This review provides an update on the use of supercritical fluid (SCF) technology as applied to food-based materials. It advocates the use of the solubility parameter theory (SPT) for rationalizing the results obtained when employing sub- and supercritical media to food and nutrient-bearing materials and for optimizing processing conditions. Total extraction and fractionation of foodstuffs employing SCFs are compared and are illustrated by using multiple fluids and unit processes to obtain the desired food product. Some of the additional prophylactic benefits of using carbon dioxide as the processing fluid are explained and illustrated with multiple examples of commercial products produced using SCF media. I emphasize the role of SCF technology in the context of environmentally benign and sustainable processing, as well as its integration into an overall biorefinery concept. Conclusions are drawn in terms of current trends in the field and future research that is needed to secure new applications of the SCF platform as applied in food science and technology.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abbas KA, Mohamed A, Abdulamir AS, Abas HA. 2008. A review on supercritical fluid extraction as new analytical method. Am. J. Biochem. Biotechnol. 4:345–53 [Google Scholar]
  2. Ahangari B, Sargolzaei J. 2012. Extraction of pomegranate seed oil using subcritical propane and supercritical carbon dioxide. Theor. Found. Chem. Eng. 46:258–65 [Google Scholar]
  3. Ajchariyapagorn A, Douglas PL, Douglas S, Pongamphai S, Teppaitoon W. 2008. Prediction of solubility of solid biomolecules in supercritical solvents using group contribution methods and equations of state. Am. J. Food Technol. 3:275–93 [Google Scholar]
  4. Baig MN, Santos RCD, Zetzl C, King J, Pioch D, Bowra S. 2011. Evaluation and modeling the utility of SCCO2 to support efficient lipase mediated esterification. Enzyme Microb. Technol. 49:420–26 [Google Scholar]
  5. Balaban MO, Ferrentino G, eds. 2012. Dense Phase Carbon Dioxide – Food and Pharmaceutical Applications Ames, IA: Wiley316 [Google Scholar]
  6. Barton AFM. 1991. Handbook of Solubility Parameters and Other Cohesional Parameters. Boca Raton, FL: CRC Press739, 2nd ed.. [Google Scholar]
  7. Basile A, Jimenez-Carmona MM, Clifford AA. 1998. Extraction of rosemary by superheated water. J. Agric. Food Chem. 46:5204–9 [Google Scholar]
  8. Beckman EJ. 2012. Supercritical and near-critical CO2 processing. Green Technologies in Food Production and Processing JI Boye, Y Arcand 239–71 New York: Springer [Google Scholar]
  9. Bergeron C, Carrier DJ, Ramaswamy S. 2012. Biorefinery Co-Products Phytochemicals, Primary Metabolites and Value-Added Biomasss Processing West Sussex, UK: Wiley361 [Google Scholar]
  10. Bertucco A, Spilimbergo S. 2007. Food pasteurization and sterilization with high pressure. Functional Food Ingredients and Nutraceuticals J Shi 269–95 Boca Raton, FL: Taylor & Francis [Google Scholar]
  11. Bonnaillie LM, Tomasula PM. 2012. Sequential fractionation of milk and whey proteins with supercritical carbon dioxide for new health-promoting food ingredients. ISSF-2012: 10th Int. Symp. Supercrit. Fluids, San Francisco, May 13–16. Proc. L-227 647–52 [Google Scholar]
  12. Brignole E, Pereda S. 2013. Phase Equilibrium Engineering Amsterdam: Elsevier331 [Google Scholar]
  13. Brondz I. 2012. Supercritical fluids: supercritical fluid extraction (SFE) and supercritical fluid chromatography. Special issue. Am. J. Anal. Chem. 3:12A867–69 [Google Scholar]
