1932

Abstract

The Klaenhammer group at North Carolina State University pioneered genomic applications in food microbiology and beneficial lactic acid bacteria used as starter cultures and probiotics. Dr. Todd Klaenhammer was honored to be the first food scientist elected to the National Academy of Sciences (2001). The program was recognized with the highest research awards presented by the American Dairy Science Association (Borden Award 1996), the Institute of Food Technologists (Nicholas Appert Medal, 2007), and the International Dairy Federation (Eli Metchnikoff Award in Biotechnology, 2010) as well as with the Outstanding Achievement Award from the University of Minnesota (2001) and the Oliver Max Gardner Award (2009) for outstanding research across the 16-campus University of North Carolina system. Dr. Klaenhammer is a fellow of the American Association for the Advancement of Science, the American Dairy Science Association, and the Institute of Food Technology. Over his career, six of his PhD graduate students were awarded the annual Kenneth Keller award for the outstanding PhD dissertation that year in the College of Agriculture and Life Sciences. He championed the use of basic microbiology and genomic approaches to set a platform for translational applications of beneficial microbes in foods and their use in food preservation and probiotics and as oral delivery vehicles for vaccines and biotherapeutics. Dr. Klaenhammer was also a founding and co-chief editor of the .

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-121826
2019-03-25
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/food/10/1/annurev-food-032818-121826.html?itemId=/content/journals/10.1146/annurev-food-032818-121826&mimeType=html&fmt=ahah

Literature Cited

  1. Allison GE, Fremaux C, Klaenhammer TR 1994. Expansion of bacteriocin activity and host range upon complementation of two peptides encoded within the lactacin F operon. J. Bacteriol. 176:2235–41
    [Google Scholar]
  2. Altermann E, Russell WM, Azcarate-Peril MA, Barrangou R, Buck BL et al. 2005. Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. PNAS 102:3906–12
    [Google Scholar]
  3. Andersen JM, Barrangou R, Abou Hachem M, Lahtinen S, Goh YJ et al. 2011. Transcriptional and functional analysis of galactooligosaccharide uptake by lacS in Lactobacillus acidophilus. PNAS 108:17785–90
    [Google Scholar]
  4. Azcarate-Peril MA, Altermann E, Goh YJ, Tallon R, Sanozky-Dawes RB et al. 2008. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl. Environ. Microbiol. 74:4610–25
    [Google Scholar]
  5. Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C et al. 2017. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. PNAS 114:3E367–75
    [Google Scholar]
  6. Barefoot SF, Klaenhammer TR 1983. Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Appl. Environ. Microbiol 45:1808–15
    [Google Scholar]
  7. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR 2003. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. PNAS 100:8957–62
    [Google Scholar]
  8. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12
    [Google Scholar]
  9. Buck BL, Altermann E, Svingerud T, Klaenhammer TR 2005. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 71:8344–51
    [Google Scholar]
  10. Call EK, Goh YJ, Selle K, Klaenhammer TR, O'Flaherty S 2015. Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiology 161:311–21
    [Google Scholar]
  11. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP et al. 2006. Multireplicon genome architecture of Lactobacillus salivarius. PNAS 103:6718–23
    [Google Scholar]
  12. Curiel TJ, Morris C, Brumlik M, Landry SJ, Finstad K et al. 2004. Peptides identified through phage display direct immunogenic antigen to dendritic cells. J. Immunol. 172:7425–31
    [Google Scholar]
  13. Douglas GL, Klaenhammer TR 2011. Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 77:7365–71
    [Google Scholar]
  14. Duong T, Miller MJ, Barrangou R, Azcarate-Peril MA, Klaenhammer TR 2011. Construction of vectors for inducible and constitutive gene expression in Lactobacillus. Microb. Biotechnol. 4:357–67
    [Google Scholar]
  15. Durmaz E, Hu Y, Aroian RV, Klaenhammer TR 2015. Intracellular and extracellular expression of Bacillus thuringiensis crystal protein Cry5B in Lactococcus lactis for use as an anthelminthic. Appl. Environ. Microbiol. 82:1286–94
    [Google Scholar]
  16. Durmaz E, Klaenhammer TR 1995. A starter culture rotation strategy incorporating paired restriction/modification and abortive infection bacteriophage defenses in a single Lactococcus lactis strain. Appl. Environ. Microbiol. 61:1266–