1932

Abstract

Foodborne bacterial pathogens encounter many environmental insults or stresses during food production, processing, storage, distribution, and preparation. However, these pathogens can sense changes in their surroundings and can respond by altering gene expression. A protective response may follow that increases tolerance to one or more stresses. This phenomenon is referred to as stress adaptation and has been shown to aid in the survival of pathogens in food products and in the food processing environment. Furthermore, stress adaptation may alter the virulence properties of pathogens and can contribute to survival in vivo during infection. Elucidating the molecular mechanisms underlying stress adaptation in bacterial food pathogens is essential for the development and implementation of more effective control measures and will permit the design of optimal processing regimes that combine maximum safety with consumer demands for more fresh-like, minimally processed foods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030713-092350
2015-04-10
2024-06-21
Loading full text...

Full text loading...

/deliver/fulltext/food/6/1/annurev-food-030713-092350.html?itemId=/content/journals/10.1146/annurev-food-030713-092350&mimeType=html&fmt=ahah

Literature Cited

  1. Abee T, Wouters JA. 1999. Microbial stress in minimal processing. Int. J. Food Microbiol. 50:65–91 [Google Scholar]
  2. Abram F, Starr E, Karatzas KAG, Matlawska-Wasowska K, Boyd A. et al. 2008a. Identification of components of the sigmaB regulon in Listeria monocytogenes that contribute to acid and salt tolerance. Appl. Environ. Microbiol. 74:6848–58 [Google Scholar]
  3. Abram F, Su WL, Wiedmann M, Boor KJ, Coote P. et al. 2008b. Proteomic analyses of a Listeria monocytogenes mutant lacking σB identify new components of the σB regulon and highlight a role for σB in the utilization of glycerol. Appl. Environ. Microbiol. 74:594–604 [Google Scholar]
  4. Álvarez-Ordóñez A, Begley M, Prieto M, Messens W, López M. et al. 2011. Salmonella spp. survival strategies within the host gastrointestinal tract. Microbiology 157:3268–81 [Google Scholar]
  5. Álvarez-Ordóñez A, Fernández A, Bernardo A, López M. 2009a. A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Senftenberg grown at acidic conditions. Foodborne Pathog. Dis. 6:1147–55 [Google Scholar]
  6. Álvarez-Ordóñez A, Fernández A, Bernardo A, López M. 2009b. Comparison of acids on the induction of an acid tolerance response in Salmonella Typhimurium, consequences for food safety. Meat Sci. 81:65–70 [Google Scholar]
  7. Álvarez-Ordóñez A, Prieto M, Bernardo A, Hill C, López M. 2012. The acid tolerance response of Salmonella spp.: an adaptive strategy to survive in stressful environments prevailing in foods and the host. Food Res. Int. 45:482–92 [Google Scholar]
  8. Andersen J, Roldgaard BB, Christensen BB, Licht TR. 2007. Oxygen restriction increases the infective potential of Listeria monocytogenes in vitro in Caco-2 cells and in vivo in guinea pigs. BMC Microbiol. 7:55 [Google Scholar]
  9. Arsène F, Tomoyasu T, Bukau B. 2000. The heat shock response of Escherichia coli. Int. J. Food Microbiol. 55:3–9 [Google Scholar]
  10. Becker LA, Çetin MS, Hutkins RW, Benson AK. 1998. Identification of the gene encoding the alternative sigma factor σB from Listeria monocytogenes and its role in osmotolerance. J. Bacteriol. 180:4547–54 [Google Scholar]
  11. Begley M, Gahan CGM, Hill C. 2002. Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection and identification of genetic loci involved in bile resistance. Appl. Environ. Microbiol. 68:6005–12 [Google Scholar]
  12. Begley M, Gahan CGM, Hill C. 2005a. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29:625–51 [Google Scholar]
  13. Begley M, Hill C. 2010. Food safety: What can we learn from genomics?. Annu. Rev. Food Sci. Technol. 1:341–61 [Google Scholar]