  14. Brunner G. 1994. Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes Darmstadt: Steinkopff/New York: Springer387 [Google Scholar]
  15. Brunner G. 2005. Supercritical fluids: technology and applications to food processing. J. Food Eng. 67:21–33 [Google Scholar]
  16. Brunner G. 2010. Applications of supercritical fluids. Annu. Rev. Chem. Biomol. Eng. 1:321–42 [Google Scholar]
  17. Brunner G, Machado NT. 2012. Process design methodology for fractionation of fatty acids from palm fatty acid distillates in countercurrent packed columns with supercritical CO2. J. Supercrit. Fluids 66:96–110 [Google Scholar]
  18. Cacace JE, Mazza G. 2006. Pressurized low polarity water extraction of lignans from whole flaxseed. J. Food Eng. 77:1087–95 [Google Scholar]
  19. Calix TF, Ferrentino G, Balaban MO. 2008. Measurement of high pressure carbon dioxide solubility in orange juice, apple juice, and model liquid foods. J. Food Sci. 73:E439–45 [Google Scholar]
  20. Carvalho RHR, Galvão EL, Barros JAC, Conceição MM, Sousa EMBD. 2012. Extraction, fatty acid profile and antioxidant activity of sesame extract (Sesamum Indicum L.). Braz. J. Chem. Eng. 29:409–20 [Google Scholar]
  21. Catchpole OJ, Durling NE, Grey JB. 2006. Improvements in or relating to separation technology. NZ Patent Appl. No. 545146 World Patent No. WO2007091901 [Google Scholar]
  22. Catchpole OJ, Grey JB, Noermark KA. 2000. Fractionation of fish oils using supercritical CO2 and CO2 + ethanol mixtures. J. Supercrit. Fluids 19:25–37 [Google Scholar]
  23. Catchpole OJ, Ryan J, Zhu Y, Fenton K, Grey J. et al. 2010. Extraction of lipids from fermentation biomass using near-critical dimethyl ether. J. Supercrit. Fluids 53:34–41 [Google Scholar]
  24. Catchpole OJ, Tallon S, Dyer P, Montanes F, Moreno T. et al. 2012. Integrated supercritical fluid extraction and bioprocessing. Am. J. Biochem. Biotechnol. 8:263–87 [Google Scholar]
  25. Catchpole OJ, Tallon SJ, Eltringham WE, Grey JB, Fenton KA. et al. 2009. The extraction and fractionation of specialty lipids using near critical fluids. J. Supercrit. Fluids 47:591–97 [Google Scholar]
  26. Catchpole OJ, Tallon SJ, Grey JB, Fletcher K, Fletcher AJ. 2008. Extraction of lipids from a specialist dairy stream. J. Supercrit. Fluids 45:314–21 [Google Scholar]
  27. Clark JH. 2011. Introduction to green chemistry. Alternatives to Conventional Food Processing A Proctor 1–10 Cambridge, UK: RSC [Google Scholar]
  28. Compton DL, Eller FJ, Laszlo JA, Evans KO. 2012. Purification of 2-monoacylglycerols using liquid CO2 extraction. J. Am. Oil Chem. Soc. 89:1529–36 [Google Scholar]
  29. Cristancho CAM, Peper S, Johannsen M. 2012. Supercritical fluid simulated moving bed chromatography for the separation of ethyl linoleate and ethyl oleate. J. Supercrit. Fluids 66:129–36 [Google Scholar]
  30. Damar S, Balaban M. 2006. Review of dense phase CO2 technology: Microbial and enzyme inactivation, and effects on food quality. J. Food Sci. 71:R1–11 [Google Scholar]
  31. Damar S, Balaban MO, Sims CA. 2009. Continuous dense-phase CO2 processing of a coconut water beverage. Int. J. Food Sci. Technol. 44:666–73 [Google Scholar]
  32. Darani K-K, Mozafari MR. 2009. Supercritical fluids technology in bioprocess industries: A review. J. Biochem. Technol. 2:144–52 [Google Scholar]
  33. Deiters UK, Kraska T. 2012. High-Pressure Fluid Phase Equilibria Amsterdam: Elsevier342 [Google Scholar]
