The increasing demand for gluten-free food products from consumers has triggered food technologists to investigate a wide range of gluten-free ingredients from different sources to reproduce the unique network structure developed by gluten in a wheat-dough system. In recent times, the attention has been focused on novel application of legume flour or ingredients. The interest in this crop category is mainly attributed to their functional properties, such as solubility and water-binding capacity, which play an important role in gluten-free food formulation and processing. Their nutritional profile may also counteract the lack of nutrients commonly highlighted in commercial gluten-free bakery and pasta products, providing valuable sources of protein, dietary fiber, vitamins, minerals, and complex carbohydrates, which in turn have a positive impact on human health. This review reports the main chemical and functional characteristics of legumes and their functional application in gluten-free products.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aguilar N, Albanell E, Minarro B, Capellas M. 2015. Chickpea and tiger nut flours as alternatives to emulsifier and shortening in gluten-free bread. LWT Food Sci. Technol. 62:225–32 [Google Scholar]
  2. Alsohaimy SA, Sithoy MZ, El-Masry RA. 2007. Isolation and partial characterization of chickpea, lupine and lentil seed proteins. World J. Agric. Sci. 3:123–29 [Google Scholar]
  3. Aluko RE, Yada RY. 1995. Structure-function relationships of cowpea (Vigna unguiculata) globulin isolate: influence of pH and NaCl on physicochemical and functional properties. Food Chem 53:259–65 [Google Scholar]
  4. Alvarez-Jubete L, Arendt EK, Gallagher E. 2010. Nutritive value of pseudocereals and their increasing use as functional gluten-free ingredients. Trends Food Sci. Technol. 21:106–13 [Google Scholar]
  5. Anderson JW, Smith BM, Washnock CS. 1999. Cardiovascular and renal benefits of dry bean and soybean intake. Am. J. Clin. Nutr. 70:464S–74 [Google Scholar]
  6. Arendt E, Zannini E. 2013. Wheat and other Triticum grains. Cereal Grains for the Food and Beverage Industries EK Arendt, E Zannini 1–66 Woodhead, UK: Woodhead Publ. [Google Scholar]
  7. Arntfield SD, Maskus HD. 2011. Peas and other legume proteins. Handbook of Food Proteins GO Phillips, PA Williams 233–66 Woodhead, UK: Woodhead Publ. [Google Scholar]
  8. Aurelia I, Iuliana A, Aura D, Gabriela G, Cristina B, Andrei N. 2009. Chemical and functional characterization of chickpea protein derivates. Ann. Univ. Dunarea Jos Galati. Fascicle VI. Food Technol. 33:16 [Google Scholar]
  9. Avallone R, Plessi M, Baraldi M, Monzani A. 1997. Determination of chemical composition of carob (Ceratonia siliqua): protein, fat, carbohydrates, and tannins. J. Food Compos. Anal. 10:166–72 [Google Scholar]
  10. Ayaz FA, Torun H, Glew RH, Bak ZD, Chuang LT. et al. 2009. Nutrient content of carob pod (Ceratonia siliqua L.) flour prepared commercially and domestically. Plant Foods Hum. Nutr. 64:286–92 [Google Scholar]
  11. Bazzano LA, Thompson AM, Tees MT, Nguyen CH, Winham DM. 2011. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr. Metab. Cardiovasc. Dis. 21:94–103 [Google Scholar]
  12. Bengoechea C, Romero A, Villanueva A, Moreno G, Alaiz M. et al. 2008. Composition and structure of carob (Ceratonia siliqua L.) germ proteins. Food Chem 107:675–83 [Google Scholar]
  13. Boyacioglu MH. 2005. Soy ingredients in baking. Soy Applications in Food MN Riaz 63–82 London: CRC Taylor and Francis [Google Scholar]
  14. Boye J, Zare F, Pletch A. 2010a. Pulse proteins: processing, characterization, functional properties and applications in food and feed. Food Res. Int. 43:414–31 [Google Scholar]
