1932

Abstract

Understanding the relationship between food and the gut microbiota, their interactions, and how each modulates the other is critical for successful promotion of human health. This review seeks to summarize () the current knowledge on the effects of food and food components on gut microbiota and () the association between gut microbiota, consumption of food, and food bioactive components and the resulting beneficial health outcomes. Our goal is to provide state-of-the-art information on food and gut microbiota interactions and to stimulate discussions and research approaches that will move the field forward.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-121303
2019-03-25
2024-09-08
Loading full text...

Full text loading...

/deliver/fulltext/food/10/1/annurev-food-032818-121303.html?itemId=/content/journals/10.1146/annurev-food-032818-121303&mimeType=html&fmt=ahah

Literature Cited

  1. Ajslev TA, Andersen CS, Gamborg M, Sørensen TIA, Jess T 2011. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int. J. Obes. 35:4522–29
    [Google Scholar]
  2. Al-Hassi HO, Ng O, Brookes M 2017. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66:4633–43
    [Google Scholar]
  3. Amitay EL, Werner S, Vital M, Pieper DH, Höfler D et al. 2017. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis 38:8781–88
    [Google Scholar]
  4. Andoh A, Imaeda H, Aomatsu T, Inatomi O, Bamba S et al. 2011. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn's disease using terminal restriction fragment length polymorphism analysis. J. Gastroenterol. 46:4479–86
    [Google Scholar]
  5. Andrews CN, Griffiths TA, Kaufman J, Vergnolle N, Surette MG, Rioux KP 2011. Mesalazine (5‐aminosalicylic acid) alters faecal bacterial profiles, but not mucosal proteolytic activity in diarrhoea‐predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 34:3374–83
    [Google Scholar]
  6. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:6872–83
    [Google Scholar]
  7. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D 2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLOS ONE 4:9e7125
    [Google Scholar]
  8. Arora T, Singh S, Sharma RK 2013. Probiotics: interaction with gut microbiome and antiobesity potential. Nutrition 29:4591–96
    [Google Scholar]
  9. Arrieta M-C, Stiemsma LT, Amenyogbe N, Brown EM, Finlay B 2014. The intestinal microbiome in early life: health and disease. Front. Immunol. 5:427
    [Google Scholar]
  10. Azad MB, Konya T, Maughan H, Guttman DS, Field CJ et al. 2013. Gut microbiota of healthy Canadian infants: profiles by mode of delivery and infant diet at 4 months. Can. Med. Assoc. J. 185:5385–94
    [Google Scholar]
  11. Bäckhed F 2011. Programming of host metabolism by the gut microbiota. Ann. Nutr. Metab. 58:Suppl. 244–52
    [Google Scholar]
  12. Balamurugan R, George G, Kabeerdoss J, Hepsiba J, Chandragunasekaran AMS, Ramakrishna BS 2010. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br. J. Nutr. 103:3335–38
    [Google Scholar]
  13. Barratt MJ, Lebrilla C, Shapiro H-Y, Gordon JI 2017. The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22:2134–41
    [Google Scholar]
  14. Belenguer A, Duncan SH, Calder AG, Holtrop G, Louis P et al. 2006. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol. 72:53593–99
    [Google Scholar]
  15. Bezirtzoglou E, Tsiotsias A, Welling GW 2011. Microbiota profile in feces of breast- and formula-fed newborns by using fluorescence in situ hybridization (FISH). Anaerobe 17:6478–82
    [Google Scholar]
  16. Bian X, Chi L, Gao B, Tu P, Ru H, Lu K 2017. The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PLOS ONE 12:6e0178426
    [Google Scholar]
  17. Biasucci G, Rubini M, Riboni S, Morelli L, Bessi E, Retetangos C 2010. Mode of delivery affects the bacterial community in the newborn gut. Early Hum. Dev. 86:113–15
    [Google Scholar]
  18. Biedermann L, Rogler G 2015. The intestinal microbiota: its role in health and disease. Eur. J. Pediatr. 174:2151–67
    [Google Scholar]
  19. Blander JM, Longman RS, Iliev ID, Sonnenberg GF, Artis D 2017. Regulation of inflammation by microbiota interactions with the host. Nat. Immunol. 18:8851–60
    [Google Scholar]
  20. Brown RL, Clarke TB 2017. The regulation of host defences to infection by the microbiota. Immunology 150:11–6
    [Google Scholar]
  21. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira A 2012. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96:3544–51
