1932

Abstract

Yeasts directly impact the efficiency of brewery fermentations as well as the character of the beers produced. In recent years, there has been renewed interest in yeast selection and development inspired by the demand to utilize resources more efficiently and the need to differentiate beers in a competitive market. Reviewed here are the different, non-genetically modified (GM) approaches that have been considered, including bioprospecting, hybridization, and adaptive laboratory evolution (ALE). Particular emphasis is placed on the latter, which represents an extension of the processes that have led to the domestication of strains already used in commercial breweries. ALE can be used to accentuate the positive traits of brewing yeast as well as temper some of the traits that are less desirable from a modern brewer's perspective. This method has the added advantage of being non-GM and therefore suitable for food and beverage production.

Keyword(s): beerbrewingevolutionyeast
Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032519-051715
2020-03-25
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/food/11/1/annurev-food-032519-051715.html?itemId=/content/journals/10.1146/annurev-food-032519-051715&mimeType=html&fmt=ahah

Literature Cited

  1. Alexander WG, Peris D, Pfannenstiel BT, Opulente DA, Kuang M, Hittinger CT 2016. Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genet. Biol 89:10–17
    [Google Scholar]
  2. Alves SL Jr., Herberts RA, Hollatz C, Trichez D, Miletti LC et al. 2008. Molecular analysis of maltotriose active transport and fermentation by Saccharomyces cerevisiae reveals a determinant role for the AGT1 permease. Appl. Environ. Microbiol. 74:1494–501
    [Google Scholar]
  3. Aquilani B, Laureti T, Poponi S, Secondi L 2015. Beer choice and consumption determinants when craft beers are tasted: an exploratory study of consumer preferences. Food Qual. Preference 41:214–24
    [Google Scholar]
  4. Araujo TM, Souza MT, Diniz RHS, Yamakawa CK, Soares LB et al. 2018. Cachaça yeast strains: alternative starters to produce beer and bioethanol. Antonie Van Leeuwenhoek 111:1749–66
    [Google Scholar]
  5. Avrahami-Moyal L, Engelberg D, Wenger JW, Sherlock G, Braun S 2012. Turbidostat culture of Saccharomyces cerevisiae W303–1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1. FEMS Yeast Res 12:521–33
    [Google Scholar]
  6. Babcock T, Borden J, Gries R, Carroll C, Moore M, Gries G 2018. Lachancea thermotolerans, a yeast symbiont of yellowjackets, enhances attraction of three yellowjacket species (Hymenoptera: Vespidae) to fruit powder. Environ. Entomol. 47:1553–59
    [Google Scholar]
  7. Baek SH, Kwon EY, Kim YH, Hahn JS 2016. Metabolic engineering and adaptive evolution for efficient production of D-lactic acid in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol 100:2737–48
    [Google Scholar]
  8. Baker E, Wang B, Bellora N, Peris D, Hulfachor AB et al. 2015. The genome sequence of Saccharomyces eubayanus and the domestication of lager-brewing yeasts. Mol. Biol. Evol. 32:2818–31
    [Google Scholar]
  9. Baker EP, Hittinger CT. 2019. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLOS Genet 15:e1007786
    [Google Scholar]
  10. Barbosa R, Pontes A, Santos RO, Montandon GG, de Ponzzes-Gomes CM et al. 2018. Multiple rounds of artificial selection promote microbe secondary domestication: the case of cachaça yeasts. Genome Biol. Evol. 10:1939–55
    [Google Scholar]
  11. Barton AB, Pekosz MR, Kurvathi RS, Kaback DB 2008. Meiotic recombination at the ends of chromosomes in Saccharomyces cerevisiae. . Genetics 179:1221–35
    [Google Scholar]
  12. Bellut K, Arendt EK. 2019. Chance and challenge: non-Saccharomyces yeasts in nonalcoholic and low alcohol beer brewing: a review. J. Am. Soc. Brew. Chem. 77:77–91
    [Google Scholar]
  13. Blieck L, Toye G, Dumortier F, Verstrepen KJ, Delvaux FR et al. 2007. Isolation and characterization of brewer's yeast variants with improved fermentation performance under high-gravity conditions. Appl. Environ. Microbiol. 73:815–24