  14. Begley M, Hill C, Ross RP. 2006. Tolerance of Listeria monocytogenes to cell-envelope acting antimicrobial agents is dependent on SigB. Appl. Environ. Microbiol. 72:2231–34 [Google Scholar]
  15. Begley M, Sleator RD, Gahan CGM, Hill C. 2005b. Contribution of three bile associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73:894–904 [Google Scholar]
  16. Bergholz TM, Bowen B, Wiedmann M, Boor KJ. 2012. Listeria monocytogenes shows temperature-dependent and -independent responses to salt stress, inducing responses that induce cross-protection against other stresses. Appl. Environ. Microbiol. 78:2602–12 [Google Scholar]
  17. Bergholz TM, Tang S, Wiedmann M, Boor KJ. 2013. Nisin resistance of Listeria monocytogenes is increased by exposure to salt stress and is mediated via LiaR. Appl. Environ. Microbiol. 79:5682–88 [Google Scholar]
  18. Berlutti F, Casalino M, Zagaglia C, Fradiani PA, Visca P, Nicoletti M. 1998. Expression of the virulence plasmid-carried apyrase gene (apy) of enteroinvasive Escherichia coli and Shigella flexneri is under the control of H-NS and the VirF and VirB regulatory cascade. Infect. Immun. 66:4957–64 [Google Scholar]
  19. Bonnet M, Montville TJ. 2005. Acid-tolerant Listeria monocytogenes persist in a model food system fermented with nisin-producing bacteria. Lett. Appl. Microbiol. 40:237–42 [Google Scholar]
  20. Cebrián G, Sagarzazu N, Aertsen A, Pagán R, Condón S, Mañas P. 2009. Role of the alternative sigma factor σB on Staphylococcus aureus resistance to stresses of relevance to food preservation. J. Appl. Microbiol. 107:187–96 [Google Scholar]
  21. Chatfield SN, Dorman CJ, Hayward C, Dougan G. 1991. Role of ompR-dependent genes in Salmonella typhimurium virulence: Mutants deficient in both OmpC and OmpF are attenuated in vivo. Infect. Immun. 59:449–52 [Google Scholar]
  22. Chaturongakul S, Raengpradub S, Palmer ME, Bergholz TM, Orsi RH. et al. 2011. Transcriptomic and phenotypic analyses identify coregulated overlapping regulons among PrfA, CtsR, HrcA and the alternative sigma factors σB, σC, σH and σL in Listeria monocytogenes. Appl. Environ. Microbiol. 77:187–200 [Google Scholar]
  23. Chaturongakul S, Raengpradub S, Wiedmann M, Boor KJ. 2008. Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol. 16:388–96 [Google Scholar]
  24. Choffnes ER, Relman DA, Olsen LA, Hutton R, Mack A. 2012. Improving Food Safety Through a One Health Approach: Workshop Summary Washington, DC: Natl. Acad. [Google Scholar]
  25. Chorianopoulos N, Giaouris E, Grigoraki I, Skandamis P, Nychas GJ. 2011. Effect of acid tolerance response (ATR) on attachment of Listeria monocytogenes ScottA to stainless steel under extended exposure to acid or/and salt stress and resistance of sessile cells to subsequent strong acid challenge. Int. J. Food Microbiol. 28:400–6 [Google Scholar]
  26. Conte MP, Petrone G, Di Biase AM, Ammendolia MG, Superti F, Seganti L. 2000. Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb. Pathog. 29:137–44 [Google Scholar]
  27. Cotter PD, Emerson N, Gahan CGM, Hill C. 1999. Identification and disruption of lisRK, a genetic locus encoding a two-component signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J. Bacteriol. 181:6840–43 [Google Scholar]
  28. Cotter PD, Ryan S, Gahan CGM, Hill C. 2005. Presence of GadD1 glutamate decarboxylase in selected Listeria monocytogenes strains is associated with an ability to grow at low pH. Appl. Environ. Microbiol. 71:2832–39 [Google Scholar]
  29. Datta AR, Kothary MH. 1993. Effects of glucose, growth temperature, and pH on listeriolysin O production in Listeria monocytogenes. Appl. Environ. Microbiol. 59:3495–97 [Google Scholar]
  30. den Besten HMW, Arvind A, Gaballo HMS, Moezelaar R, Zwietering MH, Abee T. 2010. Short- and long-term biomarkers for bacterial robustness: a framework for quantifying correlations between cellular indicators and adaptive behaviour. PLOS ONE 5:e13746 [Google Scholar]