  34. del Pozo-Insfran D, Balaban MO, Talcott ST. 2006. Microbial stability, phytochemical retention, and organoleptic attributes of dense phase CO2 processed muscadine grape juice. J. Agric. Food Chem. 54:5468–73 [Google Scholar]
  35. del Valle JM, de la Fuente JC. 2006. Supercritical CO2 extraction of oilseeds: review of the kinetic and equilibrium models. Crit. Rev. Food Sci. Nutr. 46:131–60 [Google Scholar]
  36. del Valle JM, de la Fuente JC, Srinivas K, King JW. 2011. Correlation for the variations with temperature of solute solubilities in high temperature water. Fluid Phase Equilib. 301:206–16 [Google Scholar]
  37. Diaz-Reinoso B, Moure A, Dominguez H, Parajo JC. 2006. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 54:2441–69 [Google Scholar]
  38. Dunford NT, King JW. 2004. Supercritical fluid fractionation process for phytosterol ester enrichment in vegetable oils. US Patent No. 6677469 B1
  39. Durling NE, Catchpole OJ, Tallon SJ, Grey JB. 2007. Measurement and modeling of the ternary phase equilibria for high pressure carbon dioxide-ethanol-water mixtures. Fluid Phase Equilib. 252:103–13 [Google Scholar]
  40. Eller FJ, Teel JA, Palmquist DE. 2011. Continuous hydrolysis of cuphea seed oil in subcritical water. J. Am. Oil Chem. Soc. 88:1455–61 [Google Scholar]
  41. Eltringham W, Catchpole O. 2008. Processing of fish oils by supercritical fluids. See Martinez 2008 141–88
  42. Erkmen O. 2012. Effects of dense phase carbon dioxide on vegetative cells. See Balaban & Ferrentino 2012 67–97
  43. Favati F, King JW, Friedrich JP, Eskins K. 1988. Supercritical CO2 extraction of carotene and lutein from leaf protein concentrates. J. Food Sci. 53:1532–36 [Google Scholar]
  44. Fernandez-Ronco MP, de Lucas A, Rodriguez JF, Garcia MT, Gracia I. 2013. New consideration in the economic evaluation of supercritical processes: Separation of bioactive compounds from multicomponent mixtures. J. Supercrit. Fluids 79:345–55 [Google Scholar]
  45. Ferrentino G, Plaza ML, Ramirez-Rodrigues M, Ferrari G, Balaban MO. 2009. Effects of dense phase carbon dioxide pasteurization on the physical and quality attributes of a red grapefruit juice. J. Food Sci. 74:E333–41 [Google Scholar]
  46. Fornari T, Chafer A, Stateva RP, Reglero G. 2005. A new development in the application of the group contribution associating equation of state to model solid solubilities of phenolic compounds in SC-CO2. Ind. Eng. Chem. Res. 44:8147–56 [Google Scholar]
  47. Fornari T, Tenllado D, Torres C, Reglero G. 2011. Supercritical phase equilibria modeling of glyceride mixtures and carbon dioxide using the group contribution EoS. J. Thermodyn. 2011:730960 [Google Scholar]
  48. Garcia-Gonzalez L, Geeraerd AH, Spilimbergo S, Elst K, Van Ginneken L. et al. 2007. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 117:1–28 [Google Scholar]
  49. Goto M, Tanaka M, Quitain AT, Sasaki M, Fukuzato R. 2012. Recovery of phytochemicals by hybrid extraction process using supercritical CO2 and water. ISSF-2012: 10th Int. Symp. Supercrit. Fluids, San Francisco, May 13–16626–32 [Google Scholar]
  50. Gregg FB Jr. 2003. Saw palmetto composition and associated methods. US Patent No. 6669968 B2
  51. Gupta RB, Shim J-J. 2007. Solubility in Supercritical Carbon Dioxide Boca Raton, FL: CRC Press909 [Google Scholar]
  52. Hansen CM. 2007. Hansen Solubility Parameters – A User's Handbook. Boca Raton, FL: CRC Press519, 2nd ed.. [Google Scholar]
