward TC. 1968. Rational geometry for measuring elastic and viscoelastic parameters. Nature 217:735 [Google Scholar]
  54. Griffiths M. 2015. A dual-trap optical tweezer approach to study emulsion droplet interactions PhD Thesis, Sch. Chem. Phys. Sci., Univ. Wellington [Google Scholar]
  55. Griffiths MR, Raudsepp A, McGrath KM, Williams MA. 2016. Measuring the interaction between a pair of emulsion droplets using dual-trap optical tweezers. RSC Adv 6:14538–46 [Google Scholar]
  56. Heinemann C, Cardinaux F, Scheffold F, Schurtenberger P, Escher F, Conde-Petit B. 2004. Tracer microrheology of γ-dodecalactone induced gelation of aqueous starch dispersions. Carbohydr. Polym. 55:155–61 [Google Scholar]
  57. Hemar Y, Singh H, Horne D. 2004. Determination of early stages of rennet-induced aggregation of casein micelles by diffusing wave spectroscopy and rheological measurements. Curr. Appl. Phys. 4:362–65 [Google Scholar]
  58. Horiuchi H, Nishinari K, Niikura M, Hakamada K. 1976. Effect of freezing process on the texture of vegetables, part II. Measurement of the puncture curves of carrot on freezing process. Jpn. Soc. Food Sci. Technol. 23:468–73 [Google Scholar]
  59. Hough L, Ou-Yang H. 1999. A new probe for mechanical testing of nanostructures in soft materials. J. Nanopart. Res. 1:495–99 [Google Scholar]
  60. Jones TB. 2005. Electromechanics of Particles Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  61. Jordens S, Rühs PA, Sieber C, Isa L, Fischer P, Mezzenga R. 2014. Bridging the gap between the nanostructural organization and macroscopic interfacial rheology of amyloid fibrils at liquid interfaces. Langmuir 30:10090–97 [Google Scholar]
  62. Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ. et al. 2014. Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21:1075–86 [Google Scholar]
  63. Kimura Y. 2009. Microrheology of soft matter. J. Phys. Soc. Jpn. 78:041005 [Google Scholar]
  64. Kirch J, Schneider A, Abou B, Hopf A, Schaefer UF. et al. 2012. Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. PNAS 109:18355–60 [Google Scholar]
  65. Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS. 2010. Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv. Mater. 22:3484–94 [Google Scholar]
  66. Lai SK, Wang Y-Y, Wirtz D, Hanes J. 2009. Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:86–100 [Google Scholar]
  67. Larsen TH, Furst EM. 2008. Microrheology of the liquid-solid transition during gelation. Phys. Rev. Lett. 100:146001 [Google Scholar]
  68. Lee MH, Cardinali SP, Reich DH, Stebe KJ, Leheny RL. 2011. Brownian dynamics of colloidal probes during protein-layer formation at an oil-water interface. Soft Matter 7:7635–42 [Google Scholar]
  69. Lee MH, Reich DH, Stebe KJ, Leheny RL. 2009. Combined passive and active microrheology study of protein-layer formation at an air-water interface. Langmuir 26:2650–58 [Google Scholar]
  70. Liu F, Wang D, Sun C, McClements DJ, Gao Y. 2016. Utilization of interfacial engineering to improve physicochemical stability of β-carotene emulsions: Multilayer coatings formed using protein and protein-polyphenol conjugates. Food Chem 205:129–39 [Google Scholar]
  71. Liu J, Verespej E, Alexander M, Corredig M. 2007. Comparison on the effect of high-methoxyl pectin or soybean-soluble polysaccharide on the stability of sodium caseinate-stabilized oil/water emulsions. J. Agric. Food Chem. 55:6270–78 [Google Scholar]
