The bioavailability of food nutrients and microconstituents is recognized as a determinant factor for optimal health status. However, human and animal studies are expensive and limited by the large amount of potential food bioactive compounds. The search for alternatives is very active and raises many questions. On one hand, in vitro digestion systems are good candidates, but to date only bioaccessibility has been correctly assessed. To go further, to what degree should natural processes be reproduced? What techniques can be used to measure the changes in food properties and structures in situ in a noninvasive way? On the other hand, modeling approaches have good potential, but their development is time-consuming. What compromises should be done between food and physiology realism and computational ease? This review addresses these questions by identifying highly resolved analytical methods, detailed computer models and simulations, and the most promising dynamic in vitro systems.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aguilera JM. 2006. Seligman Lecture 2005—Food product engineering: building the right structures. J. Sci. Food Agric. 86:1147–55 [Google Scholar]
  2. Alander M, de Smet I, Nollet L, Verstraete W, von Wright A, Mattila-Sandholm T. 1999. The effect of probiotic strains on the microbiota of the simulator of the human intestinal microbial ecosystem (SHIME). Int. J. Food Microbiol. 46:71–79 [Google Scholar]
  3. Alminger M, Aura AM, Bohn T, Dufour C, El SN. et al. 2014. In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Compr. Rev. Food Sci. Food Saf. 13:413–36 [Google Scholar]
  4. Anson NM, Selinheimo E, Havenaar R, Aura A-M, Mattila I. et al. 2009. Bioprocessing of wheat bran improves in vitro bioaccessibility and colonic metabolism of phenolic compounds. J. Agric. Food Chem. 57:6148–55 [Google Scholar]
  5. Baldwin AJ, Egan DL, Warren FJ, Barker PD, Dobson CM. et al. 2015. Investigating the mechanisms of amylolysis of starch granules by solution-state NMR. Biomacromolecules 16:1614–21 [Google Scholar]
  6. Ballance S, Sahlstrom S, Lea P, Nagy NE, Andersen PV. et al. 2013. Evaluation of gastric processing and duodenal digestion of starch in six cereal meals on the associated glycaemic response using an adult fasted dynamic gastric model. Eur. J. Nutr. 52:799–812 [Google Scholar]
  7. Bastianelli D, Sauvant D, Rerat A. 1996. Mathematical modeling of digestion and nutrient absorption in pigs. J. Anim. Sci. 74:1873–87 [Google Scholar]
  8. Bellmann S, Lelieveld J, Gorissen T, Minekus M, Havenaar R. 2016. Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology. Food Res. Int. 88:191–98 [Google Scholar]
  9. Berry SEE, Tydeman EA, Lewis HB, Phalora R, Rosborough J. et al. 2008. Manipulation of lipid bioaccessibility of almond seeds influences postprandial lipemia in healthy human subjects. Am. J. Clin. Nutr. 88:922–29 [Google Scholar]
  10. Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M. 2009. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 139:876–83 [Google Scholar]
  11. Blazek J, Gilbert EP. 2010. Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules 11:3275–89 [Google Scholar]
  12. Bordoni A, Laghi L, Babini E, di Nunzio M, Picone G. et al. 2014. The foodomics approach for the evaluation of protein bioaccessibility in processed meat upon in vitro digestion. Electrophoresis 35:1607–14 [Google Scholar]
  13. Bordoni A, Picone G, Babini E, Vignali M, Danesi F. et al. 2011. NMR comparison of in vitro digestion of Parmigiano Reggiano cheese aged 15 and 30 months. Magn. Reson. Chem. 49:S61–70 [Google Scholar]
  14. Butterworth PJ, Warren FJ, Grassby T, Patel H, Ellis PR. 2012. Analysis of starch amylolysis using plots for first-order kinetics. Carbohydr. Polym. 87:2189–97 [Google Scholar]
  15. Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frigola A. 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr. Rev. Food Sci. Food Saf. 13:155–71 [Google Scholar]