  53. Hendrickx MEG, Knoor D. 2002. Ultra High Pressure Treatments of Foods New York: Kluwer Acad./Plenum340 [Google Scholar]
  54. Herrero M, Mendiola JA, Cifuentes A, Ibanez E. 2009a. Supercritical fluid extraction: recent advances and applications. J. Chromatogr. A 1217:2495–511 [Google Scholar]
  55. Herrero M, Plaza M, Cifuentes A, Ibáñez E. 2009b. Green processes for extraction of bioactives from rosemary. Chemical and functional characterization via UPLC-MS/MS and in-vitro assays. J. Chromatogr. A 1217:2512–20 [Google Scholar]
  56. Ibanez E, Kubatova A, Senorans FJ, Cavero S, Reglero G, Hawthorne SB. 2003. Subcritical water extraction of antioxidant compounds from rosemary plants. J. Agric. Food Chem. 51:375–82 [Google Scholar]
  57. Igl-Schmid N, Wuzik A. 2012. Extraction of natural products for industrial applications. ISSF-2012: 10th Int. Symp. Supercrit. Fluids, San Francisco, May 13–16122–24 [Google Scholar]
  58. Ju ZY, Howard LR. 2005. Subcritical water and sulfured water extraction of anthocyanins and other phenolics from dried red grape skin. J. Food Sci. 70:S270–76 [Google Scholar]
  59. Kagliwala LD, Patilb SC, Polb AS, Singhala RS, Patravaleb VB. 2011. Separation of bioactives from seabuckthorn seeds by supercritical carbon dioxide extraction methodology through solubility parameter approach. Sep. Purif. Technol. 80:533–40 [Google Scholar]
  60. Kappler P, Leiner W, Petermann M, Weidner E. 2003. Size and morphology of particles generated by spraying polymer-melts with carbon dioxide. ISSF-2003: 6th Int. Symp. Supercrit. Fluids, Versailles, Fr. April 28–30 [Google Scholar]
  61. Khuwijitjaru P, Sayputikasikorn N, Samuhasaneetoo S, Penroj P, Siriwongwilaichat P, Adachi S. 2012. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum). J. Oleo Sci. 61:349–55 [Google Scholar]
  62. King JW. 2002. Critical fluid technology options for isolating and processing agricultural and natural products. Proc. 1st Int. Symp. Supercrit. Fluid Technol. Energy Environ. Appl. (Super Green 2002), Suwon, South Korea, Nov. 3–661–66 [Google Scholar]
  63. King JW. 2003. Coupled processing options for agricultural materials using supercritical fluid carbon dioxide. Supercritical Carbon Dioxide – Separations and Process AS Gopalan, CM Wai, HK Jacobs 104–29 Washington, DC: Am. Chem. Soc. [Google Scholar]
  64. King JW. 2004. Development and potential of critical fluid technology in the nutraceutical industry. Supercritical Fluids Technology for Drug Product Development P York, UB Kompella, BY Shekunov 579–614 New York: Marcel Dekker [Google Scholar]
  65. King JW. 2005. Supercritical fluid processing of nutritionally functional lipids. Healthful Lipids CC Akoh, O-M Lai 99–126 Champaign, IL: AOCS Press [Google Scholar]
  66. King JW. 2006. Pressurized water extraction: resources and techniques for optimizing analytical applications. Modern Extraction Techniques: Food and Agricultural Samples C Turner 79–95 Washington, DC: Am. Chem. Soc. [Google Scholar]
  67. King JW. 2012. Supercritical fluid-based extraction/processing: then and now. INFORM 23:122–25 [Google Scholar]
  68. King JW. 2013. Supercritical fluid extraction at high pressures (>700 bar): theoretical considerations and practical applications. Proc. 3rd Iberoam. Conf. Supercrit. Fluids (Prosciba 2013), Cartagena, Colomb., April 1–5 Proceeding K-2 1–14 [Google Scholar]
