1932

Abstract

Obesity is a major public health concern that has almost reached the level of pandemic and is rapidly progressing. The gut microbiota has emerged as a crucial regulator involved in the etiology of obesity, and the manipulation of it by dietary intervention has been widely used for reducing the risk of obesity. Nondigestible oligosaccharides (NDOs) are attracting increasing interests as prebiotics, as the indigestible ingredients can induce compositional or metabolic improvement to the gut microbiota, thereby improving gut health and giving rise to the production of short-chain fatty acids (SCFAs) to elicit metabolic effects on obesity. In this review, the role NDOs play in obesity intervention via modification of the gut microecology, as well as the physicochemical and physiological properties and industrial manufacture of NDOs, is discussed. Our goal is to provide a critical assessment of and stimulate comprehensive research into NDO use in obesity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032519-051743
2020-03-25
2024-12-11
Loading full text...

Full text loading...

/deliver/fulltext/food/11/1/annurev-food-032519-051743.html?itemId=/content/journals/10.1146/annurev-food-032519-051743&mimeType=html&fmt=ahah

Literature Cited

  1. Aguirre M, Jonkers DM, Troost FJ, Roeselers G, Venema K 2014. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLOS ONE 9:e113864
    [Google Scholar]
  2. Ang Z, Ding JL. 2016. GPR41 and GPR43 in obesity and inflammation-protective or causative?. Front. Immunol. 7:28
    [Google Scholar]
  3. Anhê FF, Pilon G, Roy D, Desjardins Y, Levy E, Marette A 2016. Triggering Akkermansia with dietary polyphenols: a new weapon to combat the metabolic syndrome. ? Gut Microbes 7:146–53
    [Google Scholar]
  4. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY et al. 2004. The gut microbiota as an environmental factor that regulates fat storage. PNAS 101:15718–23
    [Google Scholar]
  5. Benkoulouche M, Fauré R, Remaud-Siméon M, Moulis C, André I 2019. Harnessing glycoenzyme engineering for synthesis of bioactive oligosaccharides. Interface Focus 9:20180069
    [Google Scholar]
  6. Bhatia S, Prabhu PN, Benefiel AC, Miller MJ, Chow J et al. 2015. Galacto-oligosaccharides may directly enhance intestinal barrier function through the modulation of goblet cells. Mol. Nutr. Food Res. 59:566–73
    [Google Scholar]
  7. Bindels LB, Delzenne NM, Cani PD, Jens W 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12:303–10
    [Google Scholar]
  8. Blüher M. 2019. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15:288–98
    [Google Scholar]
  9. Bomhof MR, Saha DC, Reid DT, Paul HA, Reimer RA 2014. Combined effects of oligofructose and Bifidobacterium animalis on gut microbiota and glycemia in obese rats. Obesity 22:763–71
    [Google Scholar]
  10. Boudry G, Hamilton MK, Chichlowski M, Wickramasinghe S, Barile D et al. 2017. Bovine milk oligosaccharides decrease gut permeability and improve inflammation and microbial dysbiosis in diet-induced obese mice. J. Dairy Sci. 100:2471–81
    [Google Scholar]
  11. Brahe LK, Astrup A, Larsen LH 2016. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota?. Adv. Nutr. 7:90–101
    [Google Scholar]
  12. Breyner NM, Michon C, de Sousa CS, Vilas Boas PB, Chain F et al. 2017. Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-κB pathway. Front. Microbiol. 8:114
    [Google Scholar]
  13. Canfora EE, Jocken JW, Blaak EE 2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11:577–91
    [Google Scholar]
  14. Canfora EE, Meex RCR, Venema K, Blaak EE 2019. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 15:261–73
    [Google Scholar]