  16. Chen JS, Gaikwad V, Holmes M, Murray B, Povey M. et al. 2011. Development of a simple model device for in vitro gastric digestion investigation. Food Funct 2:174–82 [Google Scholar]
  17. Chen L, Hebrard G, Beyssac E, Denis S, Subirade M. 2010. In vitro study of the release properties of soy-zein protein microspheres with a dynamic artificial digestive system. J. Agric. Food Chem. 58:9861–67 [Google Scholar]
  18. Day JPR, Rago G, Domke KF, Velikov KP, Bonn M. 2010. Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-Stokes Raman scattering microspectroscopy. J. Am. Chem. Soc. 132:8433–39 [Google Scholar]
  19. Déat E, Blanquet-Diot S, Jarrige J-F, Denis S, Beyssac E, Alric M. 2009. Combining the dynamic TNO-gastrointestinal tract system with a Caco-2 cell culture model: application to the assessment of lycopene and α-tocopherol bioavailability from a whole food. J. Agric. Food Chem. 57:11314–20 [Google Scholar]
  20. del Castillo-Santaella T, Sanmartin E, Angel Cabrerizo-Vilchez M, Carlos Arboleya J, Maldonado-Valderrama J. 2014. Improved digestibility of β-lactoglobulin by pulsed light processing: a dilatational and shear study. Soft Matter 10:9702–14 [Google Scholar]
  21. de Loubens C, Lentle RG, Hulls C, Janssen PWM, Love RJ, Chambers JP. 2014. Characterisation of mixing in the proximal duodenum of the rat during longitudinal contractions and comparison with a fluid mechanical model based on spatiotemporal motility data. PLOS ONE 9:e95000 [Google Scholar]
  22. de Loubens C, Lentle RG, Love RJ, Hulls C, Janssen PWM. 2013. Fluid mechanical consequences of pendular activity, segmentation and pyloric outflow in the proximal duodenum of the rat and the guinea pig. J. R. Soc. Interface 10:20130027 [Google Scholar]
  23. Dhital S, Bhattarai RR, Gorham J, Gidley MJ. 2016. Intactness of cell wall structure controls the in vitro digestion of starch in legumes. Food Funct 7:1367–79 [Google Scholar]
  24. Do DHT, Kong FB, Penet C, Winetzky D, Gregory K. 2016. Using a dynamic stomach model to study efficacy of supplemental enzymes during simulated digestion. LWT Food Sci. Technol. 65:580–88 [Google Scholar]
  25. Domoto N, Koenen ME, Havenaar R, Mikajiri A, Chu B-S. 2013. The bioaccessibility of eicosapentaenoic acid was higher from phospholipid food products than from mono- and triacylglycerol food products in a dynamic gastrointestinal model. Food Sci. Nutr. 1:409–15 [Google Scholar]
  26. Dona AC, Pages G, Gilbert RG, Kuchel PW. 2011. Starch granule characterization by kinetic analysis of their stages during enzymic hydrolysis: H-1 nuclear magnetic resonance studies. Carbohydr. Polym. 83:1775–86 [Google Scholar]
  27. Edwards CH, Warren FJ, Milligan PJ, Butterworth PJ, Ellis PR. 2014. A novel method for classifying starch digestion by modelling the amylolysis of plant foods using first-order enzyme kinetic principles. Food Funct 5:2751–58 [Google Scholar]
  28. Ellis PR, Kendall CWC, Ren YL, Parker C, Pacy JF. et al. 2004. Role of cell walls in the bioaccessibility of lipids in almond seeds. Am. J. Clin. Nutr. 80:604–13 [Google Scholar]
  29. Fatouros DG, Deen GR, Arleth L, Bergenstahl B, Nielsen FS. et al. 2007. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle x-ray scattering. Pharm. Res. 24:1844–53 [Google Scholar]
  30. Ferrua MJ, Singh RP. 2010. Modeling the fluid dynamics in a human stomach to gain insight of food digestion. Advance J. Food Sci. Technol. 75:R151–62 [Google Scholar]
  31. Ferrua MJ, Xue Z, Singh RP. 2014. On the kinematics and efficiency of advective mixing during gastric digestion: a numerical analysis. J. Biomech. 47:3664–73 [Google Scholar]
  32. Fondaco D, Alhasawi F, Lan Y, Ben-Elazar S, Connolly K, Rogers MA. 2015. Biophysical aspects of lipid digestion in human breast milk and SimilacTM infant formulas. Food Biophys 10:282–91 [Google Scholar]