  15. Boye JI, Aksay S, Roufik S, Ribereau S, Mondor M. et al. 2010b. Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res. Int. 43:537–46 [Google Scholar]
  16. Butt MS, Batool R. 2010. Nutritional and functional properties of some promising legumes protein isolates. Pak. J. Nutr. 9:373–79 [Google Scholar]
  17. Campos-Vega R, Loarca-Pina G, Oomah BD. 2010. Minor components of pulses and their potential impact on human health. Food Res. Int. 43:461–82 [Google Scholar]
  18. Catassi C, Fasano A. 2008. Celiac disease. Gluten-Free Cereal Products and Beverages EK Arendt, F Dal Bello 1–27 Cambridge, MA: Academic [Google Scholar]
  19. Champ MMJ. 2002. Non-nutrient bioactive substances of pulses. Br. J. Nutr. 88:S307–19 [Google Scholar]
  20. Chand N, Mihas AA. 2006. Celiac disease: current concepts in diagnosis and treatment. J. Clin. Gastroenterol. 40:3–14 [Google Scholar]
  21. Chavan UD, McKenzie DB, Shahidi F. 2001. Functional properties of protein isolates from beach pea (Lathyrus maritimus L.). Food Chem 74:177–87 [Google Scholar]
  22. Chibbar RN, Ambigaipalan P, Hoover R. 2010. Molecular diversity in pulse seed starch and complex carbohydrates and its role in human nutrition and health. Cereal Chem 87:342–52 [Google Scholar]
  23. Chung HJ, Liu Q, Dormer E, Hoover R, Warkentin TD, Vandenberg B. 2008. Composition, molecular structure, properties, and in vitro digestibility of starches from newly released Canadian pulse cultivars. Cereal Chem 85:473–81 [Google Scholar]
  24. Collar C, Conte P, Fadda C, Piga A. 2015. Gluten-free dough-making of specialty breads: significance of blended starches, flours and additives on dough behaviour. Food Sci. Technol. Int. 21:523–36 [Google Scholar]
  25. Costa GED, Queiroz-Monici KDS, Reis SMPM, de Oliveira AC. 2006. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–30 [Google Scholar]
  26. Crockett R, Ie P, Vodovotz Y. 2011. Effects of soy protein isolate and egg white solids on the physicochemical properties of gluten-free bread. Food Chem 129:84–91 [Google Scholar]
  27. Croy R, Gatehouse JA, Tyler M, Boulter D. 1980. The purification and characterization of a third storage protein (convicilin) from the seeds of pea (Pisum sativum L.). Biochem. J. 191:509–16 [Google Scholar]
  28. Cserhalmi Z, Czukor B, Gajzago-Schuster I. 1998. Emulsifying properties, surface hydrophobicity and thermal denaturation of pea protein fractions. Acta Alimentaria 27:357–63 [Google Scholar]
  29. Curiel JA, Coda R, Centomani I, Summo C, Gobbetti M, Rizzello CG. 2015. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: the potential of sourdough fermentation. Int. J. Food Microbiol. 196:51–61 [Google Scholar]
  30. Dagornscaviner C, Gueguen J, Lefebvre J. 1987. Emulsifying properties of pea globulins as related to their adsorption behaviors. J. Food Sci. 52:335–41 [Google Scholar]
  31. Dakia PA, Wathelet B, Paquot M. 2007. Isolation and chemical evaluation of carob (Ceratonia siliqua L.) seed germ. Food Chem 102:1368–74 [Google Scholar]
  32. Damodaran S. 1994. Structure-function relationship of food proteins. Protein Functionality in Food Systems NS Hettiarachchy, GR Ziegler 1–37 New York: CRC Press [Google Scholar]
  33. Damodaran S. 2005. Amino acids, peptides and proteins. Food Chemistry OR Fennem 321–429 New York: Marcel Dekker [Google Scholar]
  34. Day L. 2013. Proteins from land plants: potential resources for human nutrition and food security. Trends Food Sci. Technol. 32:25–42 [Google Scholar]
  35. de Almeida Costa GE, da Silva Queiroz-Monici K, Reis SMPM, de Oliveira AC. 2006. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food Chem 94:327–30 [Google Scholar]
  36. de Miera LES, Ramos J, de la Vega MP. 2008. A comparative study of convicilin storage protein gene sequences in species of the tribe Vicieae. Genome 51:511–23 [Google Scholar]