  72. Liu J, Verespej E, Corredig M, Alexander M. 2008. Investigation of interactions between two different polysaccharides with sodium caseinate-stabilized emulsions using complementary spectroscopic techniques: diffusing wave and ultrasonic spectroscopy. Food Hydrocoll 22:47–55 [Google Scholar]
  73. Macierzanka A, Böttger F, Rigby NM, Lille M, Poutanen K. et al. 2012. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus. Langmuir 28:17349–62 [Google Scholar]
  74. Macierzanka A, Rigby NM, Corfield AP, Wellner N, Böttger F. et al. 2011. Adsorption of bile salts to particles allows penetration of intestinal mucus. Soft Matter 7:8077–84 [Google Scholar]
  75. Mackie AR, Macierzanka A, Kristi A, Rigby NM, Parker R. et al. 2016. Sodium alginate decreases the permeability of intestinal mucus. Food Hydrocoll 52:749–55 [Google Scholar]
  76. MacKintosh F, Schmidt C. 1999. Microrheology. Curr. Opin. Colloid Interface Sci. 4:300–7 [Google Scholar]
  77. Mahaffy R, Park S, Gerde E, Käs J, Shih C. 2004. Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86:1777–93 [Google Scholar]
  78. Mahaffy R, Shih C, MacKintosh F, Käs J. 2000. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Phys. Rev. Lett. 85:880 [Google Scholar]
  79. Martinez-Torres C, Arneodo A, Streppa L, Argoul P, Argoul F. 2016. Passive microrheology of soft materials with atomic force microscopy: a wavelet-based spectral analysis. Appl. Phys. Lett. 108:034102 [Google Scholar]
  80. Mason T, Ganesan K, van Zanten JH, Wirtz D, Kuo S. 1997a. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79:3282 [Google Scholar]
  81. Mason T, Gang H, Weitz D. 1996. Rheology of complex fluids measured by dynamic light scattering. J. Mol. Struct. 383:81–90 [Google Scholar]
  82. Mason T, Gang H, Weitz D. 1997b. Diffusing-wave-spectroscopy measurements of viscoelasticity of complex fluids. J. Opt. Soc. Am. A 14:139–49 [Google Scholar]
  83. Mason TG. 2000. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes-Einstein equation. Rheol. Acta 39:371–78 [Google Scholar]
  84. Mason TG, Weitz D. 1995. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74:1250 [Google Scholar]
  85. McGrath JL, Hartwig JH, Kuo SC. 2000. The mechanics of F-actin microenvironments depend on the chemistry of probing surfaces. Biophys. J. 79:3258–66 [Google Scholar]
  86. Mettu S, Zhou M, Tardy BL, Ashokkumar M, Dagastine RR. 2016. Temperature dependent mechanical properties of air, oil and water filled microcapsules studied by atomic force microscopy. Polymer 102:333–41 [Google Scholar]
  87. Miri AK, Heris HK, Mongeau L, Javid F. 2014. Nanoscale viscoelasticity of extracellular matrix proteins in soft tissues: a multiscale approach. J. Mech. Behav. Biomed. Mater 30196–204 [Google Scholar]
  88. Mizuno D, Kimura Y, Hayakawa R. 2001. Electrophoretic microrheology in a dilute lamellar phase of a nonionic surfactant. Phys. Rev. Lett. 87:088104 [Google Scholar]
  89. Moffitt JR, Chemla YR, Smith SB, Bustamante C. 2008. Recent advances in optical tweezers. Annu. Rev. Biochem. 77:205–28 [Google Scholar]
  90. Mohan A. 2014. Gelation of oxidised cereal beta-glucan extracts MA Thesis, Dep. Food Environ. Sci., Univ. Helsinki [Google Scholar]
  91. Morris VJ, Mackie AR, Wilde PJ, Kirby AR, Mills ECN, Gunning AP. 2001. Atomic force microscopy as a tool for interpreting the rheology of food biopolymers at the molecular level. LWT Food Sci. Technol. 34:3–10 [Google Scholar]