  15. Canfora EE, van der Beek CM, Hermes GDA, Goossens GH, Jocken JWE et al. 2017a. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals. Gastroenterology 153:87–97.e3
    [Google Scholar]
  16. Canfora EE, van der Beek CM, Jocken JWE, Goossens GH, Holst JJ et al. 2017b. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7:2360
    [Google Scholar]
  17. Cani PD, Jordan BF. 2018. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat. Rev. Gastroenterol. Hepatol. 15:671–82
    [Google Scholar]
  18. Chambers ES, Alexander V, Arianna P, Morrison DJ, Murphy KG et al. 2015. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64:1744–54
    [Google Scholar]
  19. Chambers ES, Byrne CS, Aspey K, Chen Y, Khan S et al. 2018. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20:1034–39
    [Google Scholar]
  20. Chappuis E, Morel-Depeisse F, Bariohay B, Roux J 2017. Alpha-galacto-oligosaccharides at low dose improve liver steatosis in a high-fat diet mouse model. Molecules 22:E1725
    [Google Scholar]
  21. Chassaing B, Raja SM, Lewis JD, Srinivasan S, Gewirtz AT 2017. Colonic microbiota encroachment correlates with dysglycemia in humans. Cell. Mol. Gastroenterol. Hepatol. 4:205–21
    [Google Scholar]
  22. Chelakkot C, Choi Y, Kim DK, Park HT, Ghim J et al. 2018. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med. 50:e450
    [Google Scholar]
  23. Chen Q, Liu M, Zhang P, Fan S, Huang J et al. 2019. Fucoidan (FUC) and galactooligosaccharides (GOS) ameliorate high-fat-diet-induced dyslipidemia in rats by modulating the gut microbiota and bile acid metabolism. Nutrition 65:50–59
    [Google Scholar]
  24. Cho EJ, Rahman A, Kim SW, Baek YM, Hwang HJ et al. 2008. Chitosan oligosaccharides inhibit adipogenesis in 3T3-L1 adipocytes. J. Microbiol. Biotechnol. 18:80–87
    [Google Scholar]
  25. Chunchai T, Thunapong W, Yasom S, Wanchai K, Eaimworawuthikul S et al. 2018. Decreased microglial activation through gut-brain axis by prebiotics, probiotics, or synbiotics effectively restored cognitive function in obese-insulin resistant rats. J. Neuroinflamm. 15:111
    [Google Scholar]
  26. Cluny NL, Eller LK, Keenan CM, Reimer RA, Sharkey KA 2015. Interactive effects of oligofructose and obesity predisposition on gut hormones and microbiota in diet-induced obese rats. Obesity 23:769–78
    [Google Scholar]
  27. Coelho E, Rocha MAM, Saraiva JA, Coimbra MA 2014. Microwave superheated water and dilute alkali extraction of brewers’ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr. Polym. 99:415–22
    [Google Scholar]
  28. Collado MC, Isolauri E, Laitinen K, Salminen S 2010. Effect of mother's weight on infant's microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am. J. Clin. Nutr. 92:1023–30
    [Google Scholar]
  29. Cox AJ, West NP, Cripps AW 2015. Obesity, inflammation, and the gut microbiota. Lancet Diabetes Endocrinol 3:207–15
    [Google Scholar]
  30. Dahiya DK, Puniya M, Shandilya UK, Dhewa T, Kumar N et al. 2017. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front. Microbiol. 8:563
    [Google Scholar]
  31. Dai Z, Feng S, Liu AB, Wang H, Zeng X et al. 2019. Protective effects of α-galacto-oligosaccharides against a high-fat/Western-style diet-induced metabolic abnormalities in mice. Food Funct 10:3660–70
    [Google Scholar]
  32. Dai Z, Lyu W, Xie M, Yuan Q, Ye H et al. 2017. Effects of α-galactooligosaccharides from chickpeas on high-fat-diet-induced metabolic syndrome in mice. J. Agric. Food Chem. 65:3160–66
    [Google Scholar]
  33. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E et al. 2016. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65:426–36
    [Google Scholar]
  34. Delzenne NM, Cani PD, Delmée E, Neyrinck AM 2007. Non-digestible oligosaccharides. Novel Food Ingredients for Weight Control CJK Henry 153–73 Boca Raton, FL: Woodhead Publ.
