1932

Abstract

The two-way interaction of food (poly)phenols with the human gut microbiota has been studied throughout the past ten years. Research has shown that this interaction can be relevant to explain the health effects of these phytochemicals. The effect of the food matrix and food processing on this interaction has only been partially studied. In this article, the studies within this field have been critically reviewed, with a special focus on the following groups of phenolic metabolites: citrus flavanones, pomegranate ellagitannins, and cocoa proanthocyanidins. The available research shows that both the food matrix and food processing can be relevant factors for gut microbiota reshaping to reach a healthier microbial ecology and for the conversion of polyphenols to bioactive and bioavailable metabolites. There are, however, some research gaps that indicate a more comprehensive research approach is needed to reach valid conclusions regarding the gut microbiota–mediated effects of polyphenols on human health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-121615
2019-03-25
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/food/10/1/annurev-food-032818-121615.html?itemId=/content/journals/10.1146/annurev-food-032818-121615&mimeType=html&fmt=ahah

Literature Cited

  1. Amaretti A, Raimondi S, Leonardi A, Quartieri A, Rossi M 2015. Hydrolysis of the rutinose-conjugates flavonoids rutin and hesperidin by the gut microbiota and bifidobacteria. Nutrients 7:2788–800
    [Google Scholar]
  2. Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV et al. 2015. A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64:872–83
    [Google Scholar]
  3. Aschoff JK, Riedl KM, Cooperstone J, Högel J, Bosy-Westphal A et al. 2016. Urinary excretion of citrus flavanones and their major catabolites after consumption of fresh oranges and pasteurized orange juice: a randomized cross-over study. Mol. Nutr. Food Res. 60:2602–10
    [Google Scholar]
  4. Awika JM, Rose DJ, Simsek S 2018. Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 9:1389–409
    [Google Scholar]
  5. Barroso E, Muñoz-González I, Jiménez E, Bartolomé B, Moreno-Arriba MV et al. 2017. Phylogenetic profile of gut microbiota in healthy adults after moderate intake of red wine. Mol. Nutr. Food Res. 61:1600620
    [Google Scholar]
  6. Bazzocco S, Mattila I, Guyot S, Renard CMGC, Aura AM 2008. Factors affecting the conversion of apple polyphenols to phenolic acids and fruit matrix to short-chain fatty acids by human faecal microbiota in vitro. Eur. J. Nutr. 47:442–52
    [Google Scholar]
  7. Beltrán D, Romo-Vaquero M, Espín JC, Tomás-Barberán FA, Selma MV 2018. Ellagibacter isourolithinifaciens gen. Nov., sp. Nov. a new member of the family Eggerthellaceae, isolated from human gut. Int. J. System. Evol. Microbiol 68:1707–12
    [Google Scholar]
  8. Bindels LB, Delzenne NM, Cani PD, Walter J 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12:303–10
    [Google Scholar]
  9. Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D et al. 2013. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 97:295–309
    [Google Scholar]
  10. Braune A, Blaut M 2016. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 7:216–34
    [Google Scholar]
  11. Cani P 2018. Human gut microbiome: hopes, threats and promises. Gut 67:1716–25
    [Google Scholar]
  12. Cerdá B, Espín JC, Parra S, Martínez P, Tomás-Barberán FA 2004. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolized into bioavailable but poor antioxidant hydroxyl-6H-dibenzopyranone derivatives by the colonic microflora of healthy humans. Eur. J. Nutr. 43:205–20
    [Google Scholar]