  37. Dickinson E. 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll 17:25–39 [Google Scholar]
  38. Du SK, Jiang HX, Yu XZ, Jane JL. 2014. Physicochemical and functional properties of whole legume flour. LWT Food Sci. Technol. 55:308–13 [Google Scholar]
  39. Duc G. 1997. Faba bean (Vicia faba L). Field Crops Res 53:99–109 [Google Scholar]
  40. Duranti M. 2006. Grain legume proteins and nutraceutical properties. Fitoterapia 77:67–82 [Google Scholar]
  41. Duranti M, Consonni A, Magni C, Sessa F, Scarafoni A. 2008. The major proteins of lupin seed: characterisation and molecular properties for use as functional and nutraceutical ingredients. Trends Food Sci. Technol. 19:624–33 [Google Scholar]
  42. Erbas M, Certel M, Uslu MK. 2005. Some chemical properties of white lupin seeds (Lupinus albus L.). Food Chem 89:341–45 [Google Scholar]
  43. Fabbri AD, Crosby GA. 2015. A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. Int. J. Gastron. Food Sci. 3:2–11 [Google Scholar]
  44. Feillet P, Roulland TM. 1998. Caroubin: a gluten-like protein isolated from carob bean germ. Cereal Chem 75:488–92 [Google Scholar]
  45. Fernandez-Quintela A, Macarulla MT, Del Barrio AS, Martinez JA. 1997. Composition and functional properties of protein isolates obtained from commercial legumes grown in northern Spain. Plant Foods Hum. Nutr. 51:331–42 [Google Scholar]
  46. Flores-Silva PC, Berrios JD, Pan J, Osorio-Diaz P, Bello-Perez LA. 2014. Gluten-free spaghetti made with chickpea, unripe plantain and maize flours: functional and chemical properties and starch digestibility. Int. J. Food Sci. Technol. 49:1985–91 [Google Scholar]
  47. Frota KMG, Mendonca S, Saldiva PHN, Cruz RJ, Areas JAG. 2008. Cholesterol-lowering properties of whole cowpea seed and its protein isolate in hamsters. J. Food Sci. 73:H235–40 [Google Scholar]
  48. Gallagher E, Gormley TR, Arendt EK. 2004. Recent advances in the formulation of gluten-free cereal-based products. Trends Food Sci. Technol. 15:143–52 [Google Scholar]
  49. Ghavidel RA, Prakash J. 2007. The impact of germination and dehulling on nutrients, antinutrients, in vitro iron and calcium bioavailability and in vitro starch and protein digestibility of some legume seeds. LWT Food Sci. Technol. 40:1292–99 [Google Scholar]
  50. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:1401–12 [Google Scholar]
  51. Giuberti G, Gallo A, Cerioli C, Fortunati P, Masoero F. 2015. Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chem 175:43–49 [Google Scholar]
  52. Green PHR, Cellier C. 2007. Medical progress: celiac disease. N. Engl. J. Med. 357:1731–43 [Google Scholar]
  53. Grela ER, Gunter KD. 1995. Fatty-acid composition and tocopherol content of some legume seeds. Anim. Feed Sci. Technol. 52:325–31 [Google Scholar]
  54. Guillon F, Champ MMJ. 2002. Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br. J. Nutr. 88:S293–306 [Google Scholar]
  55. Gularte MA, Gomez M, Rosell CM. 2012. Impact of legume flours on quality and in vitro digestibility of starch and protein from gluten-free cakes. Food Bioprocess Technol 5:3142–50 [Google Scholar]
  56. Gunasekera S, Stoddard F, Marshall D. 1999. Variation in faba bean amylose content. Starch 51:259–62 [Google Scholar]
  57. Haase NU, Shi HL. 1991. A characterization of faba bean starch (Vicia Faba L). Starch 43:205–8 [Google Scholar]
  58. Haciseferogullari H, Gezer I, Bahtlyarca Y, Menges HO. 2003. Determination of some chemical and physical properties of Sakiz faba bean (Viciafaba L. Var. major). J. Food Eng. 60:475–79 [Google Scholar]
  59. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. 2014. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146:67–75 [Google Scholar]