    [Google Scholar]
  35. Delzenne NM, Neyrinck AM, Bäckhed F, Cani PD 2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7:639–46
    [Google Scholar]
  36. Delzenne NM, Olivares M, Neyrinck AM, Beaumont M, Kjølbæk L et al. 2019. Nutritional interest of dietary fiber and prebiotics in obesity: lessons from the MyNewGut consortium. Clin. Nutr In press
    [Google Scholar]
  37. de Moura FA, Macagnan FT, da Silva LP 2015. Oligosaccharide production by hydrolysis of polysaccharides: a review. Int. J. Food Sci. Technol. 50:275–81
    [Google Scholar]
  38. Dennison CA, Eslinger AJ, Reimer RA 2017. Preconception prebiotic and sitagliptin treatment in obese rats affects pregnancy outcomes and offspring microbiota, adiposity, and glycemia. Front. Endocrinol. 8:301
    [Google Scholar]
  39. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167:1339–53.e21
    [Google Scholar]
  40. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C et al. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96
    [Google Scholar]
  41. De Vadder F, Kovatcheva-Datchary P, Zitoun C, Duchampt A, Bäckhed F, Mithieux G 2016. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab 24:151–57
    [Google Scholar]
  42. Dewulf EM, Cani PD, Claus SP, Susana F, Puylaert PGB et al. 2013. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62:1112–21
    [Google Scholar]
  43. Díez-Municio M, Herrero M, Olano A, Moreno FJ 2014. Synthesis of novel bioactive lactose-derived oligosaccharides by microbial glycoside hydrolases. Microb. Biotechnol. 7:315–31
    [Google Scholar]
  44. Djouzi Z, Andiueux C. 1997. Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br. J. Nutr. 78:313–24
    [Google Scholar]
  45. Emmanuelle LC, Trine N, Junjie Q, Edi P, Falk H et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–46
    [Google Scholar]
  46. Everard A, Lazarevic V, Derrien M, Girard M, Muccioli GM et al. 2011. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60:2775–86
    [Google Scholar]
  47. Everard A, Lazarevic V, Gaïa N, Johansson M, Ståhlman M et al. 2014. Microbiome of prebiotic-treated mice reveals novel targets involved in host response during obesity. ISME J 8:2116–30
    [Google Scholar]
  48. Fernandes R, do Rosario VA, Mocellin MC, Kuntz MGF, Trindade EBSM 2017. Effects of inulin-type fructans, galacto-oligosaccharides and related synbiotics on inflammatory markers in adult patients with overweight or obesity: a systematic review. Clin. Nutr. 36:1197–206
    [Google Scholar]
  49. Fontana JD, Tiboni M, Koop HS, Grzybowski A, Chalcoski BMS et al. 2017. Importance of phosphoric acid for functional foods: prebiotics oligosaccharides. Food Bioconversion AM Grumezescu, AM Holban 433–65 Boston: Academic
    [Google Scholar]
  50. Frederique R, Philippe G, Mathilde B, Laura B, Aurélia B et al. 2013. Short-chain fructo-oligosaccharides modulate intestinal microbiota and metabolic parameters of humanized gnotobiotic diet induced obesity mice. PLOS ONE 8:e71026
    [Google Scholar]
  51. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5:3611
    [Google Scholar]
  52. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–17
    [Google Scholar]
  53. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA et al. 2017. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491–502
    [Google Scholar]
  54. Goh YJ, Klaenhammer TR. 2015. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu. Rev. Food Sci. Technol. 6:137–56
    [Google Scholar]
  55. Gonai M, Shigehisa A, Kigawa I, Kurasaki K, Chonan O et al. 2017. Galacto-oligosaccharides ameliorate dysbiotic Bifidobacteriaceae decline in Japanese patients with type 2 diabetes. Benef. Microbes 8:705–16
    [Google Scholar]
  56. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O et al. 2014. Human genetics shape the gut microbiome. Cell 159:789–99
    [Google Scholar]
  57. Gopal PK, Sullivan PA, Smart JB 2001. Utilisation of galacto-oligosaccharides as selective substrates for growth by lactic acid bacteria including Bifidobacterium lactis DR10 and Lactobacillus rhamnosus DR20. Int. Dairy J. 11:19–25
    [Google Scholar]
