The oral bioavailability of a health-promoting dietary component (nutraceutical) may be limited by various physicochemical and physiological phenomena: liberation from food matrices, solubility in gastrointestinal fluids, interaction with gastrointestinal components, chemical degradation or metabolism, and epithelium cell permeability. Nutraceutical bioavailability can therefore be improved by designing food matrices that control their bioaccessibility (), absorption (), and transformation () within the gastrointestinal tract (GIT). This article reviews the major factors influencing the gastrointestinal fate of nutraceuticals, and then uses this information to develop a new scheme to classify the major factors limiting nutraceutical bioavailability: the nutraceutical bioavailability classification scheme (NuBACS). This new scheme is analogous to the biopharmaceutical classification scheme (BCS) used by the pharmaceutical industry to classify drug bioavailability, but it contains additional factors important for understanding nutraceutical bioavailability in foods. The article also highlights potential strategies for increasing the oral bioavailability of nutraceuticals based on their NuBACS designation ().


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aarak KE, Rigby NM, Kirkhus B, Salt LJ, Sahlstrom S. et al. 2013. The impact of meal composition on the release of fatty acids from salmon during in vitro gastrointestinal digestion. Food Funct. 4:1819–26 [Google Scholar]
  2. Actis-Goretta L, Leveques A, Rein M, Teml A, Schafer C. et al. 2013. Intestinal absorption, metabolism, and excretion of (−)-epicatechin in healthy humans assessed by using an intestinal perfusion technique. Am. J. Clin. Nutr. 98:924–33 [Google Scholar]
  3. Aherne SA, Daly T, Jiwan MA, O'Sullivan L, O'Brien NM. 2010. Bioavailability of beta-carotene isomers from raw and cooked carrots using an in vitro digestion model coupled with a human intestinal Caco-2 cell model. Food Res. Int. 43:1449–54 [Google Scholar]
  4. Akoh CC, Min DB. 2008. Food Lipids: Chemistry, Nutrition, and Biotechnology Boca Raton, FL: CRC Press [Google Scholar]
  5. Alfaras I, Perez M, Juan ME, Merino G, Prieto JG. et al. 2010. Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-resveratrol in knockout mice. J. Agric. Food Chem. 58:4523–28 [Google Scholar]
  6. Amidon GL, Lennernas H, Shah VP, Crison JR. 1995. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharma. Res. 12:413–20 [Google Scholar]
  7. Arnott JA, Planey SL. 2012. The influence of lipophilicity in drug discovery and design. Expert Opin. Drug Discov. 7:863–75 [Google Scholar]
  8. Artursson P, Palm K, Luthman K. 1996. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 22:67–84 [Google Scholar]
  9. Azorin-Ortuno M, Yanez-Gascon MJ, Vallejo F, Pallares FJ, Larrosa M. et al. 2011. Metabolites and tissue distribution of resveratrol in the pig. Mol. Nutr. Food Res. 55:1154–68 [Google Scholar]
  10. Boon CS, McClements DJ, Weiss J, Decker EA. 2010. Factors influencing the chemical stability of carotenoids in foods. Crit. Rev. Food Sci. Nutr. 50:515–32 [Google Scholar]
  11. Borel P, Tyssandier V, Mekki N, Grolier P, Rochette Y. et al. 1998. Chylomicron beta-carotene and retinyl palmitate responses are dramatically diminished when men ingest beta-carotene with medium-chain rather than long-chain triglycerides. J. Nutr. 128:1361–67 [Google Scholar]
  12. Bosscher D, Breynaert A, Pieters L, Hermans N. 2009. Food-based strategies to modulate the composition of the intestinal microbiota and their associated health effects. J. Physiol. Pharmacol. 60:5–11 [Google Scholar]