    [Google Scholar]
  14. Brickwedde A, Brouwers N, van den Broek M, Gallego Murillo JS, Fraiture JL et al. 2018. Structural, physiological and regulatory analysis of maltose transporter genes in Saccharomyces eubayanus CBS 12357T. Front. Microbiol. 9:1786
    [Google Scholar]
  15. Brickwedde A, van den Broek M, Geertman JA, Magalhães F, Kuijpers NGA et al. 2017. Evolutionary engineering in chemostat cultures for improved maltotriose fermentation kinetics in Saccharomyces pastorianus lager brewing yeast. Front. Microbiol. 8:1690
    [Google Scholar]
  16. Brouwers N, Brickwedde A, Gorter de Vries AR, van den Broek M, Weening SM et al. 2019a. Maltotriose consumption by hybrid Saccharomyces pastorianus is heterotic and results from regulatory cross-talk between parental sub-genomes. bioRxiv 679563. https://doi.org/10.1101/679563
    [Crossref]
  17. Brouwers N, Gorter de Vries AR, van den Broek M, Weening SM, Elink Schuurman TD et al. 2019b. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLOS Genet 15:e1007853
    [Google Scholar]
  18. Cardoso JGR, Zeidan AA, Jensen K, Sonnenschein N, Neves AR, Herrgard MJ 2018. MARSI: metabolite analogues for rational strain improvement. Bioinformatics 34:2319–21
    [Google Scholar]
  19. Caspeta L, Chen Y, Ghiaci P, Feizi A, Buskov S et al. 2014. Altered sterol composition renders yeast thermotolerant. Science 346:75–78
    [Google Scholar]
  20. Caspeta L, Nielsen J. 2015. Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral temperatures and preadaptation to other stresses. mBio 6:e00431–15
    [Google Scholar]
  21. Castillo S, Patil KR, Jouhten P 2019. Yeast genome-scale metabolic models for simulating genotype-phenotype relations. Prog. Mol. Subcell. Biol. 58:111–33
    [Google Scholar]
  22. Cauet G, Degryse E, Ledoux C, Spagnoli R, Achstetter T 1999. Pregnenolone esterification in Saccharomyces cerevisiae. A potential detoxification mechanism. Eur. J. Biochem. 261:317–24
    [Google Scholar]
  23. Chang YS, Dubin RA, Perkins E, Michels CA, Needleman RB 1989. Identification and characterization of the maltose permease in a genetically defined Saccharomyces strain. J. Bacteriol. 171:6148–54
    [Google Scholar]
  24. Chen Y, Yang X, Zhang S, Wang X, Guo C et al. 2012. Development of Saccharomyces cerevisiae producing higher levels of sulfur dioxide and glutathione to improve beer flavor stability. Appl. Biochem. Biotechnol. 166:402–13
    [Google Scholar]
  25. Conjaerts A, Willaert RG. 2017. Gravity-driven adaptive evolution of an industrial brewer's yeast strain towards a snowflake phenotype in a 3D-printed mini tower fermentor. Fermentation 3:14
    [Google Scholar]
  26. Cordente AG, Heinrich A, Pretorius IS, Swiegers JH 2009. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. FEMS Yeast Res 9:446–59
    [Google Scholar]
  27. Cubillos FA, Gibson B, Grijalva-Vallejos N, Krogerus K, Nikulin J 2019. Bioprospecting for brewers: exploiting natural diversity for naturally diverse beers. Yeast 36:383–98
    [Google Scholar]
  28. Day RE, Higgins VJ, Rogers PJ, Dawes IW 2002. Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19:1015–27
    [Google Scholar]
  29. Demeke MM, Dietz H, Li Y, Foulquie-Moreno MR, Mutturi S et al. 2013. Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering. Biotechnol. Biofuels 6:89
    [Google Scholar]
  30. De Vero L, Solieri L, Giudici P 2011. Evolution-based strategy to generate non-genetically modified organisms Saccharomyces cerevisiae strains impaired in sulfate assimilation pathway. Lett. Appl. Microbiol. 53:572–75
    [Google Scholar]
  31. Diao L, Liu Y, Qian F, Yang J, Jiang Y, Yang S 2013. Construction of fast xylose-fermenting yeast based on industrial ethanol-producing diploid Saccharomyces cerevisiae by rational design and adaptive evolution. BMC Biotechnol 13:110
    [Google Scholar]