  33. Gaucel S, Trelea IC, Le Feunteun S. 2015. Comment on New mathematical model for interpreting pH-Stat digestion profiles: impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 63:10352–53 [Google Scholar]
  34. Gervais R, Gagnon F, Kheadr EE, van Calsteren M-R, Farnworth ER. et al. 2009. Bioaccessibility of fatty acids from conjugated linoleic acid–enriched milk and milk emulsions studied in a dynamic in vitro gastrointestinal model. Int. Dairy J. 19:574–81 [Google Scholar]
  35. Giang TM, Gaucel S, Brestaz P, Anton M, Meynier A. et al. 2016. Dynamic modeling of in vitro lipid digestion: individual fatty acid release and bioaccessibility kinetics. Food Chem 194:1180–88 [Google Scholar]
  36. Giang TM, Le Feunteun S, Gaucel S, Brestaz P, Anton M. et al. 2015. Dynamic modeling highlights the major impact of droplet coalescence on the in vitro digestion kinetics of a whey protein stabilized submicron emulsion. Food Hydrocoll 43:66–72 [Google Scholar]
  37. Goñi I, Garciaalonso A, Sauracalixto F. 1997. A starch hydrolysis procedure to estimate glycemic index. Nutr. Res. 17:427–37 [Google Scholar]
  38. Gouseti O, Jaime-Fonseca MR, Fryer PJ, Mills C, Wickham MSJ, Bakalis S. 2014. Hydrocolloids in human digestion: dynamic in-vitro assessment of the effect of food formulation on mass transfer. Food Hydrocoll 42:378–85 [Google Scholar]
  39. Grosvenor AJ, Haigh BJ, Dyer JM. 2014. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion. Food Funct 5:2699–705 [Google Scholar]
  40. Guerra A, Denis S, Le Goff O, Sicardi V, Francois O. et al. 2016. Development and validation of a new dynamic computer-controlled model of the human stomach and small intestine. Biotechnol. Bioeng. 113:1325–35 [Google Scholar]
  41. Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M. 2012. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol 30:591–600 [Google Scholar]
  42. Guo Q, Ye A, Lad M, Dalgleish D, Singh H. 2014. Effect of gel structure on the gastric digestion of whey protein emulsion gels. Soft Matter 10:1214–23 [Google Scholar]
  43. Harrison SM, Cleary PW. 2014. Towards modelling of fluid flow and food breakage by the teeth in the oral cavity using smoothed particle hydrodynamics (SPH). Eur. Food Res. Technol. 238:185–215 [Google Scholar]
  44. Harrison SM, Cleary PW, Eyres G, Sinnott MD, Lundin L. 2014a. Challenges in computational modelling of food breakdown and flavour release. Food Funct 5:2792–805 [Google Scholar]
  45. Harrison SM, Eyres G, Cleary PW, Sinnott MD, Delahunty C, Lundin L. 2014b. Computational modeling of food oral breakdown using smoothed particle hydrodynamics. J. Texture Stud. 45:97–109 [Google Scholar]
  46. Havenaar R, de Jong A, Koenen ME, van Bilsen J, Janssen AM. et al. 2013. Digestibility of transglutaminase cross-linked caseinate versus native caseinate in an in vitro multicompartmental model simulating young child and adult gastrointestinal conditions. J. Agric. Food Chem. 61:7636–44 [Google Scholar]
  47. Hunt CA, Ropella GEP, Lam TN, Tang J, Kim SHJ. et al. 2009. At the biological modeling and simulation frontier. Pharm. Res. 26:2369–400 [Google Scholar]
  48. Hur SJ, Lim BO, Decker EA, McClements DJ. 2011. In vitro human digestion models for food applications. Food Chem 125:1–12 [Google Scholar]
  49. Jaime-Fonseca MR, Gouseti O, Fryer PJ, Wickham MSJ, Bakalis S. 2016. Digestion of starch in a dynamic small intestinal model. Eur. J. Nutr. 55:2377–88 [Google Scholar]
  50. Jarunglumlert T, Nakagawa K, Adachi S. 2015. Digestibility and structural parameters of spray-dried casein clusters under simulated gastric conditions. Food Res. Int. 75:166–73 [Google Scholar]
  51. Jumars PA. 2000a. Animal guts as ideal chemical reactors: maximizing absorption rates. Am. Nat. 155:527–43 [Google Scholar]
  52. Jumars PA. 2000b. Animal guts as nonideal chemical reactors: partial mixing and axial variation in absorption kinetics. Am. Nat. 155:544–55 [Google Scholar]
  53. Kong F, Oztop MH, Singh RP, Mccarthy MJ. 2011. Physical changes in white and brown rice during simulated gastric digestion. Adv. J. Food Sci. Technol. 76:E450–57 [Google Scholar]
