1932

Abstract

Recent developments in preservation technologies allow for the delivery of food with nutritional value and superior taste. Of special interest are low-acid, shelf-stable foods in which the complete control or inactivation of bacterial endospores is the crucial step to ensure consumer safety. Relevant preservation methods can be classified into physicochemical or physical hurdles, and the latter can be subclassified into thermal and nonthermal processes. The underlying inactivation mechanisms for each of these physicochemical or physical processes impact different morphological or molecular structures essential for spore germination and integrity in the dormant state. This review provides an overview of distinct endospore defense mechanisms that affect emerging physical hurdles as well as which technologies address these mechanisms. The physical spore-inactivation technologies considered include thermal, dynamic, and isostatic high pressure and electromagnetic technologies, such as pulsed electric fields, UV light, cold atmospheric pressure plasma, and high- or low-energy electron beam.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032519-051632
2020-03-25
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/food/11/1/annurev-food-032519-051632.html?itemId=/content/journals/10.1146/annurev-food-032519-051632&mimeType=html&fmt=ahah

Literature Cited

  1. Abee T, Groot MN, Tempelaars M, Zwietering M, Moezelaar R, van der Voort M 2011. Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors. Food Microbiol 28:2199–208
    [Google Scholar]
  2. Aguilar PS, Hernandez-Arriaga AM, Cybulski LE, Erazo AC, de Mendoza D 2001. Molecular basis of thermosensing: a two-component signal transduction thermometer in Bacillus subtilis. . EMBO J 20:71681–91
    [Google Scholar]
  3. Aouadhi C, Rouissi Z, Mejri S, Maaroufi A 2014. Inactivation of Bacillus sporothermodurans spores by nisin and temperature studied by design of experiments in water and milk. Food Microbiol 38:270–75
    [Google Scholar]
  4. Atrih A, Foster SJ. 2001. Analysis of the role of bacterial endospore cortex structure in resistance properties and demonstration of its conservation amongst species. J. Appl. Microbiol. 91:2364–72
    [Google Scholar]
  5. Baril E, Coroller L, Couvert O, El Jabri M, Leguerinel I et al. 2012. Sporulation boundaries and spore formation kinetics of Bacillus spp. as a function of temperature, pH and aw. Food Microbiol 32:179–86
    [Google Scholar]
  6. Barraza-Salas M, Ibarra-Rodriguez JR, Mellado SJ, Salas-Pacheco JM, Setlow P, Pedraza-Reyes M 2010. Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores. FEMS Microbiol. Lett. 302:2159–65
    [Google Scholar]
  7. Bellamy M, Puskin J, Hertel N, Eckerman K 2015. An empirical method for deriving RBE values associated with electrons, photons and radionuclides. Radiat. Prot. Dosim. 167:4664–70
    [Google Scholar]
  8. Berendsen EM, Boekhorst J, Kuipers OP, Wells-Bennik MHJ 2016. A mobile genetic element profoundly increases heat resistance of bacterial spores. ISME J 10:112633–42
    [Google Scholar]
  9. Black EP, Koziol-Dube K, Guan D, Wei J, Setlow B et al. 2005. Factors influencing germination of Bacillus subtilis spores via activation of nutrient receptors by high pressure. Appl. Environ. Microbiol. 71:105879–87
    [Google Scholar]
  10. Black JL, Jaczynski J. 2006. Temperature effect on inactivation kinetics of Escherichia coli O157-H7 by electron beam in ground beef, chicken breast meat, and trout fillets. J. Food Sci. 71:6M221–27
    [Google Scholar]
  11. Borch-Pedersen K, Mellegård H, Reineke K, Boysen P, Sevenich R, Lindbäck T, Aspholm M 2017. Effects of high pressure on Bacillus licheniformis spore germination and inactivation. Appl. Environ. Microbiol. 83:1400503–17
    [Google Scholar]
  12. Boudam MK, Moisan M, Saoudi B, Popovici C, Gherardi N, Massines F 2006. Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J. Phys. D 39:3494–507
    [Google Scholar]