  32. Diderich JA, Weening SM, van den Broek M, Pronk JT, Daran JG 2018. Selection of PofSaccharomyces eubayanus variants for the construction of S. cerevisiae × S. eubayanus hybrids with reduced 4-vinyl guaiacol formation. Front. Microbiol. 9:1640
    [Google Scholar]
  33. Dietvorst J, Londesborough J, Steensma HY 2005. Maltotriose utilization in lager yeast strains: MTT1 encodes a maltotriose transporter. Yeast 22:775–88
    [Google Scholar]
  34. Domizio P, House JF, Joseph CML, Bisson LF, Bamforth CW 2016. Lachancea thermotolerans as an alternative yeast for the production of beer. J. Inst. Brew. 122:599–604
    [Google Scholar]
  35. Douglass AP, Offei B, Braun-Galleani S, Coughlan AY, Martos AAR et al. 2018. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLOS Pathog 14:e1007138
    [Google Scholar]
  36. Duan SF, Han PJ, Wang QM, Liu WQ, Shi JY et al. 2018. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat. Commun. 9:2690
    [Google Scholar]
  37. Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ 2017. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol. Rev. 41:S95–128
    [Google Scholar]
  38. Edwards CG, Bohlscheid JC. 2007. Impact of pantothenic acid addition on H2S production by Saccharomyces under fermentative conditions. Enzyme Microb. Technol. 41:1–4
    [Google Scholar]
  39. Ekberg J, Rautio J, Mattinen L, Vidgren V, Londesborough J, Gibson BR 2013. Adaptive evolution of the lager brewing yeast Saccharomyces pastorianus for improved growth under hyperosmotic conditions and its influence on fermentation performance. FEMS Yeast Res 13:335–49
    [Google Scholar]
  40. Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4:457–69
    [Google Scholar]
  41. Ferreira IM, Guido LF. 2018. Impact of wort amino acids on beer flavour: a review. Fermentation 4:223
    [Google Scholar]
  42. Gallone B, Mertens S, Gordon JL, Maere S, Verstrepen KJ, Steensels J 2018. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr. Opin. Biotechnol. 49:148–55
    [Google Scholar]
  43. Gallone B, Steensels J, Prahl T, Soriaga L, Saels V et al. 2016. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell 166:1397–410.e16
    [Google Scholar]
  44. Gibson B, Geertman JA, Hittinger CT, Krogerus K, Libkind D et al. 2017. New yeasts–new brews: modern approaches to brewing yeast design and development. FEMS Yeast Res 17:4fox038
    [Google Scholar]
  45. Gibson B, Vidgren V, Peddinti G, Krogerus K 2018. Diacetyl control during brewery fermentation via adaptive laboratory engineering of the lager yeast Saccharomyces pastorianus. J. Ind. Microbiol. . Biotechnol 45:1103–12
    [Google Scholar]
  46. Gibson BR, Lawrence SJ, Leclaire JP, Powell CD, Smart KA 2007. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol. Rev. 31:535–69
    [Google Scholar]
  47. Gibson BR, Storgards E, Krogerus K, Vidgren V 2013. Comparative physiology and fermentation performance of Saaz and Frohberg lager yeast strains and the parental species Saccharomyces eubayanus. . Yeast 30:255–66
    [Google Scholar]
  48. Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M et al. 2016. Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr. Biol. 26:2750–61
    [Google Scholar]
  49. González SS, Barrio E, Querol A 2008. Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl. Environ. Microbiol. 74:2314–20
    [Google Scholar]
  50. González-Ramos D, Gorter de Vries AR, Grijseels SS, van Berkum MC, Swinnen S et al. 2016. A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations. Biotechnol. Biofuels 9:173
    [Google Scholar]
  51. Gorter de Vries AR, Voskamp MA, van Aalst ACA, Kristensen LH, Jansen L et al. 2019. Laboratory evolution of a Saccharomyces cerevisiae × S. eubayanus hybrid under simulated lager-brewing conditions. Front. Genet. 10:242
    [Google Scholar]
  52. Gresham D, Dunham MJ. 2014. The enduring utility of continuous culturing in experimental evolution. Genomics 104:399–405
    [Google Scholar]