  54. Kong F, Singh RP. 2008. A model stomach system to investigate disintegration kinetics of solid foods during gastric digestion. Adv. J. Food Sci. Technol. 73:E202–10 [Google Scholar]
  55. Kong F, Singh RP. 2010. A human gastric simulator (HGS) to study food digestion in human stomach. Adv. J. Food Sci. Technol. 75:E627–E635 [Google Scholar]
  56. Kozu H, Kobayashi I, Nakajima M, Uemura K, Sato S, Ichikawa S. 2010. Analysis of flow phenomena in gastric contents induced by human gastric peristalsis using CFD. Food Biophys 5:330–6 [Google Scholar]
  57. Kozu H, Nakata Y, Nakajima M, Neves MA, Uemura K. et al. 2014. Development of a human gastric digestion simulator equipped with peristalsis function for the direct observation and analysis of the food digestion process. Food Sci. Technol. Res. 20:225–33 [Google Scholar]
  58. Labourdenne S, Brass O, Ivanova M, Cagna A, Verger R. 1997. Effects of colipase and bile salts on the catalytic activity of human pancreatic lipase. A study using the oil drop tensiometer. Biochemistry 36:3423–29 [Google Scholar]
  59. Labourdenne S, Gaudryrolland N, Letellier S, Lin M, Cagna A. et al. 1994. The oil-drop tensiometer: potential applications for studying the kinetics of (phospho)lipase action. Chem. Phys. Lipids 71:163–73 [Google Scholar]
  60. Lafond M, Bouza B, Eyrichine S, Bonnin E, Crost EH. et al. 2011. An integrative in vitro approach to analyse digestion of wheat polysaccharides and the effect of enzyme supplementation. Br. J. Nutr. 106:264–73 [Google Scholar]
  61. Larsson M, Minekus M, Havenaar R. 1997. Estimation of the bioavailability of iron and phosphorus in cereals using a dynamic in vitro gastrointestinal model. J. Sci. Food Agric. 74:99–106 [Google Scholar]
  62. Le Feunteun S, Barbe F, Remond D, Ménard O, Le Gouar Y. et al. 2014. Impact of the dairy matrix structure on milk protein digestion kinetics: mechanistic modelling based on mini-pig in vivo data. Food Bioprocess Technol 7:1099–113 [Google Scholar]
  63. Lemmens L, Colle I, van Buggenhout S, Palmero P, van Loey A, Hendrickx M. 2014. Carotenoid bioaccessibility in fruit- and vegetable-based food products as affected by product (micro)structural characteristics and the presence of lipids: a review. Trends Food Sci. Technol. 38:125–35 [Google Scholar]
  64. Lentle RG, Janssen PWM, de Loubens C, Lim YF, Hulls C, Chambers P. 2013. Mucosal microfolds augment mixing at the wall of the distal ileum of the brushtail possum. Neurogastroenterol. Motil. 25:881–e700 [Google Scholar]
  65. Li Y, McClements DJ. 2010. New mathematical model for interpreting pH-Stat digestion profiles: impact of lipid droplet characteristics on in vitro digestibility. J. Agric. Food Chem. 58:8085–92 [Google Scholar]
  66. Lila MA, Ribnicky DM, Rojo LE, Rojas-Silva P, Oren A. et al. 2012. Complementary approaches to gauge the bioavailability and distribution of ingested berry polyphenolics. J. Agric. Food Chem. 60:5763–71 [Google Scholar]
  67. Lim YF, de Loubens C, Love RJ, Lentle RG, Janssen PWM. 2015. Flow and mixing by small intestine villi. Food Funct 6:1787–95 [Google Scholar]
  68. Logan JD, Joern A, Wolesensky W. 2002. Location, time, and temperature dependence of digestion in simple animal tracts. J. Theor. Biol. 216:5–18 [Google Scholar]
  69. Logan JD, Joern A, Wolesensky W. 2003. Chemical reactor models of optimal digestion efficiency with constant foraging costs. Ecol. Model. 168:25–38 [Google Scholar]
  70. López de Lacey AM, Gimenez B, Perez-Santin E, Faulks R, Mandalari G. et al. 2012. Bioaccessibility of green tea polyphenols incorporated into an edible agar film during simulated human digestion. Food Res. Int. 48:462–69 [Google Scholar]
  71. Lopez-Rubio A, Flanagan BM, Shrestha AK, Gidley MJ, Gilbert EP. 2008. Molecular rearrangement of starch during in vitro digestion: toward a better understanding of enzyme resistant starch formation in processed starches. Biomacromolecules 9:1951–58 [Google Scholar]