  13. Clavel T, Henderson G, Engst W, Doré J, Blaut M 2006. Phylogeny of human intestinal bacteria that activate the dietary lignan secoisolariciresinol diglucoside. FEMS Microbiol. Ecol. 55:471–78
    [Google Scholar]
  14. Cortés-Martín A, García-Villalba R, González-Sarrías A, Romo-Vaquero M, Loria-Kohen V et al. 2018. The gut microbiota urolithin metabotypes revisited: the human metabolism of ellagic acid is mainly determined by aging. Food Funct 9:84100–6
    [Google Scholar]
  15. Cuervo A, Hevia A, Lopez P, Suarez A, Sanchez B et al. 2015. Association of polyphenols from oranges and apples with specific intestinal microorganisms in systemic lupus erythematosus patients. Nutrients 7:1301–7
    [Google Scholar]
  16. Deaville ER, Green RJ, Mueller-Harvey I, Willoughby I, Frazier RA 2007. Hydrolyzable tannin structures influence relative globular and random coil protein binding strengths. J. Agric. Food Chem. 55:4554–61
    [Google Scholar]
  17. de Vos WM, de Vos EA 2012. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70:S45–56
    [Google Scholar]
  18. Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F et al. 2015. A survey of modulation of gut microbiota by dietary polyphenols. Biomed. Res. Int. 2015:850902
    [Google Scholar]
  19. Espín JC, González-Sarrías A, Tomás-Barberán FA 2017. The gut microbiota: a key factor in the therapeutic effects of (poly)phenols. Biochem. Pharmacol. 139:82–93
    [Google Scholar]
  20. Fogliano V, Corollaro ML, Vitaglione P, Napolitano A, Ferracane R et al. 2011. In vitro bioaccessibility and gut biotransformation of polyphenols present in the water-insoluble cocoa fraction. Mol. Nutr. Food Res. 55:S44–55
    [Google Scholar]
  21. Gil-Izquierdo A, Gil MI, Ferreres F, Tomás-Barberán FA 2001. In vitro availability of flavonoids and other phenolics in orange juice. J. Agric. Food Chem. 49:1035–41
    [Google Scholar]
  22. González-Sarrías A, Espín JC, Tomás-Barberán FA 2017.a Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show anti-inflammatory and free radical scavenging effects. Trends Food Sci. Technol. 69:281–88
    [Google Scholar]
  23. González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Tomé-Carneiro J, Zafrilla P et al. 2015. Identifying the limits for ellagic acid bioavailability: a crossover pharmacokinetic study in healthy volunteers after the consumption of pomegranate extracts. J. Funct. Foods 19:225–35
    [Google Scholar]
  24. González-Sarrías A, García-Villalba R, Romo-Vaquero M, Alasalvar C, Orem A et al. 2017.b Clustering according to urolithin metabotypes explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: a randomized clinical trial. Mol. Nutr. Food Res. 61:1600830
    [Google Scholar]
  25. González-Sarrías A, Romo-Vaquero M, García-Villalba R, Cortés-Martín A, Selma MV, Espín JC 2018. The endotoxemia marker lipopolysaccharide-binding protein is reduced in overweight-obese subjects consuming pomegranate extract by modulating the gut microbiota: a randomized clinical trial. Mol. Nutr. Food Res. 62:e1800160
    [Google Scholar]
  26. Holscher HD, Taylor AM, Swanson KS, Novotny JA, Baer DJ 2018. Almond consumption and processing affects the composition of the gastrointestinal microbiota of healthy adult men and women: a randomized controlled trial. Nutrients 19:126
    [Google Scholar]
  27. Jiménez N, Esteban-Torres M, Mancheño JM, de las Rivas B, Muñoz R 2014. Tannin degradation by a novel tannase enzyme present in some Lactobacillus plantarum strains. Appl. Environm. Microbiol. 80:2991–97
    [Google Scholar]
  28. Kerimi A, Nyambe-Silauwe H, Gauer JS, Tomas-Barberan FA, Williams G 2017. Pomegranate juice, but not an extract, confers a lower glycemic response on a high-glycemic index food: randomized, crossover, controlled trials in healthy subjects. Am. J. Clin. Nutr. 106:1384–93