  13. Bourke P, Ziuzina D, Han L, Cullen PJ, Gilmore BF 2017. Microbiological interactions with cold plasma. J. Appl. Microbiol. 123:2308–24
    [Google Scholar]
  14. Brandenburg R, Lange H, von Woedtke T, Stieber M, Kindel E, Ehlbeck J, Weltmann KD 2009. Antimicrobial effects of UV and VUV radiation of nonthermal plasma jets. IEEE Trans. Plasma Sci. 37:6877–83
    [Google Scholar]
  15. Brun E, Cloutier P, Sicard-Roselli C, Fromm M, Sanche L 2009. Damage induced to DNA by low-energy (0–30 eV) electrons under vacuum and atmospheric conditions. J. Phys. Chem. B 113:2910008–13
    [Google Scholar]
  16. Buchmann L, Bloch R, Mathys A 2018a. Comprehensive pulsed electric field (PEF) system analysis for microalgae processing. Bioresour. Technol. 265:268–74
    [Google Scholar]
  17. Buchmann L, Böcker L, Frey W, Haberkorn I, Nyffeler M, Mathys A 2018b. Energy input assessment for nanosecond pulsed electric field processing and its application in a case study with Chlorella vulgaris. Innov. Food Sci. Emerg. Technol 47:445–53
    [Google Scholar]
  18. Buckow R, Heinz V. 2008. High pressure processing: a database of kinetic information. Chem. Ing. Tech. 80:81081–95
    [Google Scholar]
  19. Cavender G. 2011. Continuous high-pressure processing of liquid foods: an analysis of physical, structural and microbial effects PhD Thesis, Univ. Ga Athens:
    [Google Scholar]
  20. Chalise PR, Hotta E, Matak KE, Jaczynski J 2007. Inactivation kinetics of Escherichia coli by pulsed electron beam. J. Food Sci. 72:7M280–85
    [Google Scholar]
  21. Chalise PR, Rahman MS, Ghomi H, Hayashi Y, Watanabe M et al. 2004. Bacterial inactivation using low-energy pulsed-electron beam. IEEE Trans. Plasma Sci. 32:41532–39
    [Google Scholar]
  22. Chaudhary A, Gustafson D, Mathys A 2018. Multi-indicator sustainability assessment of global food systems. Nat. Commun. 9:1848
    [Google Scholar]
  23. Cheftel JC. 1995. Review: high-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int. 1:75–90
    [Google Scholar]
  24. Chirakkal H, O'Rourke M, Atrih A, Foster SJ, Moir A 2002. Analysis of spore cortex lytic enzymes and related proteins in Bacillus subtilis endospore germination. Microbiology 148:2383–92
    [Google Scholar]
  25. Coleman WH, Chen D, Li YQ, Cowan AE, Setlow P 2007. How moist heat kills spores of Bacillus subtilis. J. Bacteriol 189:238458–66
    [Google Scholar]
  26. Coleman WH, Zhang P, Li YQ, Setlow P 2010. Mechanism of killing of spores of Bacillus cereus and Bacillus megaterium by wet heat. Lett. Appl. Microbiol. 50:5507–14
    [Google Scholar]
  27. Cortezzo DE, Setlow P. 2005. Analysis of factors that influence the sensitivity of spores of Bacillus subtilis to DNA damaging chemicals. J. Appl. Microbiol. 98:3606–17
    [Google Scholar]
  28. Cowan AE, Koppel DE, Setlow B, Setlow P 2003. A soluble protein is immobile in dormant spores of Bacillus subtilis but is mobile in germinated spores: implications for spore dormancy. PNAS 100:74209–14
    [Google Scholar]
  29. Cowan AE, Olivastro EM, Koppel DE, Loshon CA, Setlow B, Setlow P 2004. Lipids in the inner membrane of dormant spores of Bacillus species are largely immobile. PNAS 101:207733–38
    [Google Scholar]
  30. Devlieghere F, Vermeiren L, Debevere J 2004. New preservation technologies: possibilities and limitations. Int. Dairy J. 14:4273–85
    [Google Scholar]
  31. Dirks A. 1999. The Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63:1–20
    [Google Scholar]
  32. Dong P, Georget ES, Aganovic K, Heinz V, Mathys A 2015. Ultra high pressure homogenization (UHPH) inactivation of Bacillus amyloliquefaciens spores in phosphate buffered saline (PBS) and milk. Front. Microbiol. 6:712
    [Google Scholar]
  33. Doona CJ, Feeherry FE, Setlow B, Wang S, Li W et al. 2016. Effects of high-pressure treatment on spores of Clostridium species. Appl. Environ. Microbiol. 82:175287–97
    [Google Scholar]
  34. Doona CJ, Ghosh S, Feeherry FF, Ramirez-Peralta A, Huang Y, Chen H, Setlow P 2014. High pressure germination of Bacillus subtilis spores with alterations in levels and types of germination proteins. J. Appl. Microbiol. 117:3711–20