  69. King JW, Favati F, Taylor SL. 1996. Production of tocopherol concentrates by supercritical fluid extraction and chromatography. Sep. Sci. Technol. 31:1843–57 [Google Scholar]
  70. King JW, List GR. 2011. Hydrogenation using critical fluids. Hydrogenation of Fats and Oils: Theory and Practice GR List, JW King 49–109 Champaign, IL: AOCS Press, 2nd ed.. [Google Scholar]
  71. King JW, Srinivas K. 2009. Multiple unit processing using sub- and supercritical fluids. J. Supercrit. Fluids 47:508–610 [Google Scholar]
  72. King JW, Srinivas K, Zhang D. 2011. Advances in critical fluid processing. Alternatives to Conventional Food Processing A Proctor 93–144 Cambridge, UK: RSC [Google Scholar]
  73. Kraske T, Leonhard KO, Tuma D, Schneider GM. 2002. Correlation of the solubility of low-volatile organic compounds in near- and supercritical fluids. Part I: Applications to adamantine and β-carotene. J. Supercrit. Fluids 23:209–24 [Google Scholar]
  74. Kubatova A, Lagadec AJM, Miller DJ, Hawthorne SB. 2001. Selective extraction of oxygenates from savory and peppermint using subcritical water. Flavour Fragr. J. 16:64–73 [Google Scholar]
  75. Lack E, Weidner E, Knez Z, Grüner S, Weinreich B, Seiditz H. 2005. Particle generation with supercritical CO2. Proc. 1st Vienna Int. Conf.: Micro- Nano-Technol., Vienna, Austria. The Austrian Tribol. Soc., March 9–11. http://www.natex.at/download/CPF-PGSS-article.pdf [Google Scholar]
  76. Leboeuf F, Deschamps F. 2010. Supercritical fluid processing in food and pharmaceutical industries: Scale-up issues. In Current Trends of Supercritical Fluid Technology in Pharmaceutical, Nutraceutical and Food Processing Industries ARC Duarte, CMM Duarte 97–115 Sharjah, UAE: Bentham Sci. [Google Scholar]
  77. Luetge C, Bork M, Knez Z, Kreiner M. 2007. Ultra high pressure dense gas extraction and fractionation. Proc. 5th Int. Symp. High Press. Process. Technol. Chem. Eng., Segovia, Spain. June 24–27 [Google Scholar]
  78. Luetge C, Steinhagen V, Bork M, Knez Z. 2009. Supercritical carbon dioxide extraction of plant materials at ultrahigh pressure. ISSF-2009: 9th Int. Symp. Supercrit. Fluids, Arcachon, Fr., May 18–20 [Google Scholar]
  79. Machida H, Takesue M, Smith RL. 2011. Green chemical processes with supercritical fluids: Properties, materials, separation and energy. J. Supercrit. Fluids 60:2–15 [Google Scholar]
  80. Macias-Sanchez MD, Mantell C, Rodriguez M, Martinez de la Ossa EJ, Lubian E, Montero O. 2008. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J. Sep. Sci. 31:1352–62 [Google Scholar]
  81. Mantell C, Casas L, Rodriguez M, Martinez de la Ossa E. 2013. Supercritical fluid extraction. Separation and Purification Technologies in Biorefineries S Ramaswamy, H-J Huang, BV Ramarao 79–100 West Sussex, UK: Wiley [Google Scholar]
  82. Marcus Y. 2006. Are solubility parameters relevant to supercritical fluids?. J. Supercrit. Fluids 38:7–12 [Google Scholar]
  83. Martin A, Varona S, Navarrete A, Cocero MJ. 2010. Encapsulation and co-precipitation processes with supercritical fluids: Applications with essential oils. Open Chem. Eng. J. 4:31–40 [Google Scholar]
  84. Martinez JL. 2008. Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds Boca Raton, FL: CRC Press402 [Google Scholar]
  85. Minatelli J, Hill S, Meorck R, Nguyen U. 2011. Plant derived seed extract rich in essential fatty acids derived from perilla seed: composition of matter, manufacturing process and use. World Patent No. WO2013039537 A1, US Patent No. 2012/027787 A1