  72. Lucas PW, Luke DA. 1983a. Computer-simulation of the breakdown of carrot particles during human mastication. Arch. Oral Biol. 28:821–26 [Google Scholar]
  73. Lucas PW, Luke DA. 1983b. Methods for analyzing the breakdown of food in human mastication. Arch. Oral Biol. 28:813–19 [Google Scholar]
  74. Luykx D, Peters RJB, van Ruth SM, Bouwmeester H. 2008. A review of analytical methods for the identification and characterization of nano delivery systems in food. J. Agric. Food Chem. 56:8231–47 [Google Scholar]
  75. Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR. 2009. Emulsification alters simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter 5:538–50 [Google Scholar]
  76. Mahasukhonthachat K, Sopade PA, Gidley MJ. 2010. Kinetics of starch digestion in sorghum as affected by particle size. J. Food Eng. 96:18–28 [Google Scholar]
  77. Maldonado-Valderrama J, Gunning AP, Wilde PJ, Morris VJ. 2010. In vitro gastric digestion of interfacial protein structures: visualisation by AFM. Soft Matter 6:4908–15 [Google Scholar]
  78. Maldonado-Valderrama J, Terriza JAH, Torcello-Gómez A, Cabrerizo-Vilchez MA. 2013. In vitro digestion of interfacial protein structures. Soft Matter 9:1043–53 [Google Scholar]
  79. Mandalari G, Bisignano C, Filocamo A, Chessa S, Saro M. et al. 2013. Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutrition 29:338–44 [Google Scholar]
  80. Mandalari G, Grundy MML, Grassby T, Parker ML, Cross KL. et al. 2014. The effects of processing and mastication on almond lipid bioaccessibility using novel methods of in vitro digestion modelling and micro-structural analysis. Br. J. Nutr. 112:1521–29 [Google Scholar]
  81. Manly RS, Braley LC. 1950. Masticatory performance and efficiency. J. Dent. Res. 29:448–62 [Google Scholar]
  82. Martin AH, de Jong GAH. 2012. Enhancing the in vitro Fe2+ bio-accessibility using ascorbate and cold-set whey protein gel particles. Dairy Sci. Technol. 92:133–49 [Google Scholar]
  83. Marze S. 2013. Bioaccessibility of nutrients and micronutrients from dispersed food systems: impact of the multiscale bulk and interfacial structures. Crit. Rev. Food Sci. Nutr. 53:76–108 [Google Scholar]
  84. Marze S. 2014. A coarse-grained simulation to study the digestion and bioaccessibility of lipophilic nutrients and micronutrients in emulsion. Food Funct 5:129–39 [Google Scholar]
  85. Marze S. 2015. Refining in silico simulation to study digestion parameters affecting the bioaccessibility of lipophilic nutrients and micronutrients. Food Funct 6:115–24 [Google Scholar]
  86. Marze S. 2016. Modelling of food digestion. Microscale Transport Modelling in Biological Processes SM Becker London: Acad. Press [Google Scholar]
  87. Marze S, Algaba H, Marquis M. 2014. A microfluidic device to study the digestion of trapped lipid droplets. Food Funct 5:1481–88 [Google Scholar]
  88. Marze S, Choimet M. 2012. In vitro digestion of emulsions: mechanistic and experimental models. Soft Matter 8:10982–93 [Google Scholar]
  89. Marze S, Choimet M, Foucat L. 2012. In vitro digestion of emulsions: diffusion and particle size distribution using diffusing wave spectroscopy and diffusion using nuclear magnetic resonance. Soft Matter 8:10994–1004 [Google Scholar]
  90. Marze S, Gaillard C, Roblin P. 2015. In vitro digestion of emulsions: high spatiotemporal resolution using synchrotron SAXS. Soft Matter 11:5365–73 [Google Scholar]
  91. Marze S, Meynier A, Anton M. 2013. In vitro digestion of fish oils rich in n-3 polyunsaturated fatty acids studied in emulsion and at the oil-water interface. Food Funct 4:231–39 [Google Scholar]
  92. McClements DJ, Li F, Xiao H. 2015. The nutraceutical bioavailability classification scheme: classifying nutraceuticals according to factors limiting their oral bioavailability. Annu. Rev. Food Sci. Technol. 6:6299–327 [Google Scholar]