    [Google Scholar]
  35. Douki T, Setlow B, Setlow P 2005. Photosensitization of DNA by dipicolinic acid, a major component of spores of Bacillus species. Photochem. Photobiol. Sci. 4:8591–97
    [Google Scholar]
  36. Dumay E, Chevalier-Lucia D, Picart-Palmade L, Benzaria A, Gràcia-Julià A, Blayo C 2013. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci. Technol. 31:113–26
    [Google Scholar]
  37. Emig G, Klemm E. 2005. Technische Chemie. Einführung in die Chemische Reaktionstechnik; mit 47 Tabellen Berlin: Springer
  38. Esty JR, Meyer KF. 1922. The heat resistance of the spores of B. botulinus and allied anaerobes. J. Infect. Dis. 31:650–63
    [Google Scholar]
  39. Fan X, Sokorai K, Weidauer A, Gotzmann G, Rögner F-H, Koch E 2017. Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat. Phys. Chem. 130:306–15
    [Google Scholar]
  40. Fiester SE, Helfinstine SL, Redfearn JC, Uribe RM, Woolverton CJ 2012. Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. 2012:579593
    [Google Scholar]
  41. Freund H, Sundmacher K. 2011. Process intensification. 3. Process unit level. Ullmann's Encyclopedia of Industrial Chemistry2–24 Weinheim, Germany: Wiley‐VCH
    [Google Scholar]
  42. Gayán E, Condón S, Álvarez I 2014. Biological aspects in food preservation by ultraviolet light: a review. Food Bioprocess. Technol. 7:11–20
    [Google Scholar]
  43. Gayán E, Torres JA, Paredes-Sabja D 2012. Hurdle approach to increase the microbial inactivation by high pressure processing: effect of essential oils. Food Eng. Rev. 4:3141–48
    [Google Scholar]
  44. Georget E, Kapoor S, Winter R, Reineke K, Song YY et al. 2014a. In situ investigation of Geobacillus stearothermophilus spore germination and inactivation mechanisms under moderate high pressure. Food Microbiol 41:8–18
    [Google Scholar]
  45. Georget E, Miller B, Callanan M, Heinz V, Mathys A 2014b. (Ultra) high pressure homogenization for continuous high pressure sterilization of pumpable foods: a review. Front. Nutr. 1:15
    [Google Scholar]
  46. Georget E, Sauvageat JL, Burbidge A, Mathys A 2013. Residence time distributions in a modular micro reaction system. J. Food. Eng. 116:4910–19
    [Google Scholar]
  47. Georget E, Sevenich R, Reineke K, Mathys A, Heinz V et al. 2015. Inactivation of microorganism by high pressure processing in complex matrices: a review. Innov. Food Sci. Emerg. Technol. 27:1–14
    [Google Scholar]
  48. Ghomi H, Rahman MS, Chalise PR, Hayashi Y, Watanabe M et al. 2005. Experimental investigation of effect of low-energy pulsed atmospheric electron beam on bacterial cells. Jpn. J. Appl. Phys. 44:128698–701
    [Google Scholar]
  49. Ghosh S, Setlow P. 2009. Isolation and characterization of superdormant spores of Bacillus species. J Bacteriol 191:61787–89
    [Google Scholar]
  50. Gould GW, Jones A, Wrighton C 1968. Limitations of the initiation of germination of bacterial spores as a spore control procedure. J. Appl. Bacteriol. 31:357–66
    [Google Scholar]
  51. Hauck-Tiburski J, Rosenthal A, Iaconnelli C, Perrier-Cornet J-M, Gervais P 2019. Inactivation of dried spores of Bacillus subtilis 168 by a treatment combining high temperature and pressure. Int. J. Food Microbiol. 295:1–7
    [Google Scholar]
  52. Hayashi T, Okadome H, Toyoshima H, Todoriki S, Ohtsubo K 1998. Rheological properties and lipid oxidation of rice decontaminated with low-energy electrons. J. Food Prot. 61:173–77
    [Google Scholar]
  53. Hayashi T, Takahashi Y, Todoriki S 1997. Low-energy electron effects on the sterility and viscosity of grains. J. Food Sci. 62:4858–60
    [Google Scholar]
  54. Henriques AO, Moran CP. 2007. Structure, assembly, and function of the spore surface layers. Annu. Rev. Microbiol. 61:555–88
    [Google Scholar]
  55. Heremans K. 2002. The effects of high pressure on biomaterials. Ultra High Pressure Treatment of Foods M Hendrickx, D Knorr 23–46 New York: Kluwer Acad.