    [Google Scholar]
  22. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F 2015. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab 22:4658–68
    [Google Scholar]
  23. Cammarota G, Ianiro G, Cianci R, Bibbò S, Gasbarrini A, Currò D 2015. The involvement of gut microbiota in inflammatory bowel disease pathogenesis: potential for therapy. Pharmacol. Ther. 149:191–212
    [Google Scholar]
  24. Campbell-Platt G 1994. Fermented foods—a world perspective. Food Res. Int. 27:3253–57
    [Google Scholar]
  25. Canani RB, De Filippis F, Nocerino R, Laiola M, Paparo L et al. 2017. Specific signatures of the gut microbiota and increased levels of butyrate in children treated with fermented cow's milk containing heat-killed Lactobacillus paracasei CBA L74. Appl. Environ. Microbiol. 83:19e01206–17
    [Google Scholar]
  26. Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ 2015. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26:126191
    [Google Scholar]
  27. Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI 2013. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24:81415–22
    [Google Scholar]
  28. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S et al. 2015. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519:754192–96
    [Google Scholar]
  29. Chassaing B, Van de Wiele T, De Bodt J, Marzorati M, Gewirtz AT 2017. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66:81414–27
    [Google Scholar]
  30. Chen J, Domingue JC, Sears CL 2017. Microbiota dysbiosis in select human cancers: evidence of association and causality. Semin. Immunol. 3225–34
  31. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J et al. 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:7413621
    [Google Scholar]
  32. Clemente JC, Ursell LK, Parfrey LW, Knight R 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148:61258–70
    [Google Scholar]
  33. Conlon MA, Bird AR 2014. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7:117–44
    [Google Scholar]
  34. Conly JM, Stein K 1992. The production of menaquinones (vitamin K2) by intestinal bacteria and their role in maintaining coagulation homeostasis. Prog. Food Nutr. Sci. 16:4307–43
    [Google Scholar]
  35. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:7464585–88
    [Google Scholar]
  36. Cummings JH 1997. Carbohydrate and protein digestion: the substrates available for fermentation. The Large Intestine in Nutrition and Disease15–42 Brussels, Belg: Danone Inst.
    [Google Scholar]
  37. Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT 1987. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:101221–27
    [Google Scholar]
  38. Dahiya DK, Puniya M, Shandilya UK, Dhewa T, Kumar N et al. 2017. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front. Microbiol. 8:563
    [Google Scholar]
  39. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:7484559–63
    [Google Scholar]
  40. Davidson PM, Branen AL, Thorngate J, Salminen S 2001. Food Additives Boca Raton, FL: CRC Press
    [Google Scholar]
  41. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB et al. 2010. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107:3314691–96
    [Google Scholar]
  42. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Welch JLM et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. PNAS 111:5118321–26
    [Google Scholar]
  43. den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM 2013. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54:92325–40
    [Google Scholar]
  44. Derrien M, van Hylckama Vlieg JET 2015. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:6354–66
    [Google Scholar]
  45. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G et al. 2010. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. PNAS 107:2611971–75
    [Google Scholar]
  46. Duncan SH, Louis P, Thomson JM, Flint HJ 2009. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11:82112–22
    [Google Scholar]
  47. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. 2005. Diversity of the human intestinal microbial flora. Science 308:57281635–38
    [Google Scholar]
  48. Etxeberria U, Arias N, Boqué N, Macarulla MT, Portillo MP et al. 2015. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J. Nutr. Biochem. 26:6651–60
    [Google Scholar]
  49. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:229066–71
    [Google Scholar]