    [Google Scholar]
  29. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85
    [Google Scholar]
  30. Larrosa M, González-Sarrías A, Yáñez-Gascón MJ, Selma MV, Azorín-Ortuño M et al. 2010. Anti-inflammatory properties of a pomegranate extract and its metabolites urolithin A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem 21:717–25
    [Google Scholar]
  31. Li Z, Summanen PH, Komoriya T, Henning SM, Lee R-P et al. 2015. Pomegranate ellagitannins stimulate growth of gut bacteria in vitro: implications for prebiotic and metabolic effects. Anaerobe 34:164–68
    [Google Scholar]
  32. Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M 2017. Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:841–52
    [Google Scholar]
  33. Manach C, Williamson G, Morand C, Saclbert A, Rémésy C 2005. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81:230S–42
    [Google Scholar]
  34. Marchesi JR, Adams DH, Fava F, Hermes GD, Hirschfield GH et al. 2016. The gut microbiota and host health: a new clinical frontier. Gut 65:330–39
    [Google Scholar]
  35. Martinez-Zapata MJ, Vernooij RW, Uriona Tuma SM, Stein AT, Moreno RM et al. 2016. Phlebotonics for venous insufficiency. Cochrane Database Syst. Rev 4:CD003229
    [Google Scholar]
  36. Mena P, Ludwig IA, Tomatis VB, Acharjee A, Calani L et al. 2018. Inter-individual variability in the production of flavan 3-ol colonic metabolites: preliminary elucidation of urinary metabotypes. Eur. J. Nutr https://doi.org/10.1007/s00394-018-1683-4
    [Crossref] [Google Scholar]
  37. Molinar-Toribio E, Santos-Romero S, Fuguet E, Taltarull N, Mendez L et al. 2017. Influence of omega-3 PUFAs on the metabolism of proanthocyanidins in rats. Food Res. Int. 97:133–40
    [Google Scholar]
  38. Moreno-Indias I, Sánchez-Alcoholado L, Pérez-Martínez P, Andrés-Lacueva C, Cardona F et al. 2016. Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct 7:1775–87
    [Google Scholar]
  39. Mueller M, Zartl B, Schleritzko A, Stenzl M, Viernstein H, Unger FM 2018. Rhamnosidase activity of selected probiotics and their ability to hydrolyze flavonoid rhamnoglucosides. Bioprocess Biosyst. Eng. 41:221–28
    [Google Scholar]
  40. Muñoz-González I, Jiménez-Girón A, Martin-Álvarez PJ, Bartolomé B, Moreno-Arribas MV 2013. Profiling of microbial-derived phenolic metabolites in human feces after moderate red wine intake. J. Agric. Food Chem. 61:9470–79
    [Google Scholar]
  41. Muñoz-Muñoz J, Cartmella A, Terrapon N, Henrissat B, Gilbert HJ 2017. Unusual active site location and catalytic apparatus in a glycoside hydrolase family. PNAS 114:4936–41
    [Google Scholar]
  42. Neilson AP, Ferruzzi MG 2011. Influence of formulation and processing on absorption and metabolism of flavan-3-ols from tea and cocoa. Annu. Rev. Food Sci. Technol. 2:125–51
    [Google Scholar]
  43. Neilson AP, George JC, Janle EM, Mattes RD, Rudolph R et al. 2009. Influence of chocolate matrix composition on cocoa flavan-3-ol bioaccessibility in vitro and bioavailability in humans. J. Agric. Food Chem. 57:9418–26
    [Google Scholar]
  44. Neilson AP, Sapper TN, Janle EM, Rudolph R, Matusheski NV, Ferruzzi MG 2010. Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa flavan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats. J. Agric. Food Chem. 58:6685–91
    [Google Scholar]
  45. Neyrinck AM, Etxeberria U, Taminiau B, Daube G, Van Hul M et al. 2017. Rhubarb extract prevents hepatic inflammation induced by acute alcohol intake, an effect related to the modulation of the gut microbiota. Mol. Nutr. Food Res. 61:e1500899
    [Google Scholar]
  46. Parkar SG, Trower TM, Stevenson DE 2013. Fecal microbial metabolism of polyphenols and its effects on human gut microbiota. Anaerobe 23:12–19