  60. Hermsdorff HHM, Zulet MA, Abete I, Martinez JA. 2011. A legume-based hypocaloric diet reduces proinflammatory status and improves metabolic features in overweight/obese subjects. Eur. J. Nutr. 50:61–69 [Google Scholar]
  61. Herranz B, Canet W, Jiménez MJ, Fuentes R, Alvarez MD. 2016. Characterisation of chickpea flour‐based gluten‐free batters and muffins with added biopolymers: rheological, physical and sensory properties. Int. J. Food Sci. Technol. 51:1087–98 [Google Scholar]
  62. Hoover R, Hughes T, Chung HJ, Liu Q. 2010. Composition, molecular structure, properties, and modification of pulse starches: a review. Food Res. Int. 43:399–413 [Google Scholar]
  63. Hoover R, Manuel H. 1995. A comparative study of the physicochemical properties of starches from two lentil cultivars. Food Chem 53:275–84 [Google Scholar]
  64. Hoover R, Ratnayake W. 2002. Starch characteristics of black bean, chickpea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem 78:489–98 [Google Scholar]
  65. Horax R, Hettiarachchy NS, Chen P, Jalaluddin M. 2004. Functional properties of protein isolate from cowpea (Vignaunguiculata L. Walp.). J. Food Sci. 69:C119–21 [Google Scholar]
  66. Horstmann SW, Belz MC, Heitmann M, Zannini E, Arendt EK. 2016. Fundamental study on the impact of gluten-free starches on the quality of gluten-free model breads. Foods 5:30 [Google Scholar]
  67. Hu FB. 2003. Plant-based foods and prevention of cardiovascular disease: an overview. Am. J. Clin. Nutr. 78:544S–51 [Google Scholar]
  68. Huang J, Schols HA, Jin Z, Sulmann E, Voragen AG. 2007a. Characterization of differently sized granule fractions of yellow pea, cowpea and chickpea starches after modification with acetic anhydride and vinyl acetate. Carbohydr. Polym. 67:11–20 [Google Scholar]
  69. Huang J, Schols HA, van Soest JJ, Jin Z, Sulmann E, Voragen AG. 2007b. Physicochemical properties and amylopectin chain profiles of cowpea, chickpea and yellow pea starches. Food Chem 101:1338–45 [Google Scholar]
  70. Ibanez M, Martinez M, Sanchez J, Fernández-Caldas E. 2002. Legume cross-reactivity. Allergol. Immunopathol. 31:151–61 [Google Scholar]
  71. Iqbal A, Khalil IA, Ateeq N, Khan MS. 2006. Nutritional quality of important food legumes. Food Chem 97:331–35 [Google Scholar]
  72. Jukanti AK, Gaur PM, Gowda CLL, Chibbar RN. 2012. Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. Br. J. Nutr. 108:S11–26 [Google Scholar]
  73. Karabulut A, Canbolat O, Kamalak A. 2006. Evaluation of carob, Ceratonia siliqua pods as a feed for sheep. Livest. Res. Rural Dev. 18:104 [Google Scholar]
  74. Karr-Lilienthal LK, Kadzere CT, Grieshop CM, Fahey GC. 2005. Chemical and nutritional properties of soybean carbohydrates as related to nonruminants: a review. Livest. Prod. Sci. 97:1–12 [Google Scholar]
  75. Kaur M, Singh N. 2007. Characterization of protein isolates from different Indian chickpea (Cicer arietinum L.) cultivars. Food Chem 102:366–74 [Google Scholar]
  76. Khalil AH, Mansour EH. 1995. The effect of cooking, autoclaving and germination on the nutritional quality of faba beans. Food Chem 54:177–82 [Google Scholar]
  77. Krupa U, Rosell CM, Sadowska J, Soral-Smietana M. 2010. Bean starch as ingredient for gluten-free bread. J. Food Proc. Preserv. 34:501–18 [Google Scholar]
  78. Kutos T, Golob T, Kac M, Plestenjak A. 2003. Dietary fibre content of dry and processed beans. Food Chem 80:231–35 [Google Scholar]
  79. L'Hocine L, Boye JI, Arcand Y. 2006. Composition and functional properties of soy protein isolates prepared using alternative defatting and extraction procedures. J. Food Sci. 71:C137–45 [Google Scholar]
  80. Lajolo FM, Genovese MI. 2002. Nutritional significance of lectins and enzyme inhibitors from legumes. J. Agric. Food Chem. 50:6592–98 [Google Scholar]