  13. Brown MJ, Ferruzzi MG, Nguyen ML, Cooper DA, Eldridge AL. et al. 2004. Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am. J. Clin. Nutr. 80:396–403 [Google Scholar]
  14. Carail M, Goupy P, Reynaud E, Dangles O, Caris-Veyrat C. 2013. Oxidative cleavage products of lycopene: production and reactivity in a biomimetic experimental model of oxidative stress. Carotenoid Cleavage Products P Winterhalter, SE Ebeler 191–205 Washington, DC: Am. Chem. Soc. [Google Scholar]
  15. Carbonell-Capella JM, Buniowska M, Barba FJ, Esteve MJ, Frigola A. 2014. Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review. Compr. Rev. Food Sci. Food Saf. 13:155–71 [Google Scholar]
  16. Chabanea MN, Ahmad AA, Peluso J, Muller CD, Ubeaud G. 2009. Quercetin and naringenin transport across human intestinal Caco-2 cells. J. Pharm. Pharmacol. 61:1473–83 [Google Scholar]
  17. Challa VR, Babu PR, Challa SR, Johnson B, Maheswari C. 2013. Pharmacokinetic interaction study between quercetin and valsartan in rats and in vitro models. Drug Dev. Ind. Pharm. 39:865–72 [Google Scholar]
  18. Charman WN, Porter CJH, Mithani S, Dressman JB. 1997. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J. Pharma. Sci. 86:269–82 [Google Scholar]
  19. Chen ZJ, Zheng SR, Li LP, Jiang HD. 2014. Metabolism of flavonoids in human: a comprehensive review. Curr. Drug Metab. 15:48–61 [Google Scholar]
  20. Chi YC, Lin SP, Hou YC. 2012. A new herb-drug interaction of Polygonum cuspidatum, a resveratrol-rich nutraceutical, with carbamazepine in rats. Toxicol. Appl. Pharmacol. 263:315–22 [Google Scholar]
  21. Choi JS, Choi BC, Kang KW. 2009. Effect of resveratrol on the pharmacokinetics of oral and intravenous nicardipine in rats: possible role of P-glycoprotein inhibition by resveratrol. Pharmazie 64:49–52 [Google Scholar]
  22. Cirin DM, Posa MM, Krstonosic VS. 2012. Interactions between sodium cholate or sodium deoxycholate and nonionic surfactant (Tween 20 or Tween 60) in aqueous solution. Ind. Eng. Chem. Res. 51:3670–76 [Google Scholar]
  23. Cone RA. 2009. Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:75–85 [Google Scholar]
  24. Constantinides PP, Wasan KM. 2007. Lipid formulation strategies for enhancing intestinal transport and absorption of P-glycoprotein (P-gp) substrate drugs: in vitro/in vivo case studies. J. Pharma. Sci. 96:235–48 [Google Scholar]
  25. Cramer JM, Jeffery EH. 2011. Sulforaphane absorption and excretion following ingestion of a semipurified broccoli powder rich in glucoraphanin and broccoli sprouts in healthy men. Nutr. Cancer 63:2196–201 [Google Scholar]
  26. D'Ambrosio DN, Clugston RD, Blaner WS. 2011. Vitamin A metabolism: an update. Nutrients 3:63–103 [Google Scholar]
  27. Dahan A, Miller JM. 2012. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 14:244–51 [Google Scholar]
  28. Dahan A, Miller JM, Amidon GL. 2009. Prediction of solubility and permeability class membership: provisional BCS classification of the world's top oral drugs. AAPS J. 11:740–46 [Google Scholar]
  29. Day A, Canada F, Diaz J, Kroon P, McLaughlan R. et al. 2000. Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett. 468:166–70 [Google Scholar]
  30. Decker EA, Chen B, Panya A, Elias RJ. 2011. Understanding antioxidant mechanisms in preventing oxidation in foods. Oxidation in Foods and Beverages and Antioxidant Applications, Vol. 1 Understanding Mechanisms of Oxidation and Antioxidant Activity EA Decker, RJ Elias, DJ McClements 225–48 Cambridge, UK: Woodhead Publ. [Google Scholar]