  58. Gribble FM, Reimann F. 2019. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism. Nat. Rev. Endocrinol. 15:226–37
    [Google Scholar]
  59. Guo M, Chen G, Chen K 2016. Fructooligosaccharides: effects, mechanisms, and applications. Research Progress in Oligosaccharins, ed. H Yin, Y Du51–63 New York: Springer
    [Google Scholar]
  60. Hallam MC, Barile D, Meyrand M, German JB, Reimer RA 2014. Maternal high-protein or high-prebiotic-fiber diets affect maternal milk composition and gut microbiota in rat dams and their offspring. Obesity 22:2344–51
    [Google Scholar]
  61. Hamilton MK, Ronveaux CC, Rust BM, Newman JW, Hawley M et al. 2017. Prebiotic milk oligosaccharides prevent development of obese phenotype, impairment of gut permeability, and microbial dysbiosis in high fat-fed mice. Am. J. Physiol. Gastrointest. Liver Physiol. 312:G474–87
    [Google Scholar]
  62. Harvey DJ. 1999. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 18:349–450
    [Google Scholar]
  63. Heymsfield SB, Wadden TA. 2017. Mechanisms, pathophysiology, and management of obesity. New Engl. J. Med. 376:254–66
    [Google Scholar]
  64. Hidefumi K, Tamao N, Tadahiro N, Hitoshi N, Masanori I et al. 2004. Intectin, a novel small intestine-specific glycosylphosphatidylinositol-anchored protein, accelerates apoptosis of intestinal epithelial cells. J. Biol. Chem. 279:42867–74
    [Google Scholar]
  65. Hiippala K, Jouhten H, Ronkainen A, Hartikainen A, Kainulainen V et al. 2018. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients 10:E988
    [Google Scholar]
  66. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–14
    [Google Scholar]
  67. Huang L, Chen J, Cao P, Pan H, Ding C et al. 2015. Anti-obese effect of glucosamine and chitosan oligosaccharide in high-fat diet-induced obese rats. Mar. Drugs 13:2732–56
    [Google Scholar]
  68. Huazano-García A, Shin H, López GM 2017. Modulation of gut microbiota of overweight mice by agavins and their association with body weight loss. Nutrients 9:E821
    [Google Scholar]
  69. Hughes C, Colee JC, Christman MC, Culpepper T, Mai V et al. 2011. Galactooligosaccharide supplementation reduces stress-induced gastrointestinal dysfunction and days of cold or flu: a randomized, double-blind, controlled trial in healthy university students. Am. J. Clin. Nutr. 93:1305–11
    [Google Scholar]
  70. Imamura F, Micha R, Khatibzadeh S, Fahimi S, Shi P et al. 2015. Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob. Health 3:e132–42
    [Google Scholar]
  71. Jieping Y, Summanen PH, Henning SM, Mark H, Heiman L et al. 2015. Xylooligosaccharide supplementation alters gut bacteria in both healthy and prediabetic adults: a pilot study. Front. Physiol. 6:216
    [Google Scholar]
  72. Kailemia MJ, Ruhaak LR, Lebrilla CB, Amster IJ 2014. Oligosaccharide analysis by mass spectrometry: a review of recent developments. Anal. Chem. 86:196–12
    [Google Scholar]
  73. Kavadi PK, Pothuraju R, Chagalamarri J, Bhakri G, Mallepogu A et al. 2017. Dietary incorporation of whey protein isolate and galactooligosaccharides exhibits improvement in glucose homeostasis and insulin resistance in high fat diet fed mice. J. Intercult. Ethnopharmacol. 6:326–32
    [Google Scholar]
  74. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71
    [Google Scholar]
  75. Kim YA, Keogh JB, Clifton PM 2017. Probiotics, prebiotics, synbiotics and insulin sensitivity. Nutr. Res. Rev. 31:35–51
    [Google Scholar]
  76. Koh A, Molinaro A, Ståhlman M, Khan MT, Schmidt C et al. 2018. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175:947–61.e17
    [Google Scholar]
  77. Kondo T, Kishi M, Fushimi T, Kaga T 2009. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 57:5982–86
    [Google Scholar]
  78. Korczak R, Slavin JL. 2018. Fructooligosaccharides and appetite. Curr. Opin. Clin. Nutr. Metab. Care 21:377–80
    [Google Scholar]
  79. Kothari D, Patel S, Goyal A 2014. Therapeutic spectrum of nondigestible oligosaccharides: overview of current state and prospect. J. Food Sci. 79:R1491–98
    [Google Scholar]
  80. Krumbeck JA, Rasmussen HE, Hutkins RW, Clarke J, Shawron K et al. 2018. Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics. Microbiome 6:121