  81. Lee HC, Htoon AK, Uthayakumaran S, Paterson JL. 2007. Chemical and functional quality of protein isolated from alkaline extraction of Australian lentil cultivars: Matilda and Digger. Food Chem 102:1199–207 [Google Scholar]
  82. Levent H, Bilgiçli N. 2011a. Effect of gluten-free flours on physical properties of cakes. J. Food Sci. Eng. 1:354 [Google Scholar]
  83. Levent H, Bilgiçli N. 2011b. Enrichment of gluten-free cakes with lupin (Lupinus albus L.) or buckwheat (Fagopyrum esculentum M.) flours. Int. J. Food Sci. Nutr 62:725–28 [Google Scholar]
  84. Liu C, Wang XS, Ma H, Zhang ZQ, Gao WR, Xiao L. 2008. Functional properties of protein isolates from soybeans stored under various conditions. Food Chem 111:29–37 [Google Scholar]
  85. Lqari H, Vioque J, Pedroche J, Millan F. 2002. Lupinus angustifolius protein isolates: chemical composition, functional properties and protein characterization. Food Chem 76:349–56 [Google Scholar]
  86. Maestri DM, Labuckas DO, Meriles JM, Lamarque AL, Zygadlo JA, Guzman CA. 1998. Seed composition of soybean cultivars evaluated in different environmental regions. J. Sci. Food Agric. 77:494–98 [Google Scholar]
  87. Marambe PWMLHK, Wanasundara JPD. 2012. Seed storage proteins as sources of bioactive peptides. Bioactive Molecules in Plant Foods FO Urakapa 49–80 New York: Nova Sci. Publ. [Google Scholar]
  88. Marco C, Rosell CM. 2008a. Breadmaking performance of protein enriched, gluten-free breads. Eur. Food Res. Technol. 227:1205–13 [Google Scholar]
  89. Marco C, Rosell CM. 2008b. Functional and rheological properties of protein enriched gluten free composite flours. J. Food Eng. 88:94–103 [Google Scholar]
  90. Mariotti M, Lucisano M, Pagani MA, Ng PKW. 2009. The role of corn starch, amaranth flour, pea isolate, and psyllium flour on the rheological properties and the ultrastructure of gluten-free doughs. Food Res. Int. 42:963–75 [Google Scholar]
  91. Martin-Cabrejas MA, Ariza N, Esteban R, Molla E, Waldron K, Lopez-Andreu FJ. 2003. Effect of germination on the carbohydrate composition of the dietary fiber of peas (Pisum sativum L.). J. Agric. Food Chem. 51:1254–59 [Google Scholar]
  92. Martinez-Villaluenga C, Frias J, Vidal-Valverde C. 2006. Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of α-galactosides. Food Chem 98:291–99 [Google Scholar]
  93. Matos ME, Sanz T, Rosell CM. 2014. Establishing the function of proteins on the rheological and quality properties of rice based gluten free muffins. Food Hydrocoll 35:150–58 [Google Scholar]
  94. Mimouni B, Raymond J, Merle-Desnoyers A, Azanza J, Ducastaing A. 1994. Combined acid deamidation and enzymic hydrolysis for improvement of the functional properties of wheat gluten. J. Cereal Sci. 20:153–65 [Google Scholar]
  95. Minarro B, Albanell E, Aguilar N, Guamis B, Capellas M. 2012. Effect of legume flours on baking characteristics of gluten-free bread. J. Cereal Sci. 56:476–81 [Google Scholar]
  96. Minarro B, Normahomed I, Guamis B, Capellas M. 2010. Influence of unicellular protein on gluten-free bread characteristics. Eur. Food Res. Technol. 231:171–79 [Google Scholar]
  97. Mohamed AA, Rayasduarte P. 1995. Composition of Lupinus albus. Cereal Chem 72:643–47 [Google Scholar]
  98. Moure A, Sineiro J, Dominguez H, Parajo JC. 2006. Functionality of oilseed protein products: a review. Food Res. Int. 39:945–63 [Google Scholar]
  99. Nishinari K, Fang Y, Guo S, Phillips GO. 2014. Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocoll 39:301–18 [Google Scholar]
  100. O'Shea N, Arendt E, Gallagher E. 2014. State of the art in gluten‐free research. J. Food Sci. 79:R1067–76 [Google Scholar]
  101. Obatolu VA, Fasoyiro SB, Ogunsunmi L. 2007. Processing and functional properties of yam beans (Sphenostylis stenocarpa). J. Food Proc. Preserv. 31:240–49 [Google Scholar]