  31. Delmas D, Aires V, Limagne E, Dutartre P, Mazue F. et al. 2011. Transport, stability, and biological activity of resveratrol. Ann. N.Y. Acad. Sci. 1215:48–59 [Google Scholar]
  32. Dempe JS, Scheerle RK, Pfeiffer E, Metzler M. 2013. Metabolism and permeability of curcumin in cultured Caco-2 cells. Mol. Nutr. Food Res. 57:1543–49 [Google Scholar]
  33. Devraj R, Williams HD, Warren DB, Mullertz A, Porter CJH, Pouton CW. 2013. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products. Int. J. Pharm. 441:323–33 [Google Scholar]
  34. Diniz A, Escuder-Gilabert L, Lopes PN, Villanueva-Camañas MR, Sagrado S, Medina-Hernández JM. 2008. Characterization of interactions between polyphenolic compounds and human serum proteins by capillary electrophoresis. Anal. Bioanal. Chem. 391:2625–32 [Google Scholar]
  35. Dudhatra GB, Mody SK, Awale MM, Patel HB, Modi CM. et al. 2012. A comprehensive review on pharmacotherapeutics of herbal bioenhancers. Sci. World J. 2012:637953 [Google Scholar]
  36. During A, Hussain MM, Morel DW, Harrison EH. 2002. Carotenoid uptake and secretion by CaCo-2 cells: beta-carotene isomer selectivity and carotenoid interactions. J. Lipid Res. 43:1086–95 [Google Scholar]
  37. Elbarbry F, Elrody N. 2011. Potential health benefits of sulforaphane: a review of the experimental, clinical and epidemiological evidences and underlying mechanisms. J. Med. Plants Res. 5:4473–84 [Google Scholar]
  38. Espin JC, Garcia-Conesa MT, Tomas-Barberan FA. 2007. Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008 [Google Scholar]
  39. Fahy DM, O'Callaghan YC, O'Brien NM. 2004. Phytosterols: lack of cytotoxicity but interference with beta-carotene uptake in Caco-2 cells in culture. Food Addit. Contam. 21:42–51 [Google Scholar]
  40. Failla ML, Huo T, Thakkar SK. 2007. In vitro screening of relative bioaccessibility of carotenoids from foods Presented at Annu. Meet. Asian Congress of Nutr., 10th, Taipei, Taiwan [Google Scholar]
  41. Fasinu P, Pillay V, Ndesendo VMK, du Toit LC, Choonara YE. 2011. Diverse approaches for the enhancement of oral drug bioavailability. Biopharm. Drug Dispos. 32:185–209 [Google Scholar]
  42. Fernandez-Garcia E, Carvajal-Lerida I, Jaren-Galan M, Garrido-Fernandez J, Perez-Galvez A, Hornero-Mendez D. 2012. Carotenoids bioavailability from foods: from plant pigments to efficient biological activities. Food Res. Int. 46:438–50 [Google Scholar]
  43. Nielsen IL, Williamson G. 2007. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer 57:11–10 [Google Scholar]
  44. Fleisher D, Li C, Zhou Y, Pao LH, Karim A. 1999. Drug, meal and formulation interactions influencing drug absorption after oral administration—clinical implications. Clin. Pharmacokinet. 36:233–54 [Google Scholar]
  45. Fong SYK, Liu M, Wei H, Lobenberg R, Kanfer I. et al. 2013. Establishing the pharmaceutical quality of Chinese herbal medicine: a provisional BCS classification. Mol. Pharma. 10:1623–43 [Google Scholar]
  46. Goicoechea E, Brandon EFA, Blokland MH, Guillen MD. 2011. Fate in digestion in vitro of several food components, including some toxic compounds coming from omega-3 and omega-6 lipids. Food Chem. Toxicol. 49:115–24 [Google Scholar]
  47. Goicoechea E, Van Twillert K, Duits M, Brandon E, Kootstra PR. et al. 2008. Use of an in vitro digestion model to study the bioaccessibility of 4-hydroxy-2-nonenal and related aldehydes present in oxidized oils rich in omega-6 acyl groups. J. Agric. Food Chem. 56:8475–83 [Google Scholar]
  48. Granado-Lorencio F, Olmedilla-Alonso B, Herrero-Barbudo C, Perez-Sacristan B, Blanco-Navarro I, Blazquez-Garcia S. 2007. Comparative in vitro bioaccessibility of carotenoids from relevant contributors to carotenoid intake. J. Agric. Food Chem. 55:6387–94 [Google Scholar]