    [Google Scholar]
  81. Kumar SG, Rahman MA, Lee SH, Hwang HS, Kim HA et al. 2009. Plasma proteome analysis for anti‐obesity and anti‐diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics 9:2149–62
    [Google Scholar]
  82. Le Bourgot C, Apper E, Blat S, Respondek F 2018. Fructo-oligosaccharides and glucose homeostasis: a systematic review and meta-analysis in animal models. Nutr. Metab. 15:9
    [Google Scholar]
  83. Li Z, Yi C-X, Katiraei S, Kooijman S, Zhou E et al. 2018. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67:1269–79
    [Google Scholar]
  84. Liu H, Wang J, He T, Becker S, Zhang G et al. 2018. Butyrate: a double-edged sword for health. ? Adv. Nutr. 9:21–29
    [Google Scholar]
  85. Liu TW, Cephas KD, Holscher HD, Kerr KR, Mangian HF et al. 2016. Nondigestible fructans alter gastrointestinal barrier function, gene expression, histomorphology, and the microbiota profiles of diet-induced obese C57BL/6J mice. J. Nutr. 146:949–56
    [Google Scholar]
  86. Long J, Yang J, Henning SM, Woo SL, Hsu M et al. 2019. Xylooligosaccharide supplementation decreases visceral fat accumulation and modulates cecum microbiome in mice. J. Funct. Foods 52:138–46
    [Google Scholar]
  87. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M 2017. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:841–52
    [Google Scholar]
  88. Machado AM, da Silva NBM, Chaves JBP, Alfenas RDCG 2019. Consumption of yacon flour improves body composition and intestinal function in overweight adults: a randomized, double-blind, placebo-controlled clinical trial. Clin. Nutr. ESPEN 29:22–29
    [Google Scholar]
  89. Macia L, Tan J, Vieira AT, Leach K, Stanley D et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6:6734
    [Google Scholar]
  90. Makki K, Deehan EC, Walter J, Bäckhed F 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host Microbe 23:705–15
    [Google Scholar]
  91. Man SM. 2018. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15:721–37
    [Google Scholar]
  92. Martins GN, Ureta MM, Tymczyszyn EE, Castilho P, Gomez-Zavaglia A 2019. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front. Nutr. 6:78
    [Google Scholar]
  93. Matteo S, Elodie L, Sandra G, Audrey B, Mathieu B et al. 2012. Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota. Gut 61:543–53
    [Google Scholar]
  94. Maynard CL, Elson CO, Hatton RD, Weaver CT 2012. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489:231–41
    [Google Scholar]
  95. Menting MD, Mintjens S, van de Beek C, Frick CJ, Ozanne SE et al. 2019. Maternal obesity in pregnancy impacts offspring cardiometabolic health: systematic review and meta-analysis of animal studies. Obes. Rev. 20:677–85
    [Google Scholar]
  96. Meyer D. 2015. Health benefits of prebiotic fibers. Advances in Food and Nutrition Research J Henry 47–91 Belmont, CA: Academic
    [Google Scholar]
  97. Mithieux G. 2014. Nutrient control of energy homeostasis via gut-brain neural circuits. Neuroendocrinology 100:89–94
    [Google Scholar]
  98. Mitmesser S, Combs M. 2017. Prebiotics: inulin and other oligosaccharides. The Microbiota in Gastrointestinal Pathophysiology MH Floch, Y Ringel, WA Walker 201–8 Boston: Academic
    [Google Scholar]
  99. Morel FB, Dai Q, Ni J, Thomas D, Parnet P et al. 2015. α-Galacto-oligosaccharides dose-dependently reduce appetite and decrease inflammation in overweight adults. J. Nutr. 145:2052–59
    [Google Scholar]
  100. Muanprasat C, Chatsudthipong V. 2017. Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol. Ther. 170:80–97
    [Google Scholar]
  101. Muñiz Pedrogo DA, Jensen MD, Van Dyke CT, Murray JA, Woods JA et al. 2018. Gut microbial carbohydrate metabolism hinders weight loss in overweight adults undergoing lifestyle intervention with a volumetric diet. Mayo Clinic Proc 93:1104–10
    [Google Scholar]
  102. Mussatto SI, Mancilha IM. 2007. Non-digestible oligosaccharides: a review. Carbohydr. Polym. 68:587–97
    [Google Scholar]