    [Google Scholar]
  47. Pereira-Caro G, Fernández-Quirós B, Ludwig IA, Pradas I, Crozier A, Moreno-Rojas JM 2018. Catabolism of citrus flavanones by the probiotics Bifidobacterium longum and Lactobacillus rhamnosus. Eur. J. Nutr 57:231–42
    [Google Scholar]
  48. Pereira-Caro G, Oliver CM, Weerakkody R, Singh T, Conlon M et al. 2015. Chronic administration of a microencapsulated probiotic enhances the bioavailability of orange juice flavanones in humans. Free Rad. Biol. Med. 84:206–14
    [Google Scholar]
  49. Plovier H, Everard A, Druart C, Depommier C, Van Hul M et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23:107–13
    [Google Scholar]
  50. Quartieri A, García-Villalba R, Amaretti A, Raimondi S, Leonardi A et al. 2016. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Mol. Nutr. Food Res. 60:1590–601
    [Google Scholar]
  51. Ridaura VK, Faith JI, Rey FE, Cheng J, Duncan AE et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1079–82
    [Google Scholar]
  52. Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ et al. 2015. Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high-fat diet-induced metabolic syndrome. Diabetes 64:2847–58
    [Google Scholar]
  53. Sampson TR, Debelius JW, Thron T, Janssen S, Shastr GG et al. 2016. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell 167:1469–80
    [Google Scholar]
  54. Sanchez-Patan F, Chioua M, Garrido I, Cueva C, Samadi A et al. 2011. Synthesis, analytical features and biological relevance of 5-(3′,4′-dihydroxyphenyl)γ-valerolactone, a microbial metabolite derived from the catabolism of dietary flavan 3-ols. J. Agric. Food Chem. 59:7083–91
    [Google Scholar]
  55. Sanchez-Patan F, Cueva C, Monagas M, Walton EE, Gibson GR et al. 2012. In vitro fermentation of red wine extract by human gut microbes: changes in microbial groups and formation of phenolic metabolites. J. Agric. Food Chem. 60:2136–47
    [Google Scholar]
  56. Selma MV, Beltrán D, García-Villalba, Espín JC, Tomás-Barberán FA 2014.a Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct 5:1779–84
    [Google Scholar]
  57. Selma MV, Beltrán D, Luna MC, Romo-Vaquero M, García-Villalba R et al. 2017. Isolation of human intestinal bacteria capable of producing the bioactive metabolite isourolithin A from ellagic acid. Front. Microbiol 8:1521
    [Google Scholar]
  58. Selma MV, Espín JC, Tomás-Barberán FA 2009. Interaction between phenolics and gut microbiota: role in human health. J. Agric. Food Chem. 57:6485–501
    [Google Scholar]
  59. Selma MV, Tomás-Barberán FA, Beltrán D, García-Villalba R, Espín JC 2014.b Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. Int. J. Syst. Evol. Microbiol 64:2346–52
    [Google Scholar]
  60. Sonneburg JL, Bäckhed F 2016. Diet-microbiota interactions as moderators of human metabolism. Nature 535:56–64
    [Google Scholar]
  61. Srirangam R, Hippalgaonkar K, Majundar S 2012. Intravitreal kinetic of hesperidin, hesperetin and hesperidin G: effect of dose and physicochemical properties. J. Pharm. Sci. 101:1631–38
    [Google Scholar]
  62. Takagaki A, Kato Y, Nanjo F 2014. Isolation and characterization of rat intestinal bacteria involved in the biotransformation of (−)epigallocatechin. Arch. Microbiol. 196:681–695
    [Google Scholar]
  63. Takagaki A, Nanjo N 2015. Bioconversion of (−)-epicatechin, (+)-epicatechin, (−)-catechin, (+) catechin, by (−)-epigallocatehin metabolizing bacteria. Biol. Pharm. Bull. 38:789–94
    [Google Scholar]
  64. Tanaka T 2009. Physicochemical properties and biomimetic reactions of ellagitannins. Chemistry and Biology of Ellagitannins S Quideau 119–51 Hackensack, NJ: World Sci.