  86. Mohamed RS, Mansoori GA. 2002. The use of supercritical fluid extraction in food processing. Food Technol. Mag. June [Google Scholar]
  87. Montanes F, Catchpole OJ, Tallon S, Mitchell K, Lagutin K. 2013. Semi-preparative supercritical chromatography scale plant polyunsaturated fatty acids purification. J. Supercrit. Fluids 79:46–54 [Google Scholar]
  88. Montes A, Gordillo MD, Pereyra C, Martinez de la Ossa EJ. 2011. Particles formation using supercritical fluids. Mass Transfer – Advanced Aspects H Nakajima, pp. 461–80. Rijeka, Crotia: InTech http://www.intechopen.com/books/mass-transfer-advanced-aspects/particles-formation-using-supercritical-fluids [Google Scholar]
  89. Nobre B, Marcelo F, Passos R, Beirao L, Palavra A. et al. 2006. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 223:787–90 [Google Scholar]
  90. Ozel MZ, Gogus F, Lewis AC. 2003. Subcritical water extraction of essential oil from Thymbra spicata. Food Chem. 82:381–86 [Google Scholar]
  91. Panayiotou C. 1997. Solubility parameter revisited: an equation-of-state approach for its estimation. Fluid Phase Equilib. 131:21–35 [Google Scholar]
  92. Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E. 2011. Biofuels – Alternative Feedstocks and Conversion Processes Amsterdam: Elsevier629 [Google Scholar]
  93. Parajo JC, Dominguez H, Moure A, Diaz-Reinoso B. 2009. Obtaining antioxidants by supercritical fluid extraction. Extracting Bioactive Compounds for Food Products MAA Meireles 288–327 Boca Raton, FL: CRC Press [Google Scholar]
  94. Perrut M, Majewski W, Breivik H. 2001. Purifying polyunsaturated fatty acid glycerides. US Patent No. 6204401 B1
  95. Persson P, Larsson S, Jönsson LJ, Nilvebrant NO, Sivik B. et al. 2002. Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxificationand to facilitate analysis of inhibitors. Biotechnol. Bioeng. 79:694–700 [Google Scholar]
  96. Prado JM, Assis A, Marostica MR, Meireles MAA. 2010. Manufacturing cost of of supercritical-extracted oils and carotenoids from Amazonian plants. J. Food Process Eng. 33:348–69 [Google Scholar]
  97. Prado JM, Dalmolin I, Carareto NDD, Basso RC, Meirelles AJ. 2012. Supercritical fluid extraction of grape seed: process scale-up, extract chemical composition and economic evaluation. J. Food Eng. 109:249–57 [Google Scholar]
  98. Rai N, Siepmann JI, Schultz NE, Ross RB. 2007. Pressure dependence of the Hildebrand solubility parameter and the internal pressure: Monte Carlo simulations for external pressures up to 300 MPa. J. Phys. Chem. C 111:15634–41 [Google Scholar]
  99. Ramaswamy S, Huang H-J, Ramarao BV. 2013. Separation and Purification Technologies in Biorefineries West Sussex, UK: Wiley584 [Google Scholar]
  100. Ramirez P, Garcia-Risco MR, Santoyo S, Senorans FJ, Ibanez E, Reglero G. 2006. Isolation of functional ingredients from rosemary by preparative supercritical fluid chromatography (SFC). J. Pharm. Biomed. Anal. 41:1606–13 [Google Scholar]
  101. Reverchon E, DeMarco I. 2006. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluids 38:146–66 [Google Scholar]
  102. Reverchon E, DeMarco I. 2008. Essential oils extraction and fractionation using supercritical fluids. See Martinez 2008 305–35
  103. Riha V, Brunner G. 2000. Separation of fish oil ethyl esters with supercritical carbon dioxide. J. Supercrit. Fluids 17:55–64 [Google Scholar]