    [Google Scholar]
  56. Hertwig C, Meneses N, Mathys A 2018. Cold atmospheric pressure plasma and low energy electron beam as alternative nonthermal decontamination technologies for dry food surfaces: a review. Trends Food Sci. Technol. 77:131–42
    [Google Scholar]
  57. Hertwig C, Reineke K, Rauh C, Schlüter O 2017. Factors involved in Bacillus spore's resistance to cold atmospheric pressure plasma. Innov. Food Sci. Emerg. Technol. 43:173–81
    [Google Scholar]
  58. Hertwig C, Steins V, Reineke K, Rademacher A, Klocke M, Rauh C, Schlüter O 2015. Impact of surface structure and feed gas composition on Bacillus subtilis endospore inactivation during direct plasma treatment. Front. Microbiol. 6:774
    [Google Scholar]
  59. Hofstetter S, Winter R, McMullen LM, Ganzle MG 2013. In situ determination of Clostridium endospore membrane fluidity during pressure-assisted thermal processing in combination with nisin or reutericyclin. Appl. Environ. Microbiol. 79:62103–6
    [Google Scholar]
  60. Horneck G, Moeller R, Cadet J, Douki T, Mancinelli RL et al. 2012. Resistance of bacterial endospores to outer space for planetary protection purposes—experiment PROTECT of the EXPOSE-E mission. Astrobiology 12:5445–56
    [Google Scholar]
  61. Huang SS, Chen D, Pelczar PL, Vepachedu VR, Setlow P, Li YQ 2007. Levels of Ca2+-dipicolinic acid in individual Bacillus spores determined using microfluidic Raman tweezers. J. Bacteriol. 189:134681–87
    [Google Scholar]
  62. Igura N, Kamimura Y, Islam MS, Shimoda M, Hayakawa I 2003. Effects of minerals on resistance of Bacillus subtilis spores to heat and hydrostatic pressure. Appl. Environ. Microbiol. 69:106307–10
    [Google Scholar]
  63. Jaeger H, Meneses N, Knorr D 2014. Food technologies: pulsed electric field technology. Encyclopedia of Food Safety Y Motarjemi 239–44 New York: Academic
    [Google Scholar]
  64. Janssen FW, Lund AJ, Anderson LE 1958. Colorimetric assay for dipicolinic acid in bacterial spores. Science 127:328826–27
    [Google Scholar]
  65. Jenkinson HF, Sawyer WD, Mandelstam J 1981. Synthesis and order of assembly of spore coat proteins in Bacillus subtilis. J. Gen. Microbiology 123:11–16
    [Google Scholar]
  66. Kato M, Hayashi R. 1999. Effects of high pressure on lipids and biomembranes for understanding high-pressure-induced biological phenomena. Biosci. Biotechnol. Biochem. 63:81321–28
    [Google Scholar]
  67. Kessler HG 2002. Food and Bio Process Engineering: Dairy Technology Munich: Verlag A. Kessler
    [Google Scholar]
  68. Khoury PH, Walid Qoronfleh M, Streips UN, Slepecky RA 1990. Altered heat resistance in spores and vegetative cells of a mutant from Bacillus subtilis. Curr. Microbiol 21:4249–53
    [Google Scholar]
  69. Kiwi-Minsker L, Renken A. 2005. Microstructured reactors for catalytic reactions. Catal. Today 110:1–22–14
    [Google Scholar]
  70. Knoerzer K, Baumann P, Buckow R 2012. An iterative modelling approach for improving the performance of a pulsed electric field (PEF) treatment chamber. Comput. Chem. Eng. 37:48–63
    [Google Scholar]
  71. Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K 2011. Emerging technologies in food processing. Annu. Rev. Food Sci. Technol. 2:203–35