  92. Moschakis T. 2013. Microrheology and particle tracking in food gels and emulsions. Curr. Opin. Colloid Interface Sci. 18:311–23 [Google Scholar]
  93. Moschakis T, Lazaridou A, Biliaderis CG. 2012. Using particle tracking to probe the local dynamics of barley β-glucan solutions upon gelation. J. Colloid Interface Sci. 375:50–59 [Google Scholar]
  94. Moschakis T, Lazaridou A, Biliaderis CG. 2014. A micro- and macro-scale approach to probe the dynamics of sol-gel transition in cereal β-glucan solutions varying in molecular characteristics. Food Hydrocoll 42:81–91 [Google Scholar]
  95. Moschakis T, Murray BS, Dickinson E. 2006. Particle tracking using confocal microscopy to probe the microrheology in a phase-separating emulsion containing nonadsorbing polysaccharide. Langmuir 22:4710–19 [Google Scholar]
  96. Moschakis T, Murray BS, Dickinson E. 2010. On the kinetics of acid sodium caseinate gelation using particle tracking to probe the microrheology. J. Colloid Interface Sci. 345:278–85 [Google Scholar]
  97. Oppong FK, de Bruyn JR. 2007. Diffusion of microscopic tracer particles in a yield-stress fluid. J. Non-Newton. Fluid Mech. 142:104–11 [Google Scholar]
  98. Oppong FK, de Bruyn JR. 2010. Microrheology and dynamics of an associative polymer. Eur. Phys. J. E 31:25–35 [Google Scholar]
  99. Papagiannopoulos A, Sotiropoulos K, Pispas S. 2016. Particle tracking microrheology of the power-law viscoelasticity of xanthan solutions. Food Hydrocoll 61:201–10 [Google Scholar]
  100. Pashkovski EE, Masters JG, Mehreteab A. 2003. Viscoelastic scaling of colloidal gels in polymer solutions. Langmuir 19:3589–95 [Google Scholar]
  101. Pasqua A, Fleury M, Brun A, Cristiano MC, Cosco D. 2014. Potential application of micro-rheology-Rheolaser Lab® in food sciences. Advances in Food Safety and Health GMC Rosano 660–69 Dubai: HSCVC Ltd. [Google Scholar]
  102. Pesce G, Rusciano G, Sasso A, Isticato R, Sirec T, Ricca E. 2014. Surface charge and hydrodynamic coefficient measurements of Bacillus subtilis spore by optical tweezers. Colloids Surf. B 116:568–75 [Google Scholar]
  103. Pesce G, Rusciano G, Zito G, Sasso A, Isticato R. et al. 2015. Characterization of surface properties of bacterial spores using optical tweezers. Optics in the Life Sciences OSA Tech. Dig. Online, Pap. OtT4E.1 [Google Scholar]
  104. Pierini F, Zembrzycki K, Nakielski P, Pawłowska S, Kowalewski T. 2016. Atomic force microscopy combined with optical tweezers (AFM/OT). Meas. Sci. Technol. 27:025904 [Google Scholar]
  105. Pottier N. 2005. Out of equilibrium generalized Stokes–Einstein relation: determination of the effective temperature of an aging medium. Phys. A 345:472–84 [Google Scholar]
  106. Puertas AM, Voigtmann T. 2014. Microrheology of colloidal systems. J. Phys. 26:243101 [Google Scholar]
  107. Puig-de-Morales-Marinkovic M, Turner KT, Butler JP, Fredberg JJ, Suresh S. 2007. Viscoelasticity of the human red blood cell. Am. J. Physiol. 293:C597–605 [Google Scholar]
  108. Rico F, Rigato A, Scheuring S. 2016. High frequency microrheology of living cells. Biophys. J. 110:132a [Google Scholar]
  109. Samek O, Zemánek P, Bernatová S, Pilát Z, Telle H. 2012. Following lipids in the food chain: determination of the iodine value using Raman microspectroscopy. Spectrosc. Eur. 24:22–25 [Google Scholar]
  110. Savin T, Doyle PS. 2005. Static and dynamic errors in particle tracking microrheology. Biophys. J. 88:623–38 [Google Scholar]