  102. Osborne TB. 1924. The Vegetable Proteins London: Longmans Green and Co.
  103. Padalino L, Mastromatteo M, Lecce L, Spinelli S, Conte A, Alessandro Del Nobile M. 2015. Optimization and characterization of gluten-free spaghetti enriched with chickpea flour. Int. J. Food Sci. Nutr. 66:148–58 [Google Scholar]
  104. Perez-Hidalgo MA, Guerra-Hernández E, Garcı B. 1997. Dietary fiber in three raw legumes and processing effect on chickpeas by an enzymatic-gravimetric method. J. Food Compos. Anal. 10:66–72 [Google Scholar]
  105. Ranhotra GS, Loewe RJ, Puyat LV. 1975. Preparation and evaluation of soy-fortified gluten-free bread. J. Food Sci. 40:62–64 [Google Scholar]
  106. Ratnayake WS, Hoover R, Shahidi F, Perera C, Jane J. 2001. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem 74:189–202 [Google Scholar]
  107. Ratnayake WS, Hoover R, Warkentin T. 2002. Pea starch: composition, structure and properties—a review. Starch 54:217–34 [Google Scholar]
  108. Redondo-Cuenca A, Villanueva-Suarez MJ, Rodriguez-Sevilla MD, Mateos-Aparicio I. 2007. Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chem 101:1216–22 [Google Scholar]
  109. Ribotta PD, Ausar SF, Morcillo MH, Perez GT, Beltramo DM, Leon AE. 2004. Production of gluten-free bread using soybean flour. J. Sci. Food Agric. 84:1969–74 [Google Scholar]
  110. Rosa-Sibakov N, R-L Heiniö, Cassan D, Holopainen-Mantila U, Micard V. et al. 2016. Effect of bioprocessing and fractionation on the structural, textural and sensory properties of gluten-free faba bean pasta. LWT Food Sci. Technol. 67:27–36 [Google Scholar]
  111. Roy F, Boye JI, Simpson BK. 2010. Bioactive proteins and peptides in pulse crops: pea, chickpea and lentil. Food Res. Int. 43:432–42 [Google Scholar]
  112. Rubatzky VE, Yamaguchi M. 2012. World Vegetables: Principles, Production, and Nutritive Values New York: Chapman & Hall
  113. Ryan KJ, Homco-Ryan CL, Jenson J, Robbins KL, Prestat C, Brewer MS. 2002. Lipid extraction process on texturized soy flour and wheat gluten protein-protein interactions in a dough matrix. Cereal Chem 79:434–38 [Google Scholar]
  114. Sampson HA. 2004. Update on food allergy. J. Allergy Clin. Immunol. 113:805–19 [Google Scholar]
  115. Sanchez-Vioque R, Clemente A, Vioque J, Bautista J, Millan F. 1999. Protein isolates from chickpea (Cicer arietinum L.): chemical composition, functional properties and protein characterization. Food Chem 64:237–43 [Google Scholar]
  116. Sathe S, Deshpande S, Salunkhe D. 1982. Functional properties of lupin seed (Lupinus mutabilis) proteins and protein concentrates. J. Food Sci. 47:491–97 [Google Scholar]
  117. Sciarini LS, Ribotta PD, Leon AE, Perez GT. 2010. Influence of gluten-free flours and their mixtures on batter properties and bread quality. Food Bioprocess Technol 3:577–85 [Google Scholar]
  118. Seczyk L, Swieca M, Gawlik-Dziki U. 2016. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta. Food Chem 194:637–42 [Google Scholar]
  119. Sereewat P, Suthipinittham C, Sumathaluk S, Puttanlek C, Uttapap D, Rungsardthong V. 2015. Cooking properties and sensory acceptability of spaghetti made from rice flour and defatted soy flour. LWT Food Sci. Technol. 60:1061–67 [Google Scholar]