  49. Henning MS, Niu Y, Lee HN, Thames DG, Minutti RR. et al. 2004. Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am. J. Clin. Nutr. 80:1558–64 [Google Scholar]
  50. Herron KL, McGrane MM, Waters D, Lofgren IE, Clark RM. et al. 2006. The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in eggs. J. Nutr. 136:1161–65 [Google Scholar]
  51. Hong J, Lambert JD, Lee SH, Sinko PJ, Yang CS. 2003. Involvement of multidrug resistance-associated proteins in regulating cellular levels of (−)-epigallocatechin-3-gallate and its methyl metabolites. Biochem. Biophys. Res. Commun. 310:1222–27 [Google Scholar]
  52. Hribar U, Ulrih NP. 2014. The metabolism of anthocyanins. Curr. Drug Metab. 15:3–13 [Google Scholar]
  53. Hurst S, Loi CM, Brodfuehrer J, El-Kattan A. 2007. Impact of physiological, and biopharmaceutical factors in absorption and metabolism mechanisms on the drug oral bioavailability of rats and humans. Expert Opin. Drug Metab. Toxicol. 3:469–89 [Google Scholar]
  54. Jeffery J, Holzenburg A, King S. 2012a. Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables. J. Sci. Food Agric. 92:2594–602 [Google Scholar]
  55. Jeffery JL, Turner ND, King SR. 2012b. Carotenoid bioaccessibility from nine raw carotenoid-storing fruits and vegetables using an in vitro model. J. Sci. Food Agric. 92:2603–10 [Google Scholar]
  56. Jia JX, Wasan KM. 2008. Effects of monoglycerides on rhodamine 123 accumulation, estradiol 17 beta-D-glucuronide bidirectional transport and MRP2 protein expression within Caco-2 cells. J. Pharm. Pharma. Sci. 11:45–62 [Google Scholar]
  57. Jin MJ, Han HK. 2010. Effect of piperine, a major component of black pepper, on the intestinal absorption of fexofenadine and its implication on food-drug interaction. J. Food Sci. 75:H93–96 [Google Scholar]
  58. Kang MJ, Cho JY, Shim BH, Kim DK, Lee J. 2009. Bioavailability enhancing activities of natural compounds from medicinal plants. J. Med. Plants Res. 3:1204–11 [Google Scholar]
  59. Kenmogne-Domguia HB, Moisan S, Viau M, Genot C, Meynier A. 2014. The initial characteristics of marine oil emulsions and the composition of the media inflect lipid oxidation during in vitro gastrointestinal digestion. Food Chem. 152:146–54 [Google Scholar]
  60. Kiefer C, Sumser E, Wernet MF, Von Lintig J. 2002. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. Proc. Natl. Acad. Sci. USA 16:10581–86 [Google Scholar]
  61. Kimura O, Ohta C, Koga N, Haraguchi K, Kato Y, Endo T. 2014. Carrier-mediated uptake of nobiletin, a citrus polymethoxyflavonoid, in human intestinal Caco-2 cells. Food Chem. 154:145–50 [Google Scholar]
  62. Kindel T, Lee DM, Tso P. 2010. The mechanism of the formation and secretion of chylomicrons. Atheroscler. Suppl. 11:11–16 [Google Scholar]
  63. Koga N, Ohta C, Kato Y, Haraguchi K, Endo T. et al. 2011. In vitro metabolism of nobiletin, a polymethoxy-flavonoid, by human liver microsomes and cytochrome P450. Xenobiotica 41:927–33 [Google Scholar]
  64. Kosinska A, Andlauer W. 2013. Modulation of tight junction integrity by food components. Food Res. Int. 54:951–60 [Google Scholar]
  65. Kulling S, Honig D, Metzler M. 2000. Oxidative metabolism of the soy isoflavones daidzein and genistein in humans in vitro and in vivo. J. Agric. Food Chem. 48:4963–72 [Google Scholar]
  66. Lambert DJ, Sang S, Yang SC. 2007. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol. Pharma. 4:6819–25 [Google Scholar]