    [Google Scholar]
  72. Knudson GB. 1986. Photoreactivation of ultraviolet-irradiated, plasmid-bearing, and plasmid-free strains of Bacillus anthracis. Appl. Environ. Microbiol 52:3444–49
    [Google Scholar]
  73. Leistner L, Gorris LG. 1995. Food preservation by hurdle technology. Trends Food Sci. Technol. 6:241–46
    [Google Scholar]
  74. Lenz CA. 2017. Effect of high hydrostatic pressure on Clostridium botulinum type E endospores PhD Thesis, Tech. Univ. Muenchen Munich:
    [Google Scholar]
  75. Lenz CA, Reineke K, Knorr D, Vogel RF 2015. High pressure thermal inactivation of Clostridium botulinum type E endospores: kinetic modeling and mechanistic insights. Front. Microbiol. 6:652
    [Google Scholar]
  76. Lenz CA, Vogel RF. 2014. Effect of sporulation medium and its divalent cation content on the heat and high pressure resistance of Clostridium botulinum type E spores. Food Microbiol 44:156–67
    [Google Scholar]
  77. Li YF, Davis A, Korza G, Zhang PF, Li YQ et al. 2012. Role of a SpoVA protein in dipicolinic acid uptake into developing spores of Bacillus subtilis. J. Bacteriol 194:81875–84
    [Google Scholar]
  78. Lovdal IS, Hovda MB, Granum PE, Rosnes JT 2011. Promoting Bacillus cereus spore germination for subsequent inactivation by mild heat treatment. J. Food Prot 74:2079–89
    [Google Scholar]
  79. Margosch D, Gänzle MG, Ehrmann MA, Vogel RF 2004. Pressure inactivation of Bacillus endospores. Appl. Environ. Microbiol. 70:127321–28
    [Google Scholar]
  80. Marquez VO, Mittal GS, Griffiths MW 1997. Destruction and inhibition of bacterial spores by high voltage pulsed electric field. J. Food Sci. 62:2399–401
    [Google Scholar]
  81. Mathys A. 2008. Inactivation mechanisms of Geobacillus and Bacillus spores during high pressure thermal sterilization PhD thesis, Tech. Univ. Berlin Berlin:
    [Google Scholar]
  82. Mathys A. 2018. Perspective of micro process engineering for thermal food treatment. Front. Nutr. 5:24
    [Google Scholar]
  83. Mathys A, Chapman B, Bull M, Heinz V, Knorr D 2007a. Flow cytometric assessment of Bacillus spore response to high pressure and heat. Innov. Food Sci. Emerg. 8:519–27
    [Google Scholar]
  84. Mathys A, Heinz V, Schwartz FH, Knorr D 2007b. Impact of agglomeration on the quantitative assessment of Bacillus stearothermophilus heat inactivation. J. Food Eng. 81:2380–87
    [Google Scholar]
  85. Mathys A, Knorr D. 2009. The properties of water in the pressure-temperature landscape. Food Biophys 4:277–82
    [Google Scholar]
  86. Mathys A, Toepfl S, Siemer C, Favre L, Benyacoub J, Hansen C 2013. Pulsed electric field treatment process and dairy product comprising bioactive molecules obtainable by the process Patent EP 2543254(A1)-2013–01–09
  87. Melly E, Genest PC, Gilmore ME, Little S, Popham DL, Driks A, Setlow P 2002. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J. Appl. Microbiol. 92:1105–15
    [Google Scholar]
  88. Meneses N, Jaeger H, Knorr D 2011. Minimization of thermal impact by application of electrode cooling in a co-linear PEF treatment chamber. J. Food Sci. 76:8E536–43
    [Google Scholar]