  53. Guido LF. 2016. Sulfites in beer: reviewing regulation, analysis and role. Sci. Agric. 73:189–97
    [Google Scholar]
  54. Guimarães PM, Francois J, Parrou JL, Teixeira JA, Domingues L 2008. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl. Environ. Microbiol. 74:1748–56
    [Google Scholar]
  55. Hammond JRM. 1995. Genetically-modified brewing yeasts for the 21st century. Progress to date. Yeast 11:1613–27
    [Google Scholar]
  56. Han EK, Cotty F, Sottas C, Jiang H, Michels CA 1995. Characterization of AGT1 encoding a general alpha-glucoside transporter from Saccharomyces. Mol. . Microbiol 17:1093–107
    [Google Scholar]
  57. Hebly M, Brickwedde A, Bolat I, Driessen MRM, de Hulster EA et al. 2015. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res 15:3fov00
    [Google Scholar]
  58. Henderson CM, Lozada-Contreras M, Jiranek V, Longo ML, Block DE 2013. Ethanol production and maximum cell growth are highly correlated with membrane lipid composition during fermentation as determined by lipidomic analysis of 22 Saccharomyces cerevisiae strains. Appl. Environ. Microbiol. 79:91–104
    [Google Scholar]
  59. Hirooka K, Yamamoto Y, Tsutsui N, Tanaka T 2005. Improved production of isoamyl acetate by a sake yeast mutant resistant to an isoprenoid analog and its dependence on alcohol acetyltransferase activity, but not on isoamyl alcohol production. J. Biosci. Bioeng. 99:125–29
    [Google Scholar]
  60. Hittinger CT, Steele JL, Ryder DS 2018. Diverse yeasts for diverse fermented beverages and foods. Curr. Opin. Biotechnol. 49:199–206
    [Google Scholar]
  61. Huuskonen A, Markkula T, Vidgren V, Lima L, Mulder L et al. 2010. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts. Appl. Environ. Microbiol. 76:1563–73
    [Google Scholar]
  62. Ichikawa E, Hosokawa N, Hata Y, Abe Y, Suginami K, Imayasu S 1991. Breeding of a sake yeast with improved ethyl caproate productivity. Agric. Biol. Chem. 55:2153–54
    [Google Scholar]
  63. Jensen K, Broeken V, Hansen ASL, Sonnenschein N, Herrgard MJ 2019. OptCouple: joint simulation of gene knockouts, insertions and medium modifications for prediction of growth-coupled strain designs. Metab. Eng. Commun. 8:e00087
    [Google Scholar]
  64. Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B 2015. Evolution of volatile sulfur compounds during wine fermentation. J. Agric. Food Chem. 63:8017–24
    [Google Scholar]
  65. Kinzurik MI, Herbst-Johnstone M, Gardner RC, Fedrizzi B 2016. Hydrogen sulfide production during yeast fermentation causes the accumulation of ethanethiol, S-ethyl thioacetate and diethyl disulfide. Food Chem 209:341–47
    [Google Scholar]
  66. Kodama Y, Fukui N, Ashikari T, Shibano Y, Moriokafujimoto K et al. 1995. Improvement of maltose fermentation efficiency: constitutive expression of MAL genes in brewing yeasts. J. Am. Soc. Brew. Chem. 53:24–29
    [Google Scholar]
  67. Krogerus K, Gibson BR. 2013. 125th anniversary review: diacetyl and its control during brewery fermentation. J. Inst. Brew. 119:86–97
    [Google Scholar]
  68. Krogerus K, Holmstrom S, Gibson B 2018a. Enhanced wort fermentation with de novo lager hybrids adapted to high-ethanol environments. Appl. Environ. Microbiol. 84:4e02302–17
    [Google Scholar]
  69. Krogerus K, Magalhães F, Kuivanen J, Gibson B 2019. A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains. Appl. Microbiol. Biotechnol. 103:187597–615
    [Google Scholar]
  70. Krogerus K, Magalhães F, Vidgren V, Gibson B 2015. New lager yeast strains generated by interspecific hybridization. J. Ind. Microbiol. Biotechnol. 42:769–78
    [Google Scholar]
  71. Krogerus K, Preiss R, Gibson B 2018b. A unique Saccharomyces cerevisiae × Saccharomyces uvarum hybrid isolated from Norwegian farmhouse beer: characterization and reconstruction. Front. Microbiol. 9:2253
    [Google Scholar]
  72. Krogerus K, Seppanen-Laakso T, Castillo S, Gibson B 2017. Inheritance of brewing-relevant phenotypes in constructed Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. Microb. Cell Fact. 16:166