  67. Larkin T, Price EW, Astheimer L. 2008. The key importance of soy isoflavone bioavailability to understanding health benefits. Food Sci. Nutr. 48:538–52 [Google Scholar]
  68. Larsson K, Cavonius L, Alminger M, Undeland I. 2012. Oxidation of cod liver oil during gastrointestinal in vitro digestion. J. Agric. Food Chem. 60:7556–64 [Google Scholar]
  69. Lennernas H, Abrahamsson B, Persson EM, Knutson L. 2007. Oral drug absorption and the biopharmaceutics classification system. J. Drug Deliv. Sci. Technol. 17:237–44 [Google Scholar]
  70. Lesser S, Cermak R, Wolffram S. 2004. Bioavailability of quercetin in pigs is influenced by the dietary fat content. J. Nutr. 134:1508–11 [Google Scholar]
  71. Li S, Wang H, Guo L, Zhao H, Ho CT. 2014. Chemistry and bioactivity of nobiletin and its metabolites. J. Funct. Foods 6:2–10 [Google Scholar]
  72. Liu Y, Hu M. 2002. Absorption and metabolism of flavonoids in the Caco-2 cell culture model and a perused rat intestinal model. Drug Metab. Dispos. 30:370–77 [Google Scholar]
  73. Lo CM, Tso P. 2009. Physicochemical basis of the digestion and absorption of triacylglycerol. Designing Functional Foods: Measuring and Controlling Food Structure Breakdown and Nutrition Absorption DJ McClements, EA Decker 94–125 Cambridge, UK: Woodhead Publ. [Google Scholar]
  74. Martinez MN, Amidon GL. 2002. A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals. J. Clin. Pharmacol. 42:620–43 [Google Scholar]
  75. McClements DJ. 2012. Crystals and crystallization in oil-in-water emulsions: implications for emulsion-based delivery systems. Adv. Colloid Interface Sci. 174:1–30 [Google Scholar]
  76. McClements DJ. 2013. Utilizing food effects to overcome challenges in delivery of lipophilic bioactives: structural design of medical and functional foods. Expert Opin. Drug Deliv. 10:1621–32 [Google Scholar]
  77. McClements DJ, Decker EA. 2008. Lipids. Fennema's Food Chemistry S Damodaran, KL Parkin, OR Fennema 155–216 Boca Raton: CRC Press, 4th ed.. [Google Scholar]
  78. McClements DJ, Decker EA, Park Y, Weiss J. 2009. Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit. Rev. Food Sci. Nutr. 49:577–606 [Google Scholar]
  79. McClements DJ, Xiao H. 2014. Excipient foods: designing food matrices that improve the oral bioavailability of pharmaceuticals and nutraceuticals. Food Funct. 5:1320–33 [Google Scholar]
  80. McGhie TK, Walton MC. 2007. The bioavailability and absorption of anthocyanins: towards a better understanding. Mol. Nutr. Food Res. 51:702–13 [Google Scholar]
  81. Metzler M, Pfeiffer E, Schulz SI, Dempe JS. 2013. Curcumin uptake and metabolism. Biofactors 39:14–20 [Google Scholar]
  82. Misaka S, Muller F, Fromm MF. 2013. Clinical relevance of drug efflux pumps in the gut. Curr. Opin. Pharmacol. 13:847–52 [Google Scholar]
  83. Moelants KRN, Lemmens L, Vandebroeck M, Van Buggenhout S, Van Loey AM, Hendrickx ME. 2012. Relation between particle size and carotenoid bioaccessibility in carrot- and tomato-derived suspensions. J. Agric. Food Chem. 60:11995–2003 [Google Scholar]
  84. Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I. et al. 2010. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 1:233–53 [Google Scholar]
  85. Moreno FJ. 2007. Gastrointestinal digestion of food allergens: effect on their allergenicity. Biomed. Pharmacother. 61:50–60 [Google Scholar]
  86. Murakami A, Koshimizu K, Ohigashi H, Kuwahara S, Kukic W. et al. 2002. Characteristic rat tissue accumulation of nobiletin, a chemopreventive polymethoxyflavonoid, in comparison with luteolin. Biofactors 16:73–82 [Google Scholar]