  89. Moeller R, Setlow P, Horneck G, Berger T, Reitz G et al. 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X rays and high-energy charged-particle bombardment. J. Bacteriol. 190:31134–40
    [Google Scholar]
  90. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH 2001. Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int. J. Pharm. 226:1–21–21
    [Google Scholar]
  91. Morgan AI, Radewonuk R, Schullen OJ 1996. Ultra high temperature, ultra short time surface pasteurization of meat. J. Food Sci. 61:61216–18
    [Google Scholar]
  92. Movahedi S, Waites W. 2000. A two-dimensional protein gel electrophoresis study of the heat stress response of Bacillus subtilis cells during sporulation. J. Bacteriol. 182:174758–63
    [Google Scholar]
  93. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:3548–72
    [Google Scholar]
  94. Nicholson WL, Schuerger AC, Setlow P 2005. The solar UV environment and bacterial spore UV resistance: considerations for Earth-to-Mars transport by natural processes and human spaceflight. Mutat. Res. 571:1–2249–64
    [Google Scholar]
  95. Niemira BA. 2012. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3:125–42
    [Google Scholar]
  96. Nikjoo H, Lindborg L. 2010. RBE of low energy electrons and photons. Phys. Med. Biol. 55:10R65–109
    [Google Scholar]
  97. Norton I, Fryer P, Moore S 2006. Product/process integration in food manufacture. Engineering sustained health. AIChE J 52:51632–40
    [Google Scholar]
  98. Paidhungat M, Setlow B, Daniels WB, Hoover DG, Papafragkou E, Setlow P 2002. Mechanisms of induction of germination of Bacillus subtilis spores by high pressure. Appl. Environ. Microbiol. 68:63172–75
    [Google Scholar]
  99. Palop P, Sala FJ, Condon S 1999. Heat resistance of native and demineralized spores of Bacillus subtilis sporulated at different temperatures. Appl. Environ. Microbiol. 65:1316–19
    [Google Scholar]
  100. Paredes-Sabja D, Setlow P, Sarker MR 2011. Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends Microbiol 19:285–94
    [Google Scholar]
  101. Park BJ, Lee DH, Park J-C, Lee I-S, Lee K-Y et al. 2003. Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Phys. Plasmas 10:114539–44
    [Google Scholar]
  102. Pedraza-Reyes M, Ramírez-Ramírez N, Vidales-Rodríguez LE, Robleto EA 2012. Mechanisms of bacterial spore survival. Bacterial Spores E Abel-Santos 73–88 Norfolk, UK: Caister Acad.
    [Google Scholar]
  103. Pillai SD, Venkateswaran K, Cepeda M, Soni K, Mittasch S, Maxim J, Osman S 2006. Electron beam (10 MeV) irradiation to decontaminate spacecraft components for planetary protection Paper presented at 2006 IEEE Aerospace Conference, Big Sky, MT
    [Google Scholar]
  104. Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols M-P 2016. Cell wall as a target for bacteria inactivation by pulsed electric fields. Sci. Rep. 6:19778
    [Google Scholar]
  105. Popham DL. 2002. Specialized peptidoglycan of the bacterial endospore: the inner wall of the lockbox. Cell. Mol. Life Sci. 59:3426–33
    [Google Scholar]
  106. Popham DL, Heffron JD, Lambert JF 2012. Degradation of spore peptidoglycan during germination. Bacterial Spores E Abel-Santos 121–42 Norfolk, UK: Caister Acad.