  50. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D et al. 2014. Temporal variability is a personalized feature of the human microbiome. Genome Biol 15:12531
    [Google Scholar]
  51. Flores R, Shi J, Fuhrman B, Xu X, Veenstra TD et al. 2012. Fecal microbial determinants of fecal and systemic estrogens and estrogen metabolites: a cross-sectional study. J. Transl. Med. 10:1253
    [Google Scholar]
  52. Frankenfeld CL 2011. O-desmethylangolensin: the importance of equol's lesser known cousin to human health. Adv. Nutr. 2:4317–24
    [Google Scholar]
  53. Fung TC, Olson CA, Hsiao EY 2017. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20:2145–55
    [Google Scholar]
  54. Furet J-P, Kong L-C, Tap J, Poitou C, Basdevant A et al. 2010. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59:123049–57
    [Google Scholar]
  55. Geremia A, Biancheri P, Allan P, Corazza GR, Di Sabatino A 2014. Innate and adaptive immunity in inflammatory bowel disease. Autoimmun. Rev. 13:13–10
    [Google Scholar]
  56. Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:3382–92
    [Google Scholar]
  57. Ghosh S, Dai C, Brown K, Rajendiran E, Makarenko S et al. 2011. Colonic microbiota alters host susceptibility to infectious colitis by modulating inflammation, redox status, and ion transporter gene expression. Am. J. Physiol. Liver Physiol. 301:1G39–49
    [Google Scholar]
  58. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R 2018. Current understanding of the human microbiome. Nat. Med. 24:4392–400
    [Google Scholar]
  59. Goedert JJ, Jones G, Hua X, Xu X, Yu G et al. 2015. Investigation of the association between the fecal microbiota and breast cancer in postmenopausal women: a population-based case-control pilot study. J. Natl. Cancer Inst. 107:8djv147
    [Google Scholar]
  60. Gorbach SL 1984. Estrogens, breast cancer, and intestinal flora. Rev. Infect. Dis. 6:Suppl. 1S85–90
    [Google Scholar]
  61. Hall AB, Tolonen AC, Xavier RJ 2017. Human genetic variation and the gut microbiome in disease. Nat. Rev. Genet. 18:11690–99
    [Google Scholar]
  62. Heimer GM, Englund DE 1984. Enterohepatic recirculation of oestriol studied in cholecystectomized and non-cholecystectomized menopausal women. Upsala J. Med. Sci. 89:2107–15
    [Google Scholar]
  63. Hooper LV, Littman DR, Macpherson AJ 2012. Interactions between the microbiota and the immune system. Science 336:60861268–73
    [Google Scholar]
  64. Hubbard TD, Murray IA, Nichols RG, Cassel K, Podolsky M et al. 2017. Dietary broccoli impacts microbial community structure and attenuates chemically induced colitis in mice in an Ah receptor dependent manner. J. Funct. Foods. 37:685–98
    [Google Scholar]
  65. Huurre A, Kalliomäki M, Rautava S, Rinne M, Salminen S, Isolauri E 2008. Mode of delivery—effects on gut microbiota and humoral immunity. Neonatology 93:4236–40
    [Google Scholar]
  66. Jacobs MC, Haak BW, Hugenholtz F, Wiersinga WJ 2017. Gut microbiota and host defense in critical illness. Curr. Opin. Crit. Care. 23:4257–63
    [Google Scholar]
  67. Jakobsson HE, Jernberg C, Andersson AF, Sjölund-Karlsson M, Jansson JK, Engstrand L 2010. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLOS ONE 5:3e9836
    [Google Scholar]
  68. Keku TO, Dulal S, Deveaux A, Jovov B, Han X 2014. The gastrointestinal microbiota and colorectal cancer. Am. J. Physiol. Liver Physiol. 308:5G351–63
    [Google Scholar]
  69. Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL et al. 2016. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Physiol. 310:9F857–71
    [Google Scholar]
  70. Kim S, Covington A, Pamer EG 2017. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens. Immunol. Rev. 279:190–105
    [Google Scholar]
  71. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J et al. 2011. Succession of microbial consortia in the developing infant gut microbiome. PNAS 108:Suppl.14578–85
    [Google Scholar]
  72. Kopelman P 2007. Health risks associated with overweight and obesity. Obes. Rev. 8:Suppl. 113–17
    [Google Scholar]
  73. Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F et al. 2012. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22:2292–98
    [Google Scholar]
  74. Kunc M, Gabrych A, Witkowski JM 2015. Microbiome impact on metabolism and function of sex, thyroid, growth and parathyroid hormones. Acta Biochim. Pol. 63:2189–201
    [Google Scholar]
  75. LeBlanc JG, Milani C, de Giori GS, Sesma F, Van Sinderen D, Ventura M 2013. Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr. Opin. Biotechnol. 24:2160–68