  87. Murota K, Shimizu S, Chujo H, Moon JH, Terao J. 2000. Efficiency of absorption and metabolic conversion of quercetin and its glucosides in human intestinal cell line Caco-2. Arch. Biochem. Biophys. 384:391–97 [Google Scholar]
  88. Nagao A, Kotake-Nara E, Hase M. 2013. Effects of fats and oils on the bioaccessibility of carotenoids and vitamin E in vegetables. Biosci. Biotechnol. Biochem. 77:1055–60 [Google Scholar]
  89. Panozzo A, Lemmens L, Van Loey A, Manzocco L, Nicoli MC, Hendrickx M. 2013. Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: a case study on differently coloured tomatoes. Food Chem. 141:4094–100 [Google Scholar]
  90. Passamonti S, Vrhovsek U, Mattivi F. 2002. The interaction of anthocyanins with bilitranslocase. Biochem. Biophys. Res. Commun. 296:631–36 [Google Scholar]
  91. Patel AR, Velikov KP. 2011. Colloidal delivery systems in foods: a general comparison with oral drug delivery. Lwt-Food Sci. Technol. 44:1958–64 [Google Scholar]
  92. Pawar BY, Munjal B, Arora S, Karwa M, Kohli G. et al. 2012. Bioavailability of a lipidic formulation of curcumin in healthy human volunteers. Pharmaceutics 4:517–30 [Google Scholar]
  93. Petri N, Tannergren C, Holst B, Mellon FA, Bao YP. et al. 2003. Absorption/metabolism of sulforaphane and quercetin, and regulation of phase II enzymes, in human jejunum in vivo. Drug Metab. Dispos. 31:805–13 [Google Scholar]
  94. Planas JM, Alfaras I, Colom H, Juan ME. 2012. The bioavailability and distribution of trans-resveratrol are constrained by ABC transporters. Arch. Biochem. Biophys. 527:67–73 [Google Scholar]
  95. Porter CJH, Trevaskis NL, Charman WN. 2007. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov. 6:231–48 [Google Scholar]
  96. Porter CJH, Wasan KM. 2008. Lipid-based systems for the enhanced delivery of poorly water soluble drugs. Adv. Drug Deliv. Rev. 60:615–16 [Google Scholar]
  97. Pouton CW, Porter CJ. 2008. Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv. Drug Deliv. Rev. 60:625–37 [Google Scholar]
  98. Prior RL, Wu X. 2006. Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic. Res. 40:101014–28 [Google Scholar]
  99. Qian C, Decker EA, Xiao H, McClements DJ. 2012. Nanoemulsion delivery systems: influence of carrier oil on beta-carotene bioaccessibility. Food Chem. 135:1440–47 [Google Scholar]
  100. Reboul E. 2013. Absorption of vitamin A and carotenoids by the enterocyte: focus on transport proteins. Nutrients 5:3563–81 [Google Scholar]
  101. Reboul E, Klein A, Bietrix F, Gleize B, Malezet-Desmoulins C. et al. 2006. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J. Biol. Chem. 281:4739–45 [Google Scholar]
  102. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, Pinto MD. 2013. Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75:588–602 [Google Scholar]
  103. Rigotti A, Miettinen HE, Krieger M. 2003. The role of the high-density lipoprotein receptor SR-BI in the lipid metabolism of endocrine and other tissues. Endocr. Rev. 24:357–87 [Google Scholar]
  104. Rimbach G, Pallauf J, Moehring J, Kraemer K, Minihane AM. 2008. Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability—a literature review. Curr. Top. Nutraceutical Res. 6:131–44 [Google Scholar]
  105. Rosenthal R, Heydt MS, Amasheh M, Stein C, Fromm M, Amasheh S. 2012. Analysis of absorption enhancers in epithelial cell models. Ann. N.Y. Acad Sci. 1258:86–92 [Google Scholar]
  106. Rothwell AJ, Day JA, Morgan RAA. 2005. Experimental determination of octanol-water partition coefficients of quercetin and related flavonoids. J. Agric. Food Chem. 53:4355–60 [Google Scholar]