    [Google Scholar]
  65. Tanaka T, Zhang H, Jiang ZH, Kouno I 1997. Relationship between hydrophobicity and structure of hydrolysable tannins, and association of tannins with crude drug constituents in aqueous solution. Chem. Pharm. Bull. 45:1891–97
    [Google Scholar]
  66. Tomás-Barberán FA, Clifford MN 2000. Flavanones, chalcones and dihydrochalcones: nature, occurrence and dietary burden. J. Sci. Food Agric. 80:1073–80
    [Google Scholar]
  67. Tomás-Barberán FA, Garcia-Villalba R, Quartieri A, Raimondi S, Amaretti A, Rossi M 2014. In vitro transformations of chlorogenic acid by human gut microbiota. Mol. Nutr. Food Res. 58:1122–31
    [Google Scholar]
  68. Tomás-Barberán FA, González-Sarrías A, García-Villalba R, Núñez-Sánchez MA, Selma MV et al. 2017. Urolithins, the rescue of “old” metabolites to understand a “new” concept: metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 61:e1500901
    [Google Scholar]
  69. Tomás-Barberán FA, Selma MV, Espín JC 2016. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr. Opin. Clin. Nutr. Metab. Care. 19:471–76
    [Google Scholar]
  70. Tomás-Navarro M, Vallejo F, Borrego F, Tomás-Barberán FA 2014.a Encapsulation and micronization effectively improve orange beverage flavanones bioavailability in humans. J. Agric. Food Chem. 62:9458–62
    [Google Scholar]
  71. Tomás-Navarro M, Vallejo F, Sentandreu E, Navarro JL, Tomás-Barberán FA 2014.b Volunteer stratification is more relevant than technological treatment in orange juice flavanone bioavailability. J. Agric. Food Chem. 62:24–27
    [Google Scholar]
  72. Truchado P, Larrosa M, García-Conesa MT, Cerdá B, Vidal-Guevara ML et al. 2012. Strawberry processing does not affect the production and urinary excretion of urolithins, ellagic acid metabolites, in humans. J. Agric. Food Chem. 60:5749–54
    [Google Scholar]
  73. Unno T, Hisada T, Takahashi S 2015. Hesperetin modifies the composition of fecal microbiota and increases cecal levels of short-chain fatty acids. J. Agric. Food Chem. 63:7952–57
    [Google Scholar]
  74. Vallejo F, Larrosa M, Escudero E, Zafrilla MP, Cerdá B et al. 2010. The concentration and solubility of flavanones in orange beverages affect their bioavailability in humans. J. Agric. Food Chem. 58:6516–24
    [Google Scholar]
  75. Van de Guchte M, Blottière HM, Doré J 2018. Humans as holobionts: implications for prevention and therapy. Microbiome 6:81
    [Google Scholar]
  76. Van Rymenant E, Abrankó L, Tumova S, Grootaert C, Van Camp J et al. 2017. Chronic exposure to short-chain fatty acids modulates transport and metabolism of microbiome-derived phenolics in human intestinal cells. J. Nutr. Biochem 39:156–68
    [Google Scholar]
  77. Vester-Boler BM, Rossoni Serao MC, Faber TA, Bauer LL, Chow J et al. 2013. In vitro fermentation characteristics of selected nondigestible oligosaccharides by infant fecal inocula. J. Agric. Food Chem. 61:2109–19
    [Google Scholar]
  78. Wang Y, Zhang H, Kiang H, Tuan Q 2013. Purification, antioxidant activity and protein-precipitating capacity of punicalin from pomegranate husk. Food Chem 138:437–43
    [Google Scholar]
  79. Watrelot AA, Schulz DL, Kennedy JA 2017. Wine polysaccharides influence tannin-protein interaction. Food Hydrocoll 63:571–73
    [Google Scholar]
  80. Zafrilla P, Ferreres F, Tomás-Barberán FA 2001. Effect of processing and storage on the antioxidant ellagic acid derivatives and flavonoids of red raspberry (Rubus idaeus) jams. J. Agric. Food Chem. 49:3651–55
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-121615
Loading
/content/journals/10.1146/annurev-food-032818-121615
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error