    [Google Scholar]
  76. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:7464541
    [Google Scholar]
  77. Liu J, Li Y, Yang P, Wan J, Chang Q et al. 2017. Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. J. Agric. Food Chem. 65:429237–46
    [Google Scholar]
  78. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M 2017. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:4841
    [Google Scholar]
  79. Louis P, Hold GL, Flint HJ 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12:10661–72
    [Google Scholar]
  80. Luu TH, Michel C, Bard J-M, Dravet F, Nazih H, Bobin-Dubigeon C 2017. Intestinal proportion of Blautia sp. is associated with clinical stage and histoprognostic grade in patients with early-stage breast cancer. Nutr. Cancer 69:2267–75
    [Google Scholar]
  81. Lynch SV, Pedersen O 2016. The human intestinal microbiome in health and disease. N. Engl. J. Med. 375:242369–79
    [Google Scholar]
  82. Macfarlane GT, Cummings JH, Allison C 1986. Protein degradation by human intestinal bacteria. Microbiology 132:61647–56
    [Google Scholar]
  83. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L 2004. Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79:5727–47
    [Google Scholar]
  84. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E et al. 2006. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55:2205–11
    [Google Scholar]
  85. Marotti I, Bregola V, Aloisio I, Di Gioia D, Bosi S et al. 2012. Prebiotic effect of soluble fibres from modern and old durum‐type wheat varieties on Lactobacillus and Bifidobacterium strains. J. Sci. Food Agric. 92:102133–40
    [Google Scholar]
  86. Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J 2010. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLOS ONE 5:11e15046
    [Google Scholar]
  87. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J et al. 2013. Gut microbiome composition is linked to whole grain–induced immunological improvements. ISME J 7:2269
    [Google Scholar]
  88. Matijašić BB, Obermajer T, Lipoglavšek L, Sernel T, Locatelli I et al. 2016. Effects of synbiotic fermented milk containing Lactobacillus acidophilus La-5 and Bifidobacterium animalis ssp. lactis BB-12 on the fecal microbiota of adults with irritable bowel syndrome: a randomized double-blind, placebo-controlled trial. J. Dairy Sci. 99:75008–21
    [Google Scholar]
  89. Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M et al. 2005. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin. Exp. Immunol. 140:3417–26
    [Google Scholar]
  90. Matsuoka K, Kanai T 2015. The gut microbiota and inflammatory bowel disease. Semin. Immunopathol. 37:147–55
    [Google Scholar]
  91. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD et al. 2011. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med. 3:106106ra106
    [Google Scholar]
  92. Mena S, Ortega A, Estrela JM 2009. Oxidative stress in environmental-induced carcinogenesis. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 674:136–44
    [Google Scholar]
  93. Meng C, Bai C, Brown TD, Hood L, Tian Q 2018. Human gut microbiota and gastrointestinal cancer. Genom. Proteom. Bioinform. 16:33–49
    [Google Scholar]
  94. Million M, Angelakis E, Paul M, Armougom F, Leibovici L, Raoult D 2012.a Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 53:2100–8
    [Google Scholar]
  95. Million M, Maraninchi M, Henry M, Armougom F, Richet H et al. 2012.b Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes 36:6817
    [Google Scholar]
  96. Miyazaki K, Masuoka N, Kano M, Iizuka R 2013. Bifidobacterium fermented milk and galacto-oligosaccharides lead to improved skin health by decreasing phenols production by gut microbiota. Benef. Microbes 5:2121–28
    [Google Scholar]
  97. Miyoshi M, Ogawa A, Higurashi S, Kadooka Y 2014. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur. J. Nutr. 53:2599–606
    [Google Scholar]
  98. Morimoto LM, White E, Chen Z, Chlebowski RT, Hays J et al. 2002. Obesity, body size, and risk of postmenopausal breast cancer: the Women's Health Initiative (United States). Cancer Causes Control 13:8741–51
    [Google Scholar]
  99. Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF 2015. Why is obesity such a problem in the 21st century? The intersection of palatable food, cues and reward pathways, stress, and cognition. Neurosci. Biobehav. Rev. 58:36–45
    [Google Scholar]