    [Google Scholar]
  107. Prince HN. 1976. Stability of Bacillus pumilus spore strips used for monitoring radiation sterilization. Appl. Environ. Microbiol. 31:6999–1000
    [Google Scholar]
  108. Publ. Office Eur. Union 2012. Implementation of the EU Salt Reduction Framework. Results of member states survey Rep., Publ. Office Eur. Union Brussels, Belg.:
  109. Rahman MS, Ghomi H, Chalise PR, Hayashi Y, Watanabe M et al. 2006. Inactivation of cells and spores of Bacillus subtilis using low energy pulsed electron beam. Jpn. J. Appl. Phys. 45:33L881–83
    [Google Scholar]
  110. Raso J, Barbosa-Cánovas G, Swanson BG 1998. Sporulation temperature affects initiation of germination and inactivation by high hydrostatic pressure of Bacillus cereus. J. Appl. Microbiol 85:17–24
    [Google Scholar]
  111. Reineke K. 2012. Mechanisms of Bacillus spore germination and inactivation during high pressure processing PhD Thesis, Tech. Univ Berlin, Berlin:
    [Google Scholar]
  112. Reineke K, Doehner I, Schlumbach K, Baier D, Mathys A, Knorr D 2012. The different pathways of spore germination and inactivation in dependence of pressure and temperature. Innov. Food Sci. Emerg. Technol. 13:31–41
    [Google Scholar]
  113. Reineke K, Ellinger N, Berger D, Baier D, Mathys A, Setlow P, Knorr D 2013a. Structural analysis of high pressure treated Bacillus subtilis spores. Innov. Food Sci. Emerg. Technol. 17:43–53
    [Google Scholar]
  114. Reineke K, Langer K, Hertwig C, Ehlbeck J, Schlüter O 2015a. The impact of different process gas compositions on the inactivation effect of an atmospheric pressure plasma jet on Bacillus spores. Innov. Food Sci. Emerg. Technol. 30:112–18
    [Google Scholar]
  115. Reineke K, Mathys A, Heinz V, Knorr D 2013b. Mechanisms of endospore inactivation under high pressure. Trends Microbiol 21:6296–304
    [Google Scholar]
  116. Reineke K, Schlumbach K, Baier D, Mathys A, Knorr D 2013c. The release of dipicolinic acid: the rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process. Int. J. Food Microbiol. 162:55–63
    [Google Scholar]
  117. Reineke K, Schottroff F, Meneses N, Knorr D 2015b. Sterilization of liquid foods by pulsed electric fields: an innovative ultra-high temperature process. Front. Microbiol. 6:400
    [Google Scholar]
  118. Setlow B, Setlow P. 1980. Measurements of the pH within dormant and germinated bacterial spores. PNAS 77:52474–76
    [Google Scholar]
  119. Setlow P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550–56
    [Google Scholar]
  120. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:3514–25
    [Google Scholar]
  121. Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol 15:172–80
    [Google Scholar]
  122. Setlow P. 2012. Dynamics of the assembly of a complex macromolecular structure: the coat of spores of the bacterium Bacillus subtilis. Mol. Microbiol 83:2241–44
    [Google Scholar]
  123. Setlow P, Li L. 2015. Photochemistry and photobiology of the spore photoproduct: a 50-year journey. Photochem. Photobiol. 91:61263–90
    [Google Scholar]
  124. Setlow P, Liu J, Faeder JR 2012. Heterogeneity in bacterial spore populations. Bacterial Spores E Abel-Santos 199–214 Norfolk, UK: Caister Acad.
    [Google Scholar]
  125. Setlow P, Wang S, Li Y-Q 2017. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol 71:459–77
    [Google Scholar]
  126. Sevenich R, Mathys A. 2018. Continuous versus discontinuous ultra-high-pressure systems for food sterilization with focus on ultra-high-pressure homogenization and high-pressure thermal sterilization: a review. Compr. Rev. Food Sci. Food Saf. 17:3646–62
    [Google Scholar]
  127. Siemer C, Toepfl S, Heinz V 2014. Inactivation of Bacillus subtilis spores by pulsed electric fields (PEF) in combination with thermal energy. I. Influence of process- and product parameters. Food Control 39:163–71
    [Google Scholar]
  128. Somavat R, Mohamed HMH, Chung Y-K, Yousef AE, Sastry SK 2012. Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. J. Food Eng. 108:169–76
    [Google Scholar]
  129. Sommers CH, Fan X, eds. 2013. Food Irradiation Research and Technology Ames, IA: Wiley-Blackwell