  103. Nath A, András Molnár M, Csighy A, Kőszegi K, Galambos I et al. 2018. Biological activities of lactose-based prebiotics and symbiosis with probiotics on controlling osteoporosis, blood-lipid and glucose levels. Medicina 54:E98
    [Google Scholar]
  104. Neyrinck AM, Hiel S, Bouzin C, Campayo VG, Cani PD et al. 2018. Wheat-derived arabinoxylan oligosaccharides with bifidogenic properties abolishes metabolic disorders induced by Western diet in mice. Nutr. Diabetes 8:15
    [Google Scholar]
  105. Neyrinck AM, Van Hee VF, Piront N, De Backer F, Toussaint O et al. 2012. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutr. Diabetes 2:e28
    [Google Scholar]
  106. Nicholson JK, Elaine H, James K, Remy B, Glenn G et al. 2012. Host-gut microbiota metabolic interactions. Science 336:1262–67
    [Google Scholar]
  107. Nicolucci AC, Hume MP, Martínez I, Mayengbam S, Walter J, Reimer RA 2017. Prebiotics reduce body fat and alter intestinal microbiota in children who are overweight or with obesity. Gastroenterology 153:711–22
    [Google Scholar]
  108. Nie Q, Chen H, Hu J, Fan S, Nie S 2019a. Dietary compounds and traditional Chinese medicine ameliorate type 2 diabetes by modulating gut microbiota. Crit. Rev. Food Sci. Nutr. 59:848–63
    [Google Scholar]
  109. Nie Q, Hu J, Gao H, Fan L, Chen H, Nie S 2019b. Polysaccharide from Plantago asiatica L. attenuates hyperglycemia, hyperlipidemia and affects colon microbiota in type 2 diabetic rats. Food Hydrocoll 86:34–42
    [Google Scholar]
  110. Overduin J, Schoterman MHC, Calame W, Schonewille AJ, Ten Bruggencate SJM 2012. Dietary galacto-oligosaccharides and calcium: effects on energy intake, fat-pad weight and satiety-related, gastrointestinal hormones in rats. Br. J. Nutr. 109:1338–48
    [Google Scholar]
  111. Pan H, Fu C, Huang L, Jiang Y, Deng X et al. 2018. Anti-obesity effect of chitosan oligosaccharide capsules (COSCs) in obese rats by ameliorating leptin resistance and adipogenesis. Mar. Drugs 16:E198
    [Google Scholar]
  112. Pan L, Farouk HM, Qin G, Zhao Y, Bao N 2018. The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals. Int. J. Mol. Sci. 19:E554
    [Google Scholar]
  113. Pan WW, Myers MG Jr 2018. Leptin and the maintenance of elevated body weight. Nat. Rev. Neurosci. 19:95–105
    [Google Scholar]
  114. Parnell JA, Klancic T, Reimer RA 2017. Oligofructose decreases serum lipopolysaccharide and plasminogen activator inhibitor-1 in adults with overweight/obesity. Obesity 25:510–13
    [Google Scholar]
  115. Parnell JA, Reimer RA. 2009. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am. J. Clin. Nutr. 89:1751–59
    [Google Scholar]
  116. Pasqualetti V, Altomare A, Guarino MPL, Locato V, Cocca S et al. 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLOS ONE 9:e98031
    [Google Scholar]
  117. Paul HA, Bomhof MR, Vogel HJ, Reimer RA 2016. Diet-induced changes in maternal gut microbiota and metabolomic profiles influence programming of offspring obesity risk in rats. Sci. Rep. 6:20683
    [Google Scholar]
  118. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T et al. 2016. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535:376–81
    [Google Scholar]
  119. Perez-Cornago A, Jaurrieta I, Sayon-Orea C, Ruiz-Canela M, Carlos S et al. 2015. Prebiotic consumption and the incidence of overweight in a Mediterranean cohort: the Seguimiento Universidad de Navarra Project. Am. J. Clin. Nutr. 102:1554–62
    [Google Scholar]
  120. Perry RJ, Peng L, Barry NA, Cline GW, Zhang D et al. 2016. Acetate mediates a microbiome–brain–β-cell axis to promote metabolic syndrome. Nature 534:213–17
    [Google Scholar]
  121. Petersen C, Bell R, Klag KA, Lee SH, Soto R et al. 2019. T cell–mediated regulation of the microbiota protects against obesity. Science 365:eaat9351
    [Google Scholar]
  122. Qin Y, Roberts JD, Grimm SA, Lih FB, Deterding LJ et al. 2018. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol 19:7
    [Google Scholar]
  123. Rastall RA. 2010. Functional oligosaccharides: application and manufacture. Annu. Rev. Food Sci. Technol. 1:305–39
    [Google Scholar]