  100. Murphy SP, Allen LH 2003. Nutritional importance of animal source foods. J. Nutr. 133:113932S–35
    [Google Scholar]
  101. Nagengast FM, Grubben M, Van Munster IP 1995. Role of bile acids in colorectal carcinogenesis. Eur. J. Cancer 31:7–81067–70
    [Google Scholar]
  102. Najjar VA, Barrett R 1945. The synthesis of B vitamins by intestinal bacteria. Vitamins and Hormones 3 RS Harris, KV Thimann 23–48 New York: Acad. Press
    [Google Scholar]
  103. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G et al. 2012. Host-gut microbiota metabolic interactions. Science 336:60861262–67
    [Google Scholar]
  104. Nikolopoulou A, Kadoglou NPE 2012. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev. Cardiovasc. Ther. 10:7933–39
    [Google Scholar]
  105. O'Keefe SJD, Li JV, Lahti L, Ou J, Carbonero F et al. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6:6342
    [Google Scholar]
  106. Ordiz MI, May TD, Mihindukulasuriya K, Martin J, Crowley J et al. 2015. The effect of dietary resistant starch type 2 on the microbiota and markers of gut inflammation in rural Malawi children. Microbiome 3:137
    [Google Scholar]
  107. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO 2007. Development of the human infant intestinal microbiota. PLOS Biol 5:7e177
    [Google Scholar]
  108. Palmnäs MSA, Cowan TE, Bomhof MR, Su J, Reimer RA et al. 2014. Low-dose aspartame consumption differentially affects gut microbiota–host metabolic interactions in the diet-induced obese rat. PLOS ONE 9:10e109841
    [Google Scholar]
  109. Pandey KB, Rizvi SI 2009. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2:5270–78
    [Google Scholar]
  110. Paturi G, Mandimika T, Butts CA, Zhu S, Roy NC et al. 2012. Influence of dietary blueberry and broccoli on cecal microbiota activity and colon morphology in mdr1a−/− mice, a model of inflammatory bowel diseases. Nutrition 28:3324–30
    [Google Scholar]
  111. Plottel CS, Blaser MJ 2011. Microbiome and malignancy. Cell Host Microbe 10:4324–35
    [Google Scholar]
  112. Rajoka MSR, Shi J, Mehwish HM, Zhu J, Li Q et al. 2017. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci. Hum. Wellness 6:3121–30
    [Google Scholar]
  113. Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A et al. 2002. Plants and human health in the twenty-first century. Trends Biotechnol 20:12522–31
    [Google Scholar]
  114. Rhodes JM 2007. The role of Escherichia coli in inflammatory bowel disease. Gut 56:5610–12
    [Google Scholar]
  115. Ridlon JM, Kang DJ, Hylemon PB 2006. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47:2241–59
    [Google Scholar]
  116. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS 2014. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30:3332–38
    [Google Scholar]
  117. Riva A, Borgo F, Lassandro C, Verduci E, Morace G et al. 2017. Pediatric obesity is associated with an altered gut microbiota and discordant shifts in Firmicutes populations. Environ. Microbiol. 19:195–105
    [Google Scholar]
  118. Rodríguez JM, Murphy K, Stanton C, Ross RP, Kober OI et al. 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis. 26:126050
    [Google Scholar]
  119. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555:7695210
    [Google Scholar]
  120. Round JL, Mazmanian SK 2009. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9:5313
    [Google Scholar]
  121. Rowland I, Gibson G, Heinken A, Scott K, Swann J et al. 2017. Gut microbiota functions: metabolism of nutrients and other food components. Eur. J. Nutr. 57:11–24
    [Google Scholar]
  122. Russo E, Taddei A, Ringressi MN, Ricci F, Amedei A 2016. The interplay between the microbiome and the adaptive immune response in cancer development. Therap. Adv. Gastroenterol. 9:4594–605
    [Google Scholar]
  123. Rutayisire E, Huang K, Liu Y, Tao F 2016. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol 16:186
    [Google Scholar]
  124. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L 2005. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45:4287–306
    [Google Scholar]
  125. Scheppach W 1994. Effects of short chain fatty acids on gut morphology and function. Gut 35:Suppl. 1S35–38
    [Google Scholar]
  126. Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH 2013. The influence of diet on the gut microbiota. Pharmacol. Res. 69:152–60
    [Google Scholar]
  127. Sekirov I, Russell SL, Antunes LCM, Finlay BB 2010. Gut microbiota in health and disease. Physiol. Rev. 90:3859–904