  130. Soni A, Oey I, Silcock P, Bremer P 2016. Bacillus spores in the food industry: a review on resistance and response to novel inactivation technologies. Compr. Rev. Food Sci. Food Saf. 15:61139–48
    [Google Scholar]
  131. Spilimbergo S, Dehghani F, Bertucco A, Foster NR 2003. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature. Biotechnol. Bioeng. 82:1118–25
    [Google Scholar]
  132. Stewart CM, Dunne CP, Sikes A, Hoover DG 2000. Sensitivity of spores of Bacillus subtilis and Clostridium sporogenes PA 3679 to combinations of high hydrostatic pressure and other processing parameters. Innov. Food. Sci. Emerg. Technol. 1:149–56
    [Google Scholar]
  133. Sunde EP, Setlow P, Hederstedt L, Halle B 2009. The physical state of water in bacterial spores. PNAS 106:4619334–39
    [Google Scholar]
  134. Tahergorabi R, Matak KE, Jaczynski J 2012. Application of electron beam to inactivate Salmonella in food: recent developments. Food Res. Int. 45:2685–94
    [Google Scholar]
  135. Tallentire A, Miller A, Helt-Hansen J 2010. A comparison of the microbicidal effectiveness of gamma rays and high and low energy electron radiations. Radiat. Phys. Chem. 79:6701–4
    [Google Scholar]
  136. Urgiles E, Wilcox J, Montes O, Osman S, Venkateswaran K et al. 2007. Electron beam irradiation for microbial reduction on spacecraft components Paper presented at the 2007 IEEE Aerospace Conference Big Sky, MT:
  137. van Asselt AJ, Sweere APJ, Rollema HS, de Jong P 2008. Extreme high-temperature treatment of milk with respect to plasmin inactivation. Int. Dairy J. 18:531–38
    [Google Scholar]
  138. Wang S, Doona CJ, Setlow P, Li Y-Q 2016. Use of Raman spectroscopy and phase-contrast microscopy to characterize cold atmospheric plasma inactivation of individual bacterial spores. Appl. Environ. Microbiol. 82:195775–84
    [Google Scholar]
  139. Wells-Bennik MHJ, Eijlander RT, den Besten HMW, Berendsen EM, Warda AK et al. 2016. Bacterial spores in food: survival, emergence, and outgrowth. Annu. Rev. Food Sci. Technol. 7:457–82
    [Google Scholar]
  140. WHO 1981. Wholesomeness of irradiated food. Report of a joint FAO/IAEA/WHO expert committee Tech. Rep. Ser. 659, World Health Organ., Geneva
  141. WHO 1999. High-dose irradiation: wholesomeness of food irradiated with doses above 10 kGy: report of a joint FAO/IAEA/WHO study group Tech. Rep. Ser. 890, World Health Organ Geneva:
    [Google Scholar]
  142. Winter R, Dzwolak W. 2005. Exploring the temperature pressure configurational landscape of biomolecules: from lipid membranes to proteins. Philos. Trans. A 363:1827535–62
    [Google Scholar]
  143. Winter R, Jeworrek C. 2009. Effect of pressure on membranes. Soft Matter 5:173157–73
    [Google Scholar]
  144. Wouters PC, Alvarez I, Raso J 2001. Critical factors determining inactivation kinetics by pulsed electric field food processing. Trends Food Sci. Technol. 12:3–4112–21
    [Google Scholar]
  145. Wuytack EY, Boven S, Michiels CW 1998. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressures. Appl. Environ. Microbiol. 64:93220–24
    [Google Scholar]
  146. Zhang PF, Kong LB, Setlow P, Li YQ 2010. Characterization of wet-heat inactivation of single spores of Bacillus species by dual-trap Raman spectroscopy and elastic light scattering. Appl. Environ. Microbiol. 76:61796–805
    [Google Scholar]
  147. Zhang Y, Mathys A. 2019. Superdormant spores as a hurdle for gentle germination-inactivation based spore control strategies. Front. Microbiol. 9:3163
    [Google Scholar]
  148. Zhang Y, Moeller R, Meneses N, Tran S, Dubovcova B et al. 2018. Geobacillus and Bacillus spore inactivation by low energy electron beam technology: resistance and influencing factors. Front. Microbiol. 9:2720
    [Google Scholar]
  149. Zhou W, Orr MW, Jian G, Watt SK, Lee VT, Zachariah MR 2015. Inactivation of bacterial spores subjected to sub-second thermal stress. Chem. Eng. J. 279:578–88
    [Google Scholar]
/content/journals/10.1146/annurev-food-032519-051632
Loading
/content/journals/10.1146/annurev-food-032519-051632
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error