  124. Reimer RA, Willis HJ, Tunnicliffe JM, Park H, Madsen KL, Soto-Vaca A 2017. Inulin-type fructans and whey protein both modulate appetite but only fructans alter gut microbiota in adults with overweight/obesity: a randomized controlled trial. Mol. Nutr. Food Res. 61:1700484
    [Google Scholar]
  125. Rivière A, Selak M, Lantin D, Leroy F, Vuyst LD 2016. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut. Front. Microbiol. 7:979
    [Google Scholar]
  126. Roberfroid M, Slavin J. 2000. Nondigestible oligosaccharides. Crit. Rev. Food Sci. Nutr. 40:461–80
    [Google Scholar]
  127. Roediger WEW, Duncan A, Kapaniris O, Millard S 1993. Reducing sulfur compounds of the colon impair colonocyte nutrition: implications for ulcerative colitis. Gastroenterology 104:802–9
    [Google Scholar]
  128. Rose DJ, Inglett GE. 2010. Production of feruloylated arabinoxylo-oligosaccharides from maize (Zea mays) bran by microwave-assisted autohydrolysis. Food Chem 119:1613–18
    [Google Scholar]
  129. Salazar N, Dewulf EM, Neyrinck AM, Bindels LB, Cani PD et al. 2015. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. 34:501–7
    [Google Scholar]
  130. Sallis JF, Floyd MF, Rodríguez DA, Saelens BE 2012. Role of built environments in physical activity, obesity, and cardiovascular disease. Circulation 125:729–37
    [Google Scholar]
  131. Salonen A, de Vos WM 2014. Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol. 5:239–62
    [Google Scholar]
  132. Sanna S, van Zuydam NR, Mahajan A, Kurilshikov A, Vich Vila A et al. 2019. Causal relationships among the gut microbiome, short-chain fatty acids and metabolic diseases. Nat. Genet. 51:600–5
    [Google Scholar]
  133. Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA et al. 2010. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 104:83–92
    [Google Scholar]
  134. Sarbini SR, Rastall RA. 2011. Prebiotics: metabolism, structure, and function. Funct. Food Rev. 3:93–106
    [Google Scholar]
  135. Serena C, Ceperuelo-Mallafré V, Keiran N, Queipo-Ortuño MI, Bernal R et al. 2018. Elevated circulating levels of succinate in human obesity are linked to specific gut microbiota. ISME J 12:1642–57
    [Google Scholar]
  136. Shanahan F, Sinderen DV, O'Toole PW, Stanton C 2017. Feeding the microbiota: transducer of nutrient signals for the host. Gut 66:1709–17
    [Google Scholar]
  137. Singh DP, Singh S, Bijalwan V, Kumar V, Khare P et al. 2018. Co-supplementation of isomalto-oligosaccharides potentiates metabolic health benefits of polyphenol-rich cranberry extract in high fat diet-fed mice via enhanced gut butyrate production. Eur. J. Nutr. 57:2897–911
    [Google Scholar]
  138. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39
    [Google Scholar]
  139. Singh RD, Banerjee J, Arora A 2015. Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact. Carbohydr. Diet. Fibre 5:19–30
    [Google Scholar]
  140. Singh SB, Lin HC. 2015. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 3:866–89
    [Google Scholar]
  141. Sivaprakasam S, Prasad PD, Singh N 2016. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol. Ther. 164:144–51
    [Google Scholar]
  142. Smith GD. 2016. A fatter, healthier but more unequal world. Lancet 387:1349–50
    [Google Scholar]
  143. Suriano F, Bindels LB, Verspreet J, Courtin CM, Verbeke K et al. 2017. Fat binding capacity and modulation of the gut microbiota both determine the effect of wheat bran fractions on adiposity. Sci. Rep. 7:5621
    [Google Scholar]
  144. Thaiss CA. 2018. Microbiome dynamics in obesity. Science 362:903–4
    [Google Scholar]
  145. Thiennimitr P, Yasom S, Tunapong W, Chunchai T, Wanchai K et al. 2018. Lactobacillus paracasei HII01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition 54:40–47
    [Google Scholar]
  146. Tunapong W, Apaijai N, Yasom S, Tanajak P, Wanchai K et al. 2018. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur. J. Nutr. 57:2091–104
    [Google Scholar]
  147. van den Munckhof ICL, Kurilshikov A, Ter Horst R, Riksen NP, Joosten LAB et al. 2018. Role of gut microbiota in chronic low-grade inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic review of human studies. Obes. Rev. 19:1719–34
    [Google Scholar]