  31. Dodd CER, Aldsworth TG. 2002. The importance of RpoS in the survival of bacteria through food processing. Int. J. Food Microbiol. 74:189–94 [Google Scholar]
  32. Dong T, Schellhorn HE. 2009. Global effect of RpoS on gene expression in pathogenic Escherichia coli O157:H7 strain EDL933. BMC Genomics 10:349 [Google Scholar]
  33. Dong T, Schellhorn HE. 2010. Role of RpoS in virulence of pathogens. Infect. Immun. 78:887–97 [Google Scholar]
  34. Durack J, Ross T, Bowman JP. 2013. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLOS ONE 8:e73603 [Google Scholar]
  35. Fang FC, Libby SJ, Buchmeier NA, Loewen PC, Switala J. et al. 1992. The alternative σ factor katF (rpoS) regulates Salmonella virulence. PNAS 89:11978–82 [Google Scholar]
  36. Farr SB, Kogoma T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55:561–85 [Google Scholar]
  37. Formato G, Geornaras I, Barmpalia IM, Skandamis PN, Belk KE. et al. 2007. Effect of acid adaptation on growth during storage at 10°C and resistance to simulated gastric fluid of Listeria monocytogenes inoculated onto bologna formulated with or without antimicrobials. J. Food Prot. 70:65–69 [Google Scholar]
  38. Foster JW, Spector MP. 1995. How Salmonella survive against the odds. Annu. Rev. Microbiol. 49:145–74 [Google Scholar]
  39. Gahan CGM, O'Driscoll B, Hill C. 1996. Acid adaptation of Listeria monocytogenes can enhance survival in acid foods and during milk fermentation. Appl. Environ. Microbiol. 62:3123–28 [Google Scholar]
  40. Garner MR, James KE, Callahan MC, Wiedmann M, Boor KJ. 2006. Exposure to salt and inorganic acid increases the ability of Listeria monocytogenes to invade Caco-2 cells but decreases its ability to survive gastric stress. Appl. Environ. Microbiol. 72:5384–95 [Google Scholar]
  41. Giaouris E, Chorianopoulos N, Nychas G-J. 2014. Impact of acid adaptation on attachment of Listeria monocytogenes to stainless steel during long-term incubation under low or moderate temperature conditions and on subsequent recalcitrance of attached cells to lethal acid treatments. Int. J. Food Microbiol. 171:1–7 [Google Scholar]
  42. Graumann P, Marahiel MA. 1996. Some like it cold: response of microorganisms to cold shock. Arch. Microbiol. 166:293–300 [Google Scholar]
  43. Gunn JS. 2000. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2:907–13 [Google Scholar]
  44. Hain T, Hossain H, Chatterjee SS, Machata S, Volke U. et al. 2008. Temporal transcriptomic analysis of the Listeria monocytogenes EGDe σB regulon. BMC Microbiol. 8:20 [Google Scholar]
  45. Hamilton S, Bongaerts RJM, Mulholland F, Cochrane B, Porter J. et al. 2009. The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10:599 [Google Scholar]
  46. Heiskanen P, Taira S, Rhen M. 1994. Role of rpoS in the regulation of Salmonella plasmid virulence (spv) genes. FEMS Microbiol. Lett. 123:125–30 [Google Scholar]
  47. Hengge R. 2008. The two-component network and the general stress sigma factor RpoS (σS) in Escherichia coli. Adv. Exp. Med. Biol. 631:40–53 [Google Scholar]
  48. Hill C, Cotter PD, Sleator RD, Gahan CGM. 2002. Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int. Dairy J. 12:273–83 [Google Scholar]
  49. Hu Y, Oliver HF, Raengpradub S, Palmer ME, Orsi RH. et al. 2007a. Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and σB in Listeria monocytogenes. Appl. Environ. Microbiol. 73:7981–91 [Google Scholar]
  50. Hu Y, Raengpradub S, Schwab U, Loss C, Orsi RH. et al. 2007b. Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Appl. Environ. Microbiol. 73:7967–80 [Google Scholar]
  51. Humphrey TJ, Williams A, McAlpine K, Lever MS, Guard-Petter J, Cox JM. 1996. Isolates of Salmonella enterica Enteritidis PT4 with enhanced heat and acid tolerance are more virulent in mice and more invasive in chickens. Epidemiol. Infect. 117:79–88 [Google Scholar]