  111. Schultz KM, Furst EM. 2012. Microrheology of biomaterial hydrogelators. Soft Matter 8:6198–205 [Google Scholar]
  112. Seifriz W. 1924. An elastic value of protoplasm, with further observations on the viscosity of protoplasm. J. Exp. Biol. 2:1–11 [Google Scholar]
  113. Sekine Y, Okazaki K, Ikeda-Fukazawa T, Ichikawa M, Yoshikawa K. et al. 2014. Microrheology of polysaccharide nanogel-integrated system. Colloid Polym. Sci. 292:325–31 [Google Scholar]
  114. Shayegan M, Rezaei N, Lam NH, Altindal T, Wieczorek A, Forde NR. 2013. Probing multiscale mechanics of collagen with optical tweezers. Proc. SPIE 8810, Optical Trapping and Optical Micromanipulation X, San Diego, Sept. 12 88101P. https://doi.org/10.1117/12.2027258 [Google Scholar]
  115. Sim K, Lee J, Lee H, Youn HJ. 2015. Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability. Cellulose 22:3689–700 [Google Scholar]
  116. Sousa PC, Pinho FT, Alves MA, Oliveira MS. 2016. A review of hemorheology: measuring techniques and recent advances. Korea-Aust. Rheol. J. 28:1–22 [Google Scholar]
  117. Squires TM, Mason TG. 2009. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42:413–38 [Google Scholar]
  118. Taormina MJ, Parthasarathy R. 2016. Active microrheology of intestinal mucus in the larval zebrafish. bioRxiv 042994. https://doi.org/10.1101/042994
  119. Tassieri M, Del Giudice F, Robertson EJ, Jain N, Fries B. et al. 2015. Microrheology with optical tweezers: measuring the relative viscosity of solutions ‘at a glance.’. Sci. Rep 5:8831 [Google Scholar]
  120. Tassieri M, Evans R, Warren RL, Bailey NJ, Cooper JM. 2012. Microrheology with optical tweezers: data analysis. N. J. Phys. 14:115032 [Google Scholar]
  121. Toohey K, Kalyanam S, Palaniappan J, Insana M. 2016. Indentation analysis of biphasic viscoelastic hydrogels. Mech. Mater. 92:175–84 [Google Scholar]
  122. Tripathy S, Berger E. 2009. Measuring viscoelasticity of soft samples using atomic force microscopy. J. Biomech. Eng. 131:094507 [Google Scholar]
  123. Valentine M, Perlman Z, Gardel M, Shin J, Matsudaira P. et al. 2004. Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophys. J. 86:4004–14 [Google Scholar]
  124. Velegol D, Lanni F. 2001. Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels. Biophys. J. 81:1786–92 [Google Scholar]
  125. Vincent R, Pinder D, Hemar Y, Williams M. 2007. Microrheological studies reveal semiflexible networks in gels of a ubiquitous cell wall polysaccharide. Phys. Rev. E 76:031909 [Google Scholar]
  126. Vinogradova OI, Andrienko D, Lulevich V, Nordschild S, Sukhorukov G. 2004. Young's modulus of polyelectrolyte multilayers from microcapsule swelling. Macromolecules 37:1113–17 [Google Scholar]
  127. Waigh TA. 2005. Microrheology of complex fluids. Rep. Prog. Phys. 68:685–742 [Google Scholar]
  128. Waigh TA. 2016. Advances in the microrheology of complex fluids. Rep. Prog. Phys. 79:074601 [Google Scholar]
  129. Williams PA. 2001. Food emulsions: principles, practice, and techniques. Int. J. Food Sci. Technol. 36:223–24 [Google Scholar]
  130. Wirtz D. 2009. Particle-tracking microrheology of living cells: principles and applications. Annu. Rev. Biophys. 38:301–26 [Google Scholar]
  131. Wong I, Gardel M, Reichman D, Weeks ER, Valentine M. et al. 2004. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett. 92:178101 [Google Scholar]