  93. Ménard O, Cattenoz T, Guillemin H, Souchon I, Deglaire A. et al. 2014. Validation of a new in vitro dynamic system to simulate infant digestion. Food Chem 145:1039–45 [Google Scholar]
  94. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T. et al. 2014. A standardised static in vitro digestion method suitable for food: an international consensus. Food Funct 5:1113–24 [Google Scholar]
  95. Minekus M, Jelier M, Xiao JZ, Kondo S, Iwatsuki K. et al. 2005. Effect of partially hydrolyzed guar gum (PHGG) on the bioaccessibility of fat and cholesterol. Biosci. Biotechnol. Biochem. 69:932–38 [Google Scholar]
  96. Minekus M, Marteau P, Havenaar R, Huisintveld JHJ. 1995. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. 23:197–209 [Google Scholar]
  97. Morell P, Hernando I, Fiszman SM. 2014. Understanding the relevance of in-mouth food processing. A review of in vitro techniques. Trends Food Sci. Technol. 35:18–31 [Google Scholar]
  98. Moxon TE, Gouseti O, Bakalis S. 2016. In silico modelling of mass transfer & absorption in the human gut. J. Food Eng. 176:110–20 [Google Scholar]
  99. Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillen MD. 2014. A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Res. Int. 66:379–87 [Google Scholar]
  100. Nieva-Echevarría B, Goicoechea E, Manzanos MJ, Guillen MD. 2015. Usefulness of 1H NMR in assessing the extent of lipid digestion. Food Chem 179:182–90 [Google Scholar]
  101. Nimalaratne C, Savard P, Gauthier SF, Schieber A, Wu J. 2015. Bioaccessibility and digestive stability of carotenoids in cooked eggs studied using a dynamic in vitro gastrointestinal model. J. Agric. Food Chem. 63:2956–62 [Google Scholar]
  102. Nury S, Pieroni G, Riviere C, Gargouri Y, Bois A, Verger R. 1987. Lipase kinetics at the triacylglycerol-water interface using surface-tension measurements. Chem. Phys. Lipids 45:27–37 [Google Scholar]
  103. Nyemb K, Jardin J, Causeur D, Guerin-Dubiard C, Dupont D. et al. 2014. Investigating the impact of ovalbumin aggregate morphology on in vitro ovalbumin digestion using label-free quantitative peptidomics and multivariate data analysis. Food Res. Int. 63:192–202 [Google Scholar]
  104. Öhrvik V, Witthöft C. 2008. Orange juice is a good folate source in respect to folate content and stability during storage and simulated digestion. Eur. J. Nutr. 47:92–98 [Google Scholar]
  105. Olthoff LW, Vanderbilt A, Bosman F, Kleizen HH. 1984. Distribution of particle sizes in food comminuted by human mastication. Arch. Oral Biol. 29:899–903 [Google Scholar]
  106. Pal A, Brasseur JG, Abrahamsson B. 2007. A stomach road or “Magenstrasse” for gastric emptying. J. Biomech. 40:1202–10 [Google Scholar]
  107. Pal A, Indireshkumar K, Schwizer W, Abrahamsson B, Fried M, Brasseur JG. 2004. Gastric flow and mixing studied using computer simulation. Proc. R. Soc. B. 271:2587–94 [Google Scholar]
  108. Parada J, Aguilera JM. 2007. Food microstructure affects the bioavailability of several nutrients. Adv. J. Food Sci. Technol. 72:R21–32 [Google Scholar]
  109. Patel H, Day R, Butterworth PJ, Ellis PR. 2014. A mechanistic approach to studies of the possible digestion of retrograded starch by α-amylase revealed using a log of slope (LOS) plot. Carbohydr. Polym. 113:182–88 [Google Scholar]
  110. Patton JS, Carey MC. 1979. Watching fat digestion. Science 204:145–48 [Google Scholar]
  111. Patton JS, Vetter RD, Hamosh M, Borgstrom B, Lindstrom M, Carey MC. 1985. The light-microscopy of triglyceride digestion. Food Microstruct 4:29–41 [Google Scholar]
  112. Peyron MA, Woda A. 2016. An update about artificial mastication. Curr. Opin. Food Sci. 9:21–28 [Google Scholar]
  113. Picariello G, Mamone G, Nitride C, Addeo F, Ferranti P. 2013. Protein digestomics: integrated platforms to study food-protein digestion and derived functional and active peptides. Trends Anal. Chem. 52:120–34 [Google Scholar]