  52. Jofré MR, Rodríguez LM, Villagra NA, Hidalgo AA, Mora GC, Fuentes JA. 2014. RpoS integrates CRP, Fis, and PhoP signalling pathways to control Salmonella Typhi hlyE expression. BMC Microbiol. 14:139 [Google Scholar]
  53. Kapoor S, Singh RD, Sharma PC, Khullar M. 2002. Anaerobiosis induced virulence of Salmonella typhi. Indian J. Med. Res. 115:184–88 [Google Scholar]
  54. Kato A, Groisman EA. 2008. The PhoP/PhoQ regulatory network of Salmonella enterica. Adv. Exp. Med. Biol. 631:7–21 [Google Scholar]
  55. Kazmierczak MJ, Wiedmann M, Boor KJ. 2005. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 69:527–43 [Google Scholar]
  56. King T, Lucchini S, Hinton JCD, Gobius K. 2010. Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses. Appl. Environ. Microbiol. 76:6514–28 [Google Scholar]
  57. Klanĉnik A, Vuĉković D, Plankl M, Abram M, Smole Možina S. 2013. In vivo modulation of Campylobacter jejuni virulence in response to environmental stress. Foodborne Pathog. Dis. 10:566–72 [Google Scholar]
  58. Klauck E, Typas A, Hengge R. 2007. The σS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog. 90:103–27 [Google Scholar]
  59. Leenanon B, Drake MA. 2001. Acid stress, starvation, and cold stress affect poststress behavior of Escherichia coli O157:H7 and non-pathogenic Escherichia coli. J. Food Prot. 64:970–74 [Google Scholar]
  60. Leistner L. 2000. Basic aspects of food preservation by hurdle technology. Int. J. Food Microbiol. 55:181–86 [Google Scholar]
  61. Leyer GJ, Johnson EA. 1992. Acid adaptation promotes survival of Salmonella spp. in cheese. Appl. Environ. Microbiol. 58:2075–80 [Google Scholar]
  62. Leyer GJ, Johnson EA. 1993. Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl. Environ. Microbiol. 59:1842–47 [Google Scholar]
  63. Lippolis JD, Bayles DO, Reinhardt TA. 2009. Proteomic changes in Escherichia coli when grown in fresh milk versus laboratory media. J. Proteome Res. 8:149–58 [Google Scholar]
  64. Lou Y, Yousef AE. 1996. Resistance of Listeria monocytogenes to heat after adaptation to environmental stresses. J. Food Prot. 59:465–71 [Google Scholar]
  65. Marron L, Emerson N, Gahan CGM, Hill C. 1997. A mutant of Listeria monocytogenes LO28 unable to induce an acid tolerance response displays diminished virulence in a murine model. Appl. Environ. Microbiol. 63:4945–47 [Google Scholar]
  66. McMahon MAS, Xu J, Moore JE, Blair IS, McDowell DA. 2007. Environmental stress and antibiotic resistance in food-related pathogens. Appl. Environ. Microbiol. 73:211–17 [Google Scholar]
  67. Mekalanos JJ. 1992. Environmental signals controlling expression of virulence determinants in bacteria. J. Bacteriol. 174:1–77 [Google Scholar]
  68. Melo J, Schrama D, Hussey S, Andrew PW, Faleiro ML. 2013. Listeria monocytogenes dairy isolates show a different proteome response to sequential exposure to gastric and intestinal fluids. Int. J. Food Microbiol. 163:51–63 [Google Scholar]
  69. Merritt ME, Donaldson JR. 2009. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J. Med. Microbiol. 58:1533–41 [Google Scholar]
  70. Milohanic E, Glaser P, Coppée JY, Frangeul L, Vega Y. et al. 2003. Transcriptomic analysis of Listeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol. Microbiol. 47:1613–25 [Google Scholar]
  71. Mols M, de Been M, Zwietering MH, Moezelaar R, Abee T. 2007. Metabolic capacity of Bacillus cereus strains ATCC 14579 and ATCC 10987 interlinked with comparative genomics. Environ. Microbiol. 9:2933–44 [Google Scholar]
  72. Mujahid S, Pechan T, Wang C. 2008. Protein expression by Listeria monocytogenes grown on a RTE-meat matrix. Int. J. Food Microbiol. 128:203–11 [Google Scholar]
  73. Nadon CA, Bowen BM, Wiedmann M, Boor KJ. 2002. Sigma B contributes to PrfA-mediated virulence in Listeria monocytogenes. Infect. Immun. 70:3948–52 [Google Scholar]
  74. Neuhaus K, Satorhelyi P, Schauer K, Scherer S, Fuchs TM. 2013. Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics 14:285 [Google Scholar]