  104. Rodriguez-Meizoso I, Castro-Puyana M, Borjesson P, Mendiola JA, Turner C, Ibanez E. 2012. Life cycle assessment of green pilot-scale extraction processes to obtain potent antioxidants from rosemary leaves. J. Supercrit. Fluids 72:205–12 [Google Scholar]
  105. Rozzi NL, Singh RK. 2002. Supercritical fluids and the food industry. Comp. Rev. Food Sci. Food Saf. 1:33–44 [Google Scholar]
  106. Santos DT, Meireles MAA. 2010. Carotenoid pigments encapsulation: Fundamentals, techniques and recent trends. Open Chem. Eng. J. 4:42–50 [Google Scholar]
  107. Seabra IJ, Braga MEM, Batista MTP, de Sousa HC. 2012. Fractionated high pressure extraction of anthocyanins from elderberry (Sambucus nigra L.) pomace. Food Bioprocess Technol. 3:674–83 [Google Scholar]
  108. Seifried B, Temelli F. 2012. Supercritical fluid drying of high molecular weight biopolymers for particle formation and delivery of bioactives. ISSF-2012: 10th Int. Symp. Supercrit. Fluids, San Francisco, May 13–16 Proc. L-315 816–23 [Google Scholar]
  109. Sereewatthanawut I, Prapintip S, Watchiraruji K, Goto M, Sasaki M, Shotipruk A. 2008. Extraction of protein and amino acids from deoiled rice bran by subcritical water hydrolysis. Bioresour. Technol. 99:555–61 [Google Scholar]
  110. Shi J, Xue SJ, Ma Y, Jiang Y, Ye X, Yu D. 2012. Green separation technologies in food processing: supercritical-CO2 fluid and subcritical water extraction. Green Technologies in Food Production and Processing JI Boye, Y Arcand 273–94 New York: Springer [Google Scholar]
  111. Skerget M, Knez Z, Knez-Hrncic M. 2011. Solubility of solids in sub- and supercritical fluids: a review. J. Chem. Eng. Data 56:694–719 [Google Scholar]
  112. Sovova H. 2010. Mathematical modeling of supercritical fluid extraction. Current Trends of Supercritical Fluid Technology in Pharmaceutical, Nutraceutical and Food Processing Industries ARC Duarte, CMM Duarte 80–96 Sharjah, UAE: Bentham Sci. [Google Scholar]
  113. Spilimbergo S, Matthews MA, Cinquemani C. 2011. Supercritical fluid pasteurization and food safety. Alternatives to Conventional Food Processing A Proctor 145–83 Cambridge, UK: RSC [Google Scholar]
  114. Srinivas K. 2010. Determination of thermodynamic and mass transfer parameters for subcritical water extraction of flavonoids from grape pomace PhD Thesis, Univ. Ark., Fayetteville [Google Scholar]
  115. Srinivas K, King JW. 2010. Supercritical carbon dioxide and subcritical water: Complimentary agents in the processing of functional foods. Functional Food Product Development J Smith, E Charter 39–78 New York: Wiley-Blackwell [Google Scholar]
  116. Srinivas K, King JW, Howard LR, Monrad JK, Zhang D. 2011. Pressurized solvent extraction of flavonoids from grape pomace utilizing organic acid additives. Ital. J. Food Sci. 23:90–105 [Google Scholar]
  117. Srinivas K, King JW, Monrad J, Howard L, Hansen CM. 2009. Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J. Food Sci. 74:E342–54 [Google Scholar]
  118. Steinhagen V, Luetge C, Knez Z. 2010. Multi-stage separation during ultra high pressure extraction processes. Proc. 2nd Iberoam. Conf. Supercrit. Fluids (Prosciba 2010), Natal, Braz., April 5–9 [Google Scholar]
  119. Sugihara N, Kanda A, Nakano T, Nakamura T, Igusa H, Hara S. 2010. Novel fractionation method for squalene and phytosterols contained in the deodorizer distillate of rice bran oil. J. Oleo Sci. 59:65–70 [Google Scholar]
  120. Tallon S, Fenton K. 2010. The solubility of water in mixtures of dimethyl ether and carbon dioxide. Fluid Phase Equilib. 298:60–66 [Google Scholar]