    [Google Scholar]
  128. Sender R, Fuchs S, Milo R 2016. Revised estimates for the number of human and bacteria cells in the body. PLOS Biol 14:8e1002533
    [Google Scholar]
  129. Seo D-B, Jeong HW, Cho D, Lee BJ, Lee JH et al. 2015. Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. J. Med. Food. 18:5549–56
    [Google Scholar]
  130. Setchell KDR, Brown NM, Lydeking-Olsen E 2002. The clinical importance of the metabolite equol—a clue to the effectiveness of soy and its isoflavones. J. Nutr. 132:123577–84
    [Google Scholar]
  131. Shiby VK, Mishra HN 2013. Fermented milks and milk products as functional foods—a review. Crit. Rev. Food Sci. Nutr. 53:5482–96
    [Google Scholar]
  132. Siegel R, Ma J, Zou Z, Jemal A 2014. Cancer statistics, 2014. CA Cancer J. Clin. 64:19–29
    [Google Scholar]
  133. Smith AH, Zoetendal E, Mackie RI 2005. Bacterial mechanisms to overcome inhibitory effects of dietary tannins. Microb. Ecol. 50:2197–205
    [Google Scholar]
  134. Smith EA, Macfarlane GT 1996. Studies on amine production in the human colon: enumeration of amine forming bacteria and physiological effects of carbohydrate and pH. Anaerobe 2:5285–97
    [Google Scholar]
  135. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG et al. 2008. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. PNAS 105:4316731–36
    [Google Scholar]
  136. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA et al. 2014. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 514:7521181
    [Google Scholar]
  137. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S et al. 2008. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int. J. Med. Microbiol. 298:5–6463–72
    [Google Scholar]
  138. Tamburini S, Shen N, Wu HC, Clemente JC 2016. The microbiome in early life: implications for health outcomes. Nat. Med. 22:7713–22
    [Google Scholar]
  139. Tremaroli V, Bäckhed F 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:7415242–49
    [Google Scholar]
  140. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:71221027–31
    [Google Scholar]
  141. Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI 2009. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1:66ra14
    [Google Scholar]
  142. Uyeno Y, Sekiguchi Y, Kamagata Y 2008. Impact of consumption of probiotic lactobacilli-containing yogurt on microbial composition in human feces. Int. J. Food Microbiol. 122:1–216–22
    [Google Scholar]
  143. Veiga P, Pons N, Agrawal A, Oozeer R, Guyonnet D et al. 2014. Changes of the human gut microbiome induced by a fermented milk product. Sci. Rep. 4:6328
    [Google Scholar]
  144. Vucenik I, Stains JP 2012. Obesity and cancer risk: evidence, mechanisms, and recommendations. Ann. N. Y. Acad. Sci. 1271:137–43
    [Google Scholar]
  145. Wan J, Hu S, Ni K, Chang G, Sun X, Yu L 2016. Characterisation of fecal soap fatty acids, calcium contents, bacterial community and short-chain fatty acids in Sprague Dawley rats fed with different sn-2 palmitic triacylglycerols diets. PLOS ONE 11:10e0164894
    [Google Scholar]
  146. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA 2006. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40:3235–43
    [Google Scholar]
  147. Wouters JTM, Ayad EHE, Hugenholtz J, Smit G 2002. Microbes from raw milk for fermented dairy products. Int. Dairy J. 12:2–391–109
    [Google Scholar]
  148. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y et al. 2011. Linking long-term dietary patterns with gut microbial enterotypes. Science 334:6052105–8
    [Google Scholar]
  149. Xu J, Ahrén IL, Prykhodko O, Olsson C, Ahrné S, Molin G 2013. Intake of blueberry fermented by Lactobacillus plantarum affects the gut microbiota of L-NAME treated rats. Evid. Based Complement. Altern. Med. 2013:4809128
    [Google Scholar]
  150. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:2372–85
    [Google Scholar]
  151. Zhang Y-J, Li S, Gan R-Y, Zhou T, Xu D-P, Li H-B 2015. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16:47493–519
    [Google Scholar]
  152. Zhou S, Wang Y, Jacoby JJ, Jiang Y, Zhang Y, Yu LL 2017. Effects of medium-and long-chain triacylglycerols on lipid metabolism and gut microbiota composition in C57BL/6J mice. J. Agric. Food Chem. 65:316599–607
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-121303
Loading
/content/journals/10.1146/annurev-food-032818-121303
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error