  75. Newell DG, Koopmans M, Verhoef L, Duizer E, Aidara-Kane A. et al. 2010. Food-borne diseases—the challenges of 20 years ago still persist while new ones continue to emerge. Int. J. Food Microbiol. 139:S3–15 [Google Scholar]
  76. Oliver HF, Orsi RH, Wiedmann M, Boor KJ. 2010. Listeria monocytogenes σB has a small core regulon and a conserved role in virulence but makes differential contributions to stress tolerance across a diverse collection of strains. Appl. Environ. Microbiol. 76:4216–32 [Google Scholar]
  77. Ollinger J, Bowen B, Wiedmann M, Boor KJ, Bergholz TM. 2009. Listeria monocytogenes σB modulates PrfA-mediated virulence factor expression. Infect. Immun. 77:2113–24 [Google Scholar]
  78. Pané-Farré J, Jonas B, Förstner K, Engelmann S, Hecker M. 2006. The σB regulon in Staphylococcus aureus and its regulation. Int. J. Med. Microbiol. 296:237–58 [Google Scholar]
  79. Perez KJ, Ceccon RV, Malheiros PS, Jong EV, Tondo EC. 2010. Influence of acid adaptation on the survival of Salmonella Enteritidis and Salmonella Typhimurium in simulated gastric fluid and in Rattus norvegicus intestine infection. J. Food Saf. 30:398–414 [Google Scholar]
  80. Price SB, Cheng CM, Kaspar CW, Wright JC, DeGraves FJ. et al. 2000. Role of rpoS in acid resistance and fecal shedding of Escherichia coli O157:H7. Appl. Environ. Microbiol. 66:632–37 [Google Scholar]
  81. Raengpradub S, Wiedmann M, Boor KJ. 2008. Comparative analysis of the σB-dependent stress responses in Listeria monocytogenes and Listeria innocua strains exposed to selected stress conditions. Appl. Environ. Microbiol. 74:158–71 [Google Scholar]
  82. Rowe MT, Kirk RB. 2000. Effect of nutrient starvation on the resistance of Escherichia coli O157:H7 to subsequent heat stress. J. Food Prot. 63:1745–48 [Google Scholar]
  83. Ryan S, Begley M, Gahan CGM, Hill C. 2009. Molecular characterization of the arginine deiminase system in Listeria monocytogenes: regulation and role in acid tolerance. Environ. Microbiol. 11:432–45 [Google Scholar]
  84. Ryan S, Hill C, Gahan CGM. 2008. Acid stress responses in Listeria monocytogenes. Adv. Appl. Microbiol. 65:67–91 [Google Scholar]
  85. Samelis J, Sofos JN, Kendall PA, Smith GC. 2002. Effect of acid adaptation on survival of Escherichia coli O157:H7 in meat decontamination washing fluids and potential effects of organic acid interventions on the microbial ecology of the meat plant environment. J. Food Prot. 65:33–40 [Google Scholar]
  86. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA. et al. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17:7–15 [Google Scholar]
  87. Schellhorn HE. 2014. Elucidating the function of the RpoS regulon. Future Microbiol. 9:497–507 [Google Scholar]
  88. Schembri MA, Kjaergaard K, Klemm P. 2003. Global gene expression in Escherichia coli biofilms. Mol. Microbiol. 48:253–67 [Google Scholar]
  89. Schrama D, Helliwell N, Neto L, Faleiro ML. 2013. Adaptation of Listeria monocytogenes in a simulated cheese medium: effects on virulence using the Galleria mellonella infection model. Lett. Appl. Microbiol. 56:421–27 [Google Scholar]
  90. Senn MM, Giachino P, Homerova D, Steinhuber A, Strassner J. et al. 2005. Molecular analysis and organization of the σB operon in Staphylococcus aureus. J. Bacteriol. 187:8006–19 [Google Scholar]
  91. Shah J, Desai PT, Chen D, Stevens JR, Weimer BC. 2013. Preadaptation of cold stress Salmonella enterica serovar Typhimurium increases survival during subsequent acid stress exposure. Appl. Environ. Microbiol. 79:7281–89 [Google Scholar]
  92. Sharma M, Adler BB, Harrison MD, Beuchat LR. 2005. Thermal tolerance of acid-adapted and unadapted Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. Lett. Appl. Microbiol. 41:448–53 [Google Scholar]
  93. Shen C, Geornaras I, Belk KE, Smith GC, Sofos JN. 2011. Thermal inactivation of acid, cold, heat, starvation, and desiccation stress-adapted Escherichia coli O157:H7 in moisture-enhanced nonintact beef. J. Food Prot. 74:531–38 [Google Scholar]