  132. Xi X, Kim SH, Tittmann B. 2015. Atomic force microscopy based nanoindentation study of onion abaxial epidermis walls in aqueous environment. J. Appl. Phys. 117:024703 [Google Scholar]
  133. Xu D, Aihemaiti Z, Cao Y, Teng C, Li X. 2016a. Physicochemical stability, microrheological properties and microstructure of lutein emulsions stabilized by multilayer membranes consisting of whey protein isolate, flaxseed gum and chitosan. Food Chem 202:156–64 [Google Scholar]
  134. Xu D, Zhang J, Cao Y, Wang J, Xiao J. 2016b. Influence of microcrystalline cellulose on the microrheological property and freeze-thaw stability of soybean protein hydrolysate stabilized curcumin emulsion. LWT Food Sci. Technol. 66:590–97 [Google Scholar]
  135. Xu J, Chang T, Inglett GE, Kim S, Tseng Y, Wirtz D. 2007. Micro-heterogeneity and micro-rheological properties of high-viscosity oat β-glucan solutions. Food Chem 103:1192–98 [Google Scholar]
  136. Xu J, Palmer A, Wirtz D. 1998. Rheology and microrheology of semiflexible polymer solutions: actin filament networks. Macromolecules 31:6486–92 [Google Scholar]
  137. Xu J, Tseng Y, Carriere CJ, Wirtz D. 2002. Microheterogeneity and microrheology of wheat gliadin suspensions studied by multiple-particle tracking. Biomacromolecules 3:92–99 [Google Scholar]
  138. Yanagishima T, Frenkel D, Kotar J, Eiser E. 2011. Real-time monitoring of complex moduli from micro-rheology. J. Phys. 23:194118 [Google Scholar]
  139. Yang H, Kang W, Wu H, Li Z, Yu Y. et al. 2016. Passive microrheology for measurement of gelation behavior of a kind of polymer gel P (AM‐AA‐AMPS). J. Appl. Polymer Sci. 133:43364 [Google Scholar]
  140. Yang N. 2011. Microrheology and microstructure of poly (vinyl alcohol)-based physical gels PhD Thesis, Western Univ. [Google Scholar]
  141. Yang N, Hutter JL, de Bruyn JR. 2012. Microrheology, microstructure, and aging of physically cross-linked poly(vinyl alcohol)/poly(ethylene glycol) blends. J. Rheol. 56:797–822 [Google Scholar]
  142. Yang N, Wong KKH, de Bruyn JR, Hutter JL. 2008. Frequency-dependent viscoelasticity measurement by atomic force microscopy. Meas. Sci. Technol. 20:025703 [Google Scholar]
  143. Yao A, Tassieri M, Padgett M, Cooper JM. 2009. Microrheology with optical tweezers. Lab. Chip 9:2568–75 [Google Scholar]
  144. Yu Y, Anthony SM, Bae SC, Granick S. 2011. How liposomes diffuse in concentrated liposome suspensions. J. Phys. Chem. B 115:2748–53 [Google Scholar]
  145. Yu Y, Anthony SM, Bae SC, Luijten E, Granick S. 2009. Biomolecular science of liposome-nanoparticle constructs. Mol. Cryst. Liq. Cryst. 507:18–25 [Google Scholar]
  146. Zamil MS, Yi H, Puri VM. 2015. The mechanical properties of plant cell walls soft material at the subcellular scale: the implications of water and of the intercellular boundaries. J. Mater. Sci. 50:6608–23 [Google Scholar]
  147. Zdunek A, Kurenda A. 2013. Determination of the elastic properties of tomato fruit cells with an atomic force microscope. Sensors 13:12175–91 [Google Scholar]
  148. Zhang T, Mahgsoudy-Louyeh S, Tittmann B, Cosgrove DJ. 2014. Visualization of the nanoscale pattern of recently-deposited cellulose microfibrils and matrix materials in never-dried primary walls of the onion epidermis. Cellulose 21:853–62 [Google Scholar]
/content/journals/10.1146/annurev-food-030216-025859
Loading
/content/journals/10.1146/annurev-food-030216-025859
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error