  107. Rozner S, Shalev DE, Shames AI, Ottaviani MF, Aserin A, Garti N. 2010. Do food microemulsions and dietary mixed micelles interact?. Colloids Surfaces B 77:22–30 [Google Scholar]
  108. Rupp C, Steckel H, Muller BW. 2010. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine. Int. J. Pharma. 395:272–80 [Google Scholar]
  109. Saaber D, Wollenhaupt S, Baumann K, Reichl S. 2014. Recent progress in tight junction modulation for improving bioavailability. Expert Opin. Drug Discov. 9:367–81 [Google Scholar]
  110. Sabolovic N, Humbert AC, Radominska-Pandya A, Magdalou J. 2006. Resveratrol is efficiently glucuronidated by UDP-glucuronosyltransferases in the human gastrointestinal tract and in Caco-2 cells. Biopharma. Drug Dispos. 27:181–89 [Google Scholar]
  111. Salvia-Trujillo L, Qian C, Martin-Belloso O, McClements DJ. 2013a. Influence of particle size on lipid digestion and beta-carotene bioaccessibility in emulsions and nanoemulsions. Food Chem. 141:1472–80 [Google Scholar]
  112. Salvia-Trujillo L, Qian C, Martin-Belloso O, McClements DJ. 2013b. Modulating beta-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chem. 139:878–84 [Google Scholar]
  113. Seki T, Harada S, Hosoya O, Morimoto K, Juni K. 2008. Evaluation of the establishment of a tight junction in Caco-2 cell monolayers using a pore permeation model involving two different sizes. Biol. Pharma. Bull. 31:163–66 [Google Scholar]
  114. Shimizu M. 2010. Interaction between food substances and the intestinal epithelium. Biosci. Biotechnol. Biochem. 74:232–41 [Google Scholar]
  115. Stevenson DE, Scheepens A, Hurst RD. 2009. Bioavailability and metabolism of dietary flavonoids—much known—much more to discover. Flavonoids: Biosynthesis, Biological Effects and Dietary Sources RB Keller 1–52 Hauppauge: Nova Sci. Publ. [Google Scholar]
  116. Tagashira T, Choshi T, Hibino S, Kamishikiryou J, Sugihara N. 2012. Influence of gallate and pyrogallol moieties on the intestinal absorption of (−)-epicatechin and (−)-epicatechin gallate. J. Food Sci. 77:10H208–15 [Google Scholar]
  117. Tarvainen M, Phuphusit A, Suomela JP, Kuksis A, Kallio H. 2012. Effects of antioxidants on rapeseed oil oxidation in an artificial digestion model analyzed by UHPLC-ESI-MS. J. Agric. Food Chem. 60:3564–79 [Google Scholar]
  118. Tso P, Nauli A, Lo CM. 2004. Enterocyte fatty acid uptake and intestinal fatty acid-binding protein. Biochem. Soc. Trans. 32:75–78 [Google Scholar]
  119. Tsutsumi K, Li SK, Hymas RV, Teng CL, Tillman LG. et al. 2008. Systematic studies on the paracellular permeation of model permeants and oligonucleotides in the rat small intestine with chenodeoxycholate as enhancer. J. Pharma. Sci. 97:350–67 [Google Scholar]
  120. Tydeman EA, Parker ML, Faulks RM, Cross KL, Fillery-Travis A. et al. 2010. Effect of carrot (Daucus carota) microstructure on carotene bioaccessibility in the upper gastrointestinal tract. 2. In vivo digestions. J. Agric. Food Chem. 58:9855–60 [Google Scholar]
  121. Vaidyanathan BJ, Walle T. 2001. Transport and metabolism of the tea flavonoid (−)-epicatechin by the human intestinal cell line Caco-2. Pharma. Res. 18:101420–25 [Google Scholar]
  122. van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P. et al. 2005. Class B scavenger receptor-mediated intestinal absorption of dietary beta-carotene and cholesterol. Biochemistry 44:4517–25 [Google Scholar]
  123. van het Hof KH, West CE, Weststrate JA, Hautvast J. 2000. Dietary factors that affect the bioavailability of carotenoids. J. Nutr. 132:503–6 [Google Scholar]
  124. Varum FJO, Hatton GB, Basit AW. 2013. Food, physiology and drug delivery. Int. J. Pharma. 457:446–60 [Google Scholar]