  94. Shen HW, Yu RC, Chou CC. 2007. Acid adaptation affects the viability of Salmonella Typhimurium during the lactic fermentation of skim milk and product storage. Int. J. Food Microbiol. 114:380–85 [Google Scholar]
  95. Shen S, Fang FC. 2012. Integrated stress responses in Salmonella. Int. J. Food Microbiol. 152:75–81 [Google Scholar]
  96. Sleator RD, Hill C. 2002. Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol. Rev. 26:49–71 [Google Scholar]
  97. Sleator RD, Wouters J, Gahan CGM, Abee T, Hill C. 2001. Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl. Environ. Microbiol. 67:2692–98 [Google Scholar]
  98. Sokolovic Z, Riedel J, Wuenscher M, Goebel W. 1993. Surface-associated, PrfA-regulated proteins of Listeria monocytogenes synthesized under stress conditions. Mol. Microbiol. 8:219–27 [Google Scholar]
  99. Soni KA, Nannapaneni R, Tasara T. 2011. The contribution of transcriptomic and proteomic analysis in elucidating stress adaptation responses of Listeria monocytogenes. Foodborne Pathog. Dis. 8:843–52 [Google Scholar]
  100. Storz G, Hengge-Aronis R. 2000. Bacterial Stress Responses Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  101. Su J, Gong H, Lai J, Main A, Lu S. 2009. The potassium transporter Trk and external potassium modulate Salmonella enterica protein secretion and virulence. Infect. Immun. 77:667–75 [Google Scholar]
  102. Toledo-Arana A, Dussurget O, Nikitas G, Sesto N. et al. 2009. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459:950–56 [Google Scholar]
  103. Van der Veen S, Moezelaar R, Abee T, Wells-Bennik MJH. 2008. The growth limits of a large number of Listeria monocytogenes strains at combinations of stresses show serotype- and niche-specific traits. J. Appl. Microbiol. 105:1246–58 [Google Scholar]
  104. Van Schaik W, Abee T. 2005. The role of σB in the stress response of Gram-positive bacteria – targets for food preservation and safety. Curr. Opin. Biotechnol. 16:218–24 [Google Scholar]
  105. Van Schaik W, Gahan CGM, Hill C. 1999. Acid-adapted Listeria monocytogenes displays enhanced tolerance against the lantibiotics nisin and lacticin 3147. J. Food Protect. 62:536–39 [Google Scholar]
  106. Van Schaik W, van der Voort M, Molenaar D, Moezelaar R, de Vos WM, Abee T. 2007. Identification of the σB regulon of Bacillus cereus and conservation of σB-regulated genes in low-GC-content gram-positive bacteria. J. Bacteriol. 189:4384–90 [Google Scholar]
  107. Werbrouck H, Vermeulen A, Van Coillie E, Messens W, Herman L. et al. 2009. Influence of acid stress on survival, expression of virulence genes and invasion capacity into Caco-2 cells of Listeria monocytogenes strains of different origins. Int. J. Food Microbiol. 134:140–46 [Google Scholar]
  108. Wesche AM, Gurtler JB, Marks BP, Ryser ET. 2009. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Protect. 72:1121–38 [Google Scholar]
  109. Wong HC, Peng PY, Lan SL, Chen YC, Lu KH. et al. 2002. Effects of heat shock on the thermotolerance, protein composition, and toxin production of Vibrio parahaemolyticus. J. Food Prot. 65:499–507 [Google Scholar]
  110. Wood JM, Bremer E, Csonka LN, Kraemer R, Poolman B. et al. 2001. Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130:437–60 [Google Scholar]
  111. Wouters JA, Rombouts EM, Kuipers OP, de Vos WM, Abee T. 2000. The role of cold-shock proteins in low-temperature adaptation of food-related bacteria. Syst. Appl. Microbiol. 23:165–73 [Google Scholar]
  112. Yousef AE, Courtney PD. 2003. Basics of stress adaptation and implications in new-generation foods. Microbial Stress Adaptation and Food Safety AE Yousef, VK Juneja Boca Raton, FL: CRC [Google Scholar]
/content/journals/10.1146/annurev-food-030713-092350
Loading
/content/journals/10.1146/annurev-food-030713-092350
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error