    [Google Scholar]
  73. Kumar GR, Ramakrishnan V, Bisson LF 2010. Survey of hydrogen sulfide production in wine strains of Saccharomyces cerevisiae. Am. J. Enol. Viticult 61:365–71
    [Google Scholar]
  74. LaCroix RA, Palsson BO, Feist AM 2017. A model for designing adaptive laboratory evolution experiments. Appl. Environ. Microbiol. 83:e03115–16
    [Google Scholar]
  75. Lang GI, Rice DP, Hickman MJ, Sodergren E, Weinstock GM et al. 2013. Pervasive genetic hitchhiking and clonal interference in forty evolving yeast populations. Nature 500:571–74
    [Google Scholar]
  76. Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS 2017. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J 12:101600687
    [Google Scholar]
  77. Lee S, Villa K, Patino H 1995. Yeast-strain development for enhanced production of desirable alcohols/esters in beer. J. Am. Soc. Brew. Chem. 53:153–56
    [Google Scholar]
  78. Lee SM, Jellison T, Alper HS 2014. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels 7:122
    [Google Scholar]
  79. Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S et al. 2018. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. Mol. Biol. Evol. 35:1712–27
    [Google Scholar]
  80. Lei HJ, Zhao HF, Yu ZM, Zhao MM 2012. Effects of wort gravity and nitrogen level on fermentation performance of brewer's yeast and the formation of flavor volatiles. Appl. Biochem. Biotechnol. 166:1562–74
    [Google Scholar]
  81. Lei HJ, Zhao HF, Zhao MM 2013. Proteases supplementation to high gravity worts enhances fermentation performance of brewer's yeast. Biochem. Eng. J. 77:1–6
    [Google Scholar]
  82. Libkind D, Hittinger CT, Valerio E, Gonçalves C, Dover J et al. 2011. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. PNAS 108:14539–44
    [Google Scholar]
  83. Linderholm A, Dietzel K, Hirst M, Bisson LF 2010. Identification of MET10–932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl. Environ. . Microbiol 76:7699–707
    [Google Scholar]
  84. Linderholm AL, Findleton CL, Kumar G, Hong Y, Bisson LF 2008. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Appl. Environ. Microbiol 74:1418–27
    [Google Scholar]
  85. Liu HX, Zhang JZ. 2019. Yeast spontaneous mutation rate and spectrum vary with environment. Curr. Biol. 29:1584–91.e3
    [Google Scholar]
  86. Magalhães F, Vidgren V, Ruohonen L, Gibson B 2016. Maltose and maltotriose utilisation by group I strains of the hybrid lager yeast Saccharomyces pastorianus. . FEMS Yeast Res 16:fow053
    [Google Scholar]
  87. Mans R, Daran JMG, Pronk JT 2018. Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr. Opin. Biotechnol. 50:47–56
    [Google Scholar]
  88. Marongiu A, Zara G, Legras JL, Del Caro A, Mascia I et al. 2015. Novel starters for old processes: use of Saccharomyces cerevisiae strains isolated from artisanal sourdough for craft beer production at a brewery scale. J. Ind. Microbiol. Biotechnol. 42:85–92
    [Google Scholar]
  89. Mascia I, Fadda C, Dostalek P, Karabin M, Zara G et al. 2015. Is it possible to create an innovative craft durum wheat beer with sourdough yeasts? A case study. J. Inst. Brew. 121:283–86
    [Google Scholar]
  90. Mertens S, Steensels J, Saels V, De Rouck G, Aerts G, Verstrepen KJ 2015. A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl. Environ. Microbiol. 81:8202–14
    [Google Scholar]
  91. Mezzetti F, De Vero L, Giudici P 2014. Evolved Saccharomyces cerevisiae wine strains with enhanced glutathione production obtained by an evolution-based strategy. FEMS Yeast Res 14:977–87
    [Google Scholar]
  92. Mukai N, Masaki K, Fujii T, Iefuji H 2014. Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. J. Biosci. Bioeng. 118:50–55
    [Google Scholar]
  93. Naseeb S, Alsammar H, Burgis T, Donaldson I, Knyazev N et al. 2018. Whole genome sequencing, de novo assembly and phenotypic profiling for the new budding yeast species Saccharomyces jurei. . G3 8:2967–77