  121. Taylor SL, King JW, Montanari L, Fantozzi P, Blanco MA. 2000. Enrichment and fractionation of phospholipid concentrates by supercritical fluid extraction and chromatography. Ital. J. Food Sci. 12:65–76 [Google Scholar]
  122. Temelli F. 2009. Perspectives on supercritical fluid processing of fats and oils. J. Supercrit. Fluids 47:583–90 [Google Scholar]
  123. Thereza M, Gomes MS, Santos DT, Meireles MAA. 2012. Trends in particle formation of bioactive compounds using supercritical fluids and nanoemulsions. Food Public Health 2:142–52 [Google Scholar]
  124. Thiering R, Dehghani F, Dillow A, Foster NR. 2000. The influence of operating conditions on the dense gas precipiation of model proteins. J. Chem. Technol. Biotechnol. 75:29–41 [Google Scholar]
  125. Thompson PB. 2012. The agricultural ethics of biofuels: The food versus fuel debate. Agriculture 2:339–58 [Google Scholar]
  126. Tomberli B, Goldman S, Gray CG, Saldaña MDA, Temelli F. 2006. Using solute structure to predict solubility of organic molecules in supercritical carbon dioxide. J. Supercrit. Fluids 37:333–41 [Google Scholar]
  127. Turner C, Ibanez E. 2012. Pressurized hot water extraction and processing. Enhanced Extraction Processes in the Food Industry N Lebovka, E Vorobiev, F Chemat 223–53 Boca Raton, FL: CRC Press [Google Scholar]
  128. Turner C, Jacobson G, Almgren K, Waldeback M, Sjoberg PJR. et al. 2006. Subcritical water extraction and β-glucosidase-catalyzed hydrolysis of quercetin glycosides in onion waste. Green Chem. 8:949–59 [Google Scholar]
  129. Wagner H, Eggers R. 1996. Extraction of spray particles with supercritical fluids in a two-phase flow. AIChE J. 42:1901–10 [Google Scholar]
  130. Weidner E. 2003. Powderous composites by high pressure spray processes. ISSF-2003: 6th Int. Symp. Supercrit. Fluids, April 28–30, Versailles, Fr. [Google Scholar]
  131. Weidner E. 2009. High pressure micronization for food applications. J. Supercrit. Fluids 47:556–65 [Google Scholar]
  132. Weidner E, Brake C, Richter D. 2004. Thermo-and fluid-dynamic aspects of the hydrogenation of triglycerides and esters in the presence of supercritical fluids. Supercritical Fluids as Solvents and Reaction Media G Brunner 269–94 Amsterdam: Elsevier [Google Scholar]
  133. Weidner E, Petermann M. 2008. Preparation and processing of micro- and nano-scale materials by supercritical fluid technology. See Martinez 2008 367–89
  134. Williams LL, Rubin JB, Edwards HW. 2004. Calculation of Hansen solubility parameter values for a range of pressure and temperature conditions, including the supercritical fluid region. Ind. Eng. Chem. Res. 43:4967–72 [Google Scholar]
  135. Wimmer Z, Zarevúcka M. 2010. A review on the effects of supercritical carbon dioxide on enzyme activity. Int. J. Mol. Sci. 11:233–53 [Google Scholar]
  136. York P, Kompelle UB, Shekunov BY. 2004. Supercritical Fluid Technology for Drug Product Development New York: Marcel Dekker666 [Google Scholar]
  137. Zekovic Z, Pfaf-Sovljanski I, Grujic O. 2007. Supercritical fluid extraction of hops. J. Serb. Chem. Soc. 72:81–87 [Google Scholar]
  138. Zhong J, Dai LC. 2011. Liposomal preparation by supercritical fluids technology. Afr. J. Biotechnol. 10:16406–13 [Google Scholar]
  139. Zosel K. 1974. Process for recovering caffeine. US Patent No. 3806619

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error