  120. Shevkani K, Kaur A, Kumar S, Singh N. 2015. Cowpea protein isolates: functional properties and application in gluten-free rice muffins. LWT Food Sci. Technol. 63:927–33 [Google Scholar]
  121. Shevkani K, Singh N. 2014. Influence of kidney bean, field pea and amaranth protein isolates on the characteristics of starch-based gluten-free muffins. Int. J. Food Sci. Technol. 49:2237–44 [Google Scholar]
  122. Shewry PR, Halford NG. 2002. Cereal seed storage proteins: structures, properties and role in grain utilization. J. Exp. Bot. 53:947–58 [Google Scholar]
  123. Shewry PR, Tatham AS. 1990. The prolamin storage proteins of cereal seeds: structure and evolution. Biochem. J. 267:1–12 [Google Scholar]
  124. Singh RJ, Chung GH, Nelson RL. 2007. Landmark research in legumes. Genome 50:525–37 [Google Scholar]
  125. Slominski BA. 1994. Hydrolysis of galactooligosaccharides by commercial preparations of α‐galactosidase and β‐fruetofuranosidase: potential for use as dietary additives. J. Sci. Food Agric. 65:323–30 [Google Scholar]
  126. Smith BM, Bean SR, Schober TJ, Tilley M, Herald TJ, Aramouni F. 2010. Composition and molecular weight distribution of carob germ protein fractions. J. Agric. Food Chem. 58:7794–800 [Google Scholar]
  127. Sosulski FW, Sosulski K. 2005. Legumes: horticulture, properties and processing. Handbook of Food Science, Technology and Engineering YH Hui 181–18.14 Boca Raton, FL: CRC Press [Google Scholar]
  128. Sreerama YN, Sashikala VB, Pratape VM, Singh V. 2012. Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: evaluation of their flour functionality. Food Chem 131:462–68 [Google Scholar]
  129. Stevenson DG, Doorenbos RK, Jane JL, Inglett GE. 2006. Structures and functional properties of starch from seeds of three soybean (Glycine max (L.) Merr.) varieties. Starch 58:509–19 [Google Scholar]
  130. Sujak A, Kotlarz A, Strobel W. 2006. Compositional and nutritional evaluation of several lupin seeds. Food Chem 98:711–19 [Google Scholar]
  131. Susanna S, Prabhasankar P. 2013. A study on development of gluten free pasta and its biochemical and immunological validation. LWT Food Sci. Technol. 50:613–21 [Google Scholar]
  132. Susheelamma N, Rao M. 1974. Surface‐active principle in black gram (Phaseolus mungo) and its role in the texture of leavened foods containing the legume. J. Sci. Food Agric. 25:665–73 [Google Scholar]
  133. Tharanathan RN, Mahadevamma S. 2003. Grain legumes: a boon to human nutrition. Trends Food Sci. Technol. 14:507–18 [Google Scholar]
  134. Tiwari BK, Singh N. 2012. Major constituents of pulses. Pulse Chemistry and Technology BK Tiwari, N Singh Cambridge, UK: R. Soc. Chem. [Google Scholar]
  135. Tosh SM, Yada S. 2010. Dietary fibres in pulse seeds and fractions: characterization, functional attributes, and applications. Food Res. Int. 43:450–60 [Google Scholar]
  136. Tsatsaragkou K, Gounaropoulos G, Mandala I. 2014. Development of gluten free bread containing carob flour and resistant starch. LWT Food Sci. Technol. 58:124–29 [Google Scholar]
  137. Tsatsaragkou K, Yiannopoulos S, Kontogiorgi A, Poulli E, Krokida M, Mandala I. 2012. Mathematical approach of structural and textural properties of gluten free bread enriched with carob flour. J. Cereal Sci. 56:603–9 [Google Scholar]