    [Google Scholar]
  94. Nikulin J, Krogerus K, Gibson B 2018. Alternative Saccharomyces interspecies hybrid combinations and their potential for low-temperature wort fermentation. Yeast 35:113–27
    [Google Scholar]
  95. O'Brien EJ, Monk JM, Palsson BO 2015. Using genome-scale models to predict biological capabilities. Cell 161:971–87
    [Google Scholar]
  96. Ogata T, Kobayashi M, Gibson BR 2013. Pilot-scale brewing using self-cloning bottom-fermenting yeast with high SSU1 expression. J. Inst. Brew. 119:17–22
    [Google Scholar]
  97. Osburn K, Amaral J, Metcalf SR, Nickens DM, Rogers CM et al. 2018. Primary souring: a novel bacteria-free method for sour beer production. Food Microbiol 70:76–84
    [Google Scholar]
  98. Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J 2013. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLOS ONE 8:1e54144
    [Google Scholar]
  99. Oud B, Guadalupe-Medina V, Nijkamp JF, de Ridder D, Pronk JT et al. 2013. Genome duplication and mutations in ACE2 cause multicellular, fast-sedimenting phenotypes in evolved Saccharomyces cerevisiae. . PNAS 110:E4223–31
    [Google Scholar]
  100. Peris D, Belloch C, Lopandic K, Alvarez-Perez JM, Querol A, Barrio E 2012. The molecular characterization of new types of Saccharomyces cerevisiae × S. kudriavzevii hybrid yeasts unveils a high genetic diversity. Yeast 29:81–91
    [Google Scholar]
  101. Peris D, Moriarty RV, Alexander WG, Baker E, Sylvester K et al. 2017. Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnol. Biofuels 10:78
    [Google Scholar]
  102. Peter J, De Chiara M, Friedrich A, Yue JX, Pflieger D et al. 2018. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556:339–44
    [Google Scholar]
  103. Preiss R, Tyrawa C, Krogerus K, Garshol LM, van der Merwe G 2018. Traditional Norwegian kveik are a genetically distinct group of domesticated Saccharomyces cerevisiae brewing yeasts. Front. Microbiol. 9:2137
    [Google Scholar]
  104. Qi X, Zha J, Liu GG, Zhang WW, Li BZ, Yuan YJ 2015. Heterologous xylose isomerase pathway and evolutionary engineering improve xylose utilization in Saccharomyces cerevisiae. Front. . Microbiol 6:1165
    [Google Scholar]
  105. Ratcliff WC, Fankhauser JD, Rogers DW, Greig D, Travisano M 2015. Origins of multicellular evolvability in snowflake yeast. Nat. Commun. 6:6102
    [Google Scholar]
  106. Rautio J, Londesborough J. 2003. Maltose transport by brewer's yeasts in brewer's wort. J. Inst. Brew. 109:251–61
    [Google Scholar]
  107. Reyes LH, Gomez JM, Kao KC 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21:26–33
    [Google Scholar]
  108. Salema-Oom M, Valadao Pinto V, Gonçalves P, Spencer-Martins I 2005. Maltotriose utilization by industrial Saccharomyces strains: characterization of a new member of the alpha-glucoside transporter family. Appl. Environ. Microbiol. 71:5044–49
    [Google Scholar]
  109. Sanchez RG, Solodovnikova N, Wendland J 2012. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance. Yeast 29:343–55
    [Google Scholar]
  110. Sato M, Kishimoto M, Watari J, Takashio M 2002. Breeding of brewer's yeast by hybridization between a top-fermenting yeast Saccharomyces cerevisiae and a cryophilic yeast Saccharomyces bayanus. J. Biosci. Bioeng 93:509–11
    [Google Scholar]
  111. Sato TK, Tremaine M, Parreiras LS, Hebert AS, Myers KS et al. 2016. Directed evolution reveals unexpected epistatic interactions that alter metabolic regulation and enable anaerobic xylose use by Saccharomyces cerevisiae. . PLOS Genet 12:10e1006372
    [Google Scholar]
  112. Senkarcinova B, Dias IAG, Nespor J, Branyik T 2019. Probiotic alcohol-free beer made with Saccharomyces cerevisiae var. boulardii. LWT Food Sci. Technol. 100:362–67
    [Google Scholar]
  113. Serero A, Jubin C, Loeillet S, Legoix-Ne P, Nicolas AG 2014. Mutational landscape of yeast mutator strains. PNAS 111:1897–902
    [Google Scholar]