  114. Pregent S, Hoad CL, Ciampi E, Kirkland M, Cox EF. et al. 2012. Investigation of the behaviour of chitosan microparticles as pH responsive hydrogels in the gastro-intestinal tract using magnetic resonance imaging. Food Hydrocoll 26:187–96 [Google Scholar]
  115. Prinz JF, Lucas PW. 1997. An optimization model for mastication and swallowing in mammals. Proc. R. Soc. B 264:1715–21 [Google Scholar]
  116. Reis P, Holmberg K, Watzke H, Leser ME, Miller R. 2009. Lipases at interfaces: a review. Adv. Colloid Interface Sci. 147–48:237–50 [Google Scholar]
  117. Reis P, Miller R, Kraegel J, Leser M, Fainerman VB. et al. 2008. Lipases at interfaces: unique interfacial properties as globular proteins. Langmuir 24:6812–19 [Google Scholar]
  118. Ribnicky DM, Roopchand DE, Oren A, Grace M, Poulev A. et al. 2014. Effects of a high fat meal matrix and protein complexation on the bioaccessibility of blueberry anthocyanins using the TNO gastrointestinal model (TIM-1). Food Chem 142:349–57 [Google Scholar]
  119. Röhrle O, Pullan AJ. 2007. Three-dimensional finite element modelling of muscle forces during mastication. J. Biomech. 40:3363–72 [Google Scholar]
  120. Roman MJ, Burri BJ, Singh RP. 2012. Release and bioaccessibility of β-carotene from fortified almond butter during in vitro digestion. J. Agric. Food Chem. 60:9659–66 [Google Scholar]
  121. Salentinig S, Phan S, Hawley A, Boyd BJ. 2015a. Self-assembly structure formation during the digestion of human breast milk. Angew. Chem. Int. Ed. 54:1600–3 [Google Scholar]
  122. Salentinig S, Phan S, Khan J, Hawley A, Boyd BJ. 2013. Formation of highly organized nanostructures during the digestion of milk. ACS Nano 7:10904–11 [Google Scholar]
  123. Salentinig S, Sagalowicz L, Leser ME, Tedeschi C, Glatter O. 2011. Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter 7:650–61 [Google Scholar]
  124. Salentinig S, Yepuri NR, Hawley A, Boyd BJ, Gilbert E, Darwish TA. 2015b. Selective deuteration for molecular insights into the digestion of medium chain triglycerides. Chem. Phys. Lipids 190:43–50 [Google Scholar]
  125. Sánchez-Rivera L, Diezhandino I, Angel Gomez-Ruiz J, Maria Fresno J, Miralles B, Recio I. 2014. Peptidomic study of Spanish blue cheese (Valdeon) and changes after simulated gastrointestinal digestion. Electrophoresis 35:1627–36 [Google Scholar]
  126. Sánchez-Rivera L, Ménard O, Recio I, Dupont D. 2015. Peptide mapping during dynamic gastric digestion of heated and unheated skimmed milk powder. Food Res. Int. 77:132–39 [Google Scholar]
  127. Shrestha AK, Blazek J, Flanagan BM, Dhital S, Larroque O. et al. 2012. Molecular, mesoscopic and microscopic structure evolution during amylase digestion of maize starch granules. Carbohydr. Polym. 90:23–33 [Google Scholar]
  128. Strathe AB, Danfaer A, Chwalibog A. 2008. A dynamic model of digestion and absorption in pigs. Anim. Feed Sci. Technol. 143:328–71 [Google Scholar]
  129. Taghipoor M, Barles G, Georgelin C, Licois JR, Lescoat P. 2014. Digestion modeling in the small intestine: impact of dietary fiber. Math. Biosci. 258:101–12 [Google Scholar]
  130. Taghipoor M, Lescoat P, Licois JR, Georgelin C, Barles G. 2012. Mathematical modeling of transport and degradation of feedstuffs in the small intestine. J. Theor. Biol. 294:114–21 [Google Scholar]
  131. Tarvainen M, Phuphusit A, Suomela J-P, Kuksis A, Kallio H. 2012. Effects of antioxidants on rapeseed oil oxidation in an artificial digestion model analyzed by UHPLC-ESI-MS. J. Agric. Food Chem. 60:3564–79 [Google Scholar]
  132. Tarvainen M, Suomela J-P, Kallio H. 2011. Ultra high performance liquid chromatography–mass spectrometric analysis of oxidized free fatty acids and acylglycerols. Eur. J. Lipid Sci. Technol. 113:409–22 [Google Scholar]
  133. Tarvainen M, Suomela J-P, Kuksis A, Kallio H. 2010. Liquid chromatography–light scattering detector–mass spectrometric analysis of digested oxidized rapeseed oil. Lipids 45:1061–79 [Google Scholar]