  138. Tseng YC, Xiong YL, Boatright WL. 2008. Effects of inulin/oligofructose on the thermal stability and acid-induced gelation of soy proteins. J. Food Sci. 73:E44–50 [Google Scholar]
  139. Ulloa JA, Rosas-Ulloa P, Ulloa-Rangel BE. 2011. Physicochemical and functional properties of a protein isolate produced from safflower (Carthamus tinctorius L.) meal by ultrafiltration. J. Sci. Food Agric. 91:572–77 [Google Scholar]
  140. Utsumi S, Matsumura Y, Mori T. 1997. Structure-function relationships of soy proteins. Food Proteins and their Applications S Damodaran 257–92 New York: Marcel Dekker, Inc. [Google Scholar]
  141. van Vliet T, Martin AH, Bos MA. 2002. Gelation and interfacial behaviour of vegetable proteins. Curr. Opin. Colloid Interface Sci. 7:462–68 [Google Scholar]
  142. Verma AK, Kumar S, Das M, Dwivedi PD. 2013. A comprehensive review of legume allergy. Clin. Rev. Allergy Immunol. 45:30–46 [Google Scholar]
  143. Wang CY, Johnson LA. 2001. Functional properties of hydrothermally cooked soy protein products. J. Am. Oil Chem. Soc. 78:189–95 [Google Scholar]
  144. Wang JS, Zhao MM, Yang XQ, Jiang YM. 2006. Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration. J. Cereal Sci. 44:93–100 [Google Scholar]
  145. Wang N, Hatcher D, Toews R, Gawalko E. 2009. Influence of cooking and dehulling on nutritional composition of several varieties of lentils (Lens culinaris). LWT Food Sci. Technol. 42:842–48 [Google Scholar]
  146. Wang N, Hatcher DW, Gawalko EJ. 2008. Effect of variety and processing on nutrients and certain anti-nutrients in field peas (Pisum sativum). Food Chem 111:132–38 [Google Scholar]
  147. Wang YL, Belton PS, Bridon H, Garanger E, Wellner N. et al. 2001. Physicochemical studies of caroubin: a gluten-like protein. J. Agric. Food Chem. 49:3414–19 [Google Scholar]
  148. Wong P, Kitts D. 2003. A comparison of the buttermilk solids functional properties to nonfat dried milk, soy protein isolate, dried egg white, and egg yolk powders. J. Dairy Sci. 86:746–54 [Google Scholar]
  149. Worosz MR, Wilson NLW. 2012. A cautionary tale of purity, labeling and product literacy in the gluten-free market. J. Consum. Aff. 46:288–318 [Google Scholar]
  150. Xiang XL, Yang LY, Hua S, Li W, Sun Y. et al. 2008. Determination of oligosaccharide contents in 19 cultivars of chickpea (Cicer arietinum L) seeds by high performance liquid chromatography. Food Chem 111:215–19 [Google Scholar]
  151. Xie YR, Hettiarachchy NS. 1998. Effect of xanthan gum on enhancing the foaming properties of soy protein isolate. J. Am. Oil Chem. Soc. 75:729–32 [Google Scholar]
  152. Zhou Y, Hoover R, Liu Q. 2004. Relationship between α-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr. Polym. 57:299–317 [Google Scholar]
  153. Ziobro R, Juszczak L, Witczak M, Korus J. 2016. Non-gluten proteins as structure forming agents in gluten free bread. J. Food Sci. Technol. 53:571–80 [Google Scholar]
  154. Ziobro R, Witczak T, Juszczak L, Korus J. 2013. Supplementation of gluten-free bread with non-gluten proteins. Effect on dough rheological properties and bread characteristic. Food Hydrocoll 32:213–20 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error