  125. Vaz-da-Silva M, Loureiro AI, Falcao A, Nunes T, Rocha JF. et al. 2008. Effect of food on the pharmacokinetic profile of transresveratrol. Int. J. Clin. Pharmacol. Ther. 46:564–70 [Google Scholar]
  126. Velderrain-Rodriguez GR, Palafox-Carlos H, Wall-Medrano A, Ayala-Zavala JF, Chen CYO. et al. 2014. Phenolic compounds: their journey after intake. Food Funct. 5:189–97 [Google Scholar]
  127. Velikov KP, Pelan E. 2008. Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–80 [Google Scholar]
  128. Vermeulen M, Klopping-Ketelaars WAAI, Berg VDR, Vaes HJW. 2008. Bioavailability and kinetics of sulforaphane in humans after consumption of cooked versus raw broccoli. J. Agric. Food Chem. 56:10505–9 [Google Scholar]
  129. Vitaglione P, Sforza S, Galaverna G, Ghidini C, Caporaso N. et al. 2005. Bioavailability of trans-resveratrol from red wine in humans. Mol. Nutr. Food Res. 49:495–504 [Google Scholar]
  130. Wahlang B, Pawar BY, Bansal KA. 2011. Identification of permeability-related hurdles in oral delivery of curcumin using the Caco-2 cell model. Eur. J. Pharma. Biopharma. 77:275–82 [Google Scholar]
  131. Walle T. 2011. Bioavailability of resveratrol. Ann. N. Y. Acad. Sci. 1215:20119–15 [Google Scholar]
  132. Wickham M, Faulks R, Mills C. 2009. In vitro digestion methods for assessing the effect of food structure on allergen breakdown. Mol. Nutr. Food Res. 53:952–58 [Google Scholar]
  133. Wildman REC, Kelley M. 2007. Nutraceuticals and functional foods. Handbook of Nutraceuticals and Functional Foods REC Wildman 1–22 Boco Raton, FL: CRC Press, 2nd ed.. [Google Scholar]
  134. Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN. et al. 2013. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 65:315–499 [Google Scholar]
  135. Wu CY, Benet LZ. 2005. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharma. Res. 22:11–23 [Google Scholar]
  136. Wydro P, Krajewska B, Hac-Wydro K. 2007. Chitosan as a lipid binder: a Langmuir monolayer study of chitosan-lipid interactions. Biomacromolecules 8:2611–17 [Google Scholar]
  137. Xiao H, Zheng JK, Song MY, Zhong ZM, Wang MQ. 2012. The metabolism of polymethoxyflavone and its implication in colon cancer inhibition. FASEB J. 26:124.5 [Google Scholar]
  138. Xu LL, He YQ, Guo X, Lu YH, Wang CH. 2011. Identification of metabolites of nobiletin in rats using ultraperformance liquid chromatography coupled with triple-quadrupole mass spectrometry. Acta Pharma. Sinica 46:121483–87 [Google Scholar]
  139. Yanez JA, Wang SWJ, Knemeyer IW, Wirth MA, Alton KB. 2011. Intestinal lymphatic transport for drug delivery. Adv. Drug Deliv. Rev. 63:923–42 [Google Scholar]
  140. Yao M, Chen J, Zheng J, Song M, McClements JD, Xiao H. 2013. Enhanced lymphatic transport of bioactive lipids: cell culture study of polymethoxyflavone incorporation into chylomicrons. Food Funct. 4:1662–67 [Google Scholar]
  141. Yeap YY, Trevaskis NL, Quach T, Tso P, Charman WN, Porter CJH. 2013. Intestinal bile secretion promotes drug absorption from lipid colloidal phases via induction of supersaturation. Mol. Pharma. 10:1874–89 [Google Scholar]
  142. Yeum KJ, Russell RM. 2002. Carotenoid bioavailability and bioconversion. Annu. Rev. Nutr. 22:483–504 [Google Scholar]
  143. Yonekura L, Nagao A. 2007. Intestinal absorption of dietary carotenoids. Mol. Nutr. Food Res. 51:107–15 [Google Scholar]
  144. Yonekura L, Nagao A. 2009. Soluble fibers inhibit carotenoid micellization in vitro and uptake by Caco-2 cells. Biosci. Biotechnol. Biochem. 73:196–99 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error