  134. Tharakan A, Norton IT, Fryer PJ, Bakalis S. 2010. Mass transfer and nutrient absorption in a simulated model of small intestine. Adv. J. Food Sci. Technol. 75:E339–46 [Google Scholar]
  135. Thilakarathna SH, Rogers M, Lan Y, Huynh S, Marangoni AG. et al. 2016. Investigations of in vitro bioaccessibility from interesterified stearic and oleic acid-rich blends. Food Funct 7:1932–40 [Google Scholar]
  136. Torcello-Gómez A, Maldonado-Valderrama J, de Vicente J, Cabrerizo-Vilchez MA, Galvez-Ruiz MJ, Martin-Rodriguez A. 2011. Investigating the effect of surfactants on lipase interfacial behaviour in the presence of bile salts. Food Hydrocoll 25:809–16 [Google Scholar]
  137. Van Aken GA. 2016. In silico digestion modelling Ede, Neth: Insight FOOD Inside http://www.insightfoodinside.com/Food-interacting-with-the-body/In-silico-digestion-modelling/
  138. Van Loo-Bouwman CA, Naber THJ, Minekus M, Van Breemen RB, Hulshof PJM, Schaafsma G. 2014. Food matrix effects on bioaccessibility of β-carotene can be measured in an in vitro gastrointestinal model. J. Agric. Food Chem. 62:950–55 [Google Scholar]
  139. Vardakou M, Mercuri A, Barker SA, Craig DQM, Faulks RM, Wickham MSJ. 2011. Achieving antral grinding forces in biorelevant in vitro models: comparing the USP dissolution apparatus II and the dynamic gastric model with human in vivo data. AAPS PharmSciTech 12:620–26 [Google Scholar]
  140. Verger R, De Haas GH. 1976. Interfacial enzyme-kinetics of lipolysis. Annu. Rev. Biophys. Bioeng. 5:77–117 [Google Scholar]
  141. Verrijssen TAJ, Vanierschot M, Ongena SIM, Cardinaels R, Van Den Bulck E. et al. 2014. Role of mechanical forces in the stomach phase on the in vitro bioaccessibility of β-carotene. Food Res. Int. 55:271–80 [Google Scholar]
  142. Villemejane C, Denis S, Marsset-Baglieri A, Alric M, Aymard P, Michon C. 2016. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres using a multi-compartmental and dynamic system (2): protein and starch hydrolyses. Food Chem 190:164–72 [Google Scholar]
  143. Villemejane C, Wahl R, Aymard P, Denis S, Michon C. 2015. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): viscosity measurement and prediction. Food Chem 182:55–63 [Google Scholar]
  144. Wang Y, Brasseur JG, Banco GG, Webb AG, Ailiani AC, Neuberger T. 2010a. A multiscale lattice Boltzmann model of macro- to micro-scale transport, with applications to gut function. Philos. Trans. R. Soc. A 368:2863–80 [Google Scholar]
  145. Wang Y, Brasseur JG, Banco GG, Webb AG, Ailiani AC, Neuberger T. 2010b. Development of a lattice-Boltzmann method for multiscale transport and absorption with application to intestinal function. Computational Modeling in Biomechanics S De, F Guilak, M Mofrad 69–96 Dordrecht, Neth: Springer [Google Scholar]
  146. Wang Z, Ichikawa S, Kozu H, Neves MA, Nakajima M. et al. 2015. Direct observation and evaluation of cooked white and brown rice digestion by gastric digestion simulator provided with peristaltic function. Food Res. Int. 71:16–22 [Google Scholar]
  147. Wen S, Zhou G, Li L, Xu X, Yu X. et al. 2015. Effect of cooking on in vitro digestion of pork proteins: a peptidomic perspective. J. Agric. Food Chem. 63:250–61 [Google Scholar]
  148. Wright ND, Kong FB, Williams BS, Fortner L. 2016. A human duodenum model (HDM) to study transport and digestion of intestinal contents. J. Food Eng. 171:129–36 [Google Scholar]
  149. Zhang J, Chen F, Liu F, Wang Z-W. 2010. Study on structural changes of microwave heat-moisture treated resistant Canna edulis Ker starch during digestion in vitro. Food Hydrocoll 24:27–34 [Google Scholar]
  150. Zhang Q, Cundiff JK, Maria SD, McMahon RJ, Wickham MSJ. et al. 2014. Differential digestion of human milk proteins in a simulated stomach model. J. Proteome Res. 13:1055–64 [Google Scholar]
  151. Zhang X, Hui M. 2015. The research and development on simulation of oral cavity food chewing system. Adv. J. Food Sci. Technol. 7:553–57 [Google Scholar]
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error