  114. Serrano R. 1977. Energy requirements for maltose transport in yeast. Eur. J. Biochem. 80:97–102
    [Google Scholar]
  115. Sharp NP, Sandell L, James CG, Otto SP 2018. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast. PNAS 115:E5046–55
    [Google Scholar]
  116. Shen N, Wang JJ, Liu CF, Li YX, Li Q 2014. Domesticating brewing yeast for decreasing acetaldehyde production and improving beer flavor stability. Eur. Food Res. Technol. 238:347–55
    [Google Scholar]
  117. Stambuk BU, da Silva MA, Panek AD, de Araujo PS 1999. Active alpha-glucoside transport in Saccharomyces cerevisiae. FEMS Microbiol. Lett 170:105–10
    [Google Scholar]
  118. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ 2014. Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38:947–95
    [Google Scholar]
  119. Strauss SK, Schirman D, Jona G, Brooks AN, Kunjapur AM et al. 2019. Evolthon: a community endeavor to evolve lab evolution. PLOS Biol 17:3e3000182
    [Google Scholar]
  120. Strucko T, Zirngibl K, Pereira F, Kafkia E, Mohamed ET et al. 2018. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab. . Eng 47:73–82
    [Google Scholar]
  121. Szappanos B, Fritzemeier J, Csorgo B, Lazar V, Lu XW et al. 2016. Adaptive evolution of complex innovations through stepwise metabolic niche expansion. Nat. Commun. 7:11607
    [Google Scholar]
  122. Van den Broek PJ, Van Leeuwen CC, Weusthuis RA, Postma E, Van Dijken JP et al. 1994. Identification of the maltose transport protein of Saccharomyces cerevisiae. Biochem. Biophys. Res. . Commun 200:45–51
    [Google Scholar]
  123. Venkataram S, Dunn B, Li YP, Agarwala A, Chang J et al. 2016. Development of a comprehensive genotype-to-fitness map of adaptation-driving mutations in yeast. Cell 166:1585–96.e22
    [Google Scholar]
  124. Vicent I, Navarro A, Mulet JM, Sharma S, Serrano R 2015. Uptake of inorganic phosphate is a limiting factor for Saccharomyces cerevisiae during growth at low temperatures. FEMS Yeast Res 15:3fov008
    [Google Scholar]
  125. Vidgren V, Londesborough J. 2018. Overexpressed maltose transporters in laboratory and lager yeasts: localization and competition with endogenous transporters. Yeast 35:567–76
    [Google Scholar]
  126. von Kamp A, Klamt S 2017. Growth-coupled overproduction is feasible for almost all metabolites in five major production organisms. Nat. Commun. 8:15956
    [Google Scholar]
  127. Wang JJ, Wang ZY, He XP, Zhang BR 2010. Construction of amylolytic industrial brewing yeast strain with high glutathione content for manufacturing beer with improved anti-staling capability and flavor. J. Microbiol. Biotechnol. 20:1539–45
    [Google Scholar]
  128. Wang XD, Bohlscheid JC, Edwards CG 2003. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J. Appl. Microbiol. 94:349–59
    [Google Scholar]
  129. Watanabe M, Nagal H, Kondo K 1995. Properties of sake yeast mutants resistant to isoamyl monochloroacetate. J. Ferment. Bioeng. 80:3291–93
    [Google Scholar]
  130. Watanabe M, Tanaka N, Mishima H, Takemura S 1993. Isolation of sake yeast mutants resistant to isoamyl monofluoroacetate to improve isoamyl acetate productivity. J. Ferment. Bioeng. 76:229–31
    [Google Scholar]
  131. Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS 2018. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36:614–23
    [Google Scholar]
  132. Yona AH, Manor YS, Herbst RH, Romano GH, Mitchell A et al. 2012. Chromosomal duplication is a transient evolutionary solution to stress. PNAS 109:21010–15
    [Google Scholar]
  133. You KM, Rosenfield CL, Knipple DC 2003. Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl. Environ. Microbiol. 69:1499–503
    [Google Scholar]
  134. Zhu YO, Siegal ML, Hall DW, Petrov DA 2014. Precise estimates of mutation rate and spectrum in yeast. PNAS 111:E2310–18
    [Google Scholar]
/content/journals/10.1146/annurev-food-032519-051715
Loading
/content/journals/10.1146/annurev-food-032519-051715
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error