  148. van der Beek CM, Canfora EE, Lenaerts K, Troost FJ, Damink SWO et al. 2016. Distal, not proximal, colonic acetate infusions promote fat oxidation and improve metabolic markers in overweight/obese men. Clin. Sci. 130:2073–82
    [Google Scholar]
  149. van Diepen JA, Robben JH, Hooiveld GJ, Carmone C, Alsady M et al. 2017. SUCNR1-mediated chemotaxis of macrophages aggravates obesity-induced inflammation and diabetes. Diabetologia 60:1304–13
    [Google Scholar]
  150. Verspreet J, Damen B, Broekaert WF, Verbeke K, Delcour JA, Courtin CM 2016. A critical look at prebiotics within the dietary fiber concept. Annu. Rev. Food Sci. Technol. 7:167–90
    [Google Scholar]
  151. Vinke PC, Aidy SE, Dijk GV 2017. The role of supplemental complex dietary carbohydrates and gut microbiota in promoting cardiometabolic and immunological health in obesity: lessons from healthy non-obese individuals. Front. Nutr. 4:34
    [Google Scholar]
  152. Vulevic J, Drakoularakou A, Tzortzis G, Gibson GR, Yaqoob P 2008. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers. Am. J. Clin. Nutr. 88:1438–46
    [Google Scholar]
  153. Vulevic J, Juric A, Tzortzis G, Gibson GR 2013. A mixture of trans-galactooligosaccharides reduces markers of metabolic syndrome and modulates the fecal microbiota and immune function of overweight adults. J. Nutr. 143:324–31
    [Google Scholar]
  154. Wan Y, Wang F, Yuan J, Li J, Jiang D et al. 2019. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68:1417–29
    [Google Scholar]
  155. Wang H, Zhang X, Wang S, Li H, Xu Z 2018. Mannan-oligosaccharide modulates the obesity and gut microbiota in high-fat diet-fed mice. Food Funct 9:3916–29
    [Google Scholar]
  156. Wang Y, Guo Q, Goff HD, LaPointe G 2019. Oligosaccharides: structure, function and application. Encyclopedia of Food Chemistry L Melton, F Shahidi, P Varelis 202–7 Oxford: Academic
    [Google Scholar]
  157. Warrand J, Janssen HG. 2007. Controlled production of oligosaccharides from amylose by acid-hydrolysis under microwave treatment: comparison with conventional heating. Carbohydr. Polym. 69:353–62
    [Google Scholar]
  158. Winer DA, Luck H, Tsai S, Winer S 2016. The intestinal immune system in obesity and insulin resistance. Cell Metab 23:413–26
    [Google Scholar]
  159. Wrzosek L, Miquel S, Noordine ML, Bouet S, Chevalier-Curt MJ et al. 2013. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11:61
    [Google Scholar]
  160. Xie G, Wang X, Liu P, Wei R, Chen W et al. 2016. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 7:19355–66
    [Google Scholar]
  161. Yu Y, Patch C, Weston-Green K, Zhou Y, Zheng K, Huang X-F 2018. Dietary galacto-oligosaccharides and resistant starch protect against altered CB1 and 5-HT1A and 2A receptor densities in rat brain: implications for preventing cognitive and appetite dysfunction during a high-fat diet. Mol. Nutr. Food Res. 62:1800422
    [Google Scholar]
  162. Zhao C, Wu Y, Liu X, Liu B, Cao H et al. 2017. Functional properties, structural studies and chemo-enzymatic synthesis of oligosaccharides. Trends Food Sci. Technol. 66:135–45
    [Google Scholar]
  163. Zheng J, Cheng G, Li Q, Jiao S, Feng C et al. 2018a. Chitin oligosaccharide modulates gut microbiota and attenuates high-fat-diet-induced metabolic syndrome in mice. Mar. Drugs 16:E66
    [Google Scholar]
  164. Zheng J, Li H, Zhang X, Jiang M, Luo C et al. 2018b. Prebiotic mannan-oligosaccharides augment the hypoglycemic effects of metformin in correlation with modulating gut microbiota. J. Agric. Food Chem. 66:5821–31
    [Google Scholar]
  165. Zmora N, Suez J, Elinav E 2019. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16:35–56
    [Google Scholar]
  166. Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M et al. 2018. Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host Microbe 23:41–53.e4
    [Google Scholar]
  167. Zou P, Yang X, Wang J, Li Y, Yu H et al. 2016. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–81
    [Google Scholar]
/content/journals/10.1146/annurev-food-032519-051743
Loading
/content/journals/10.1146/annurev-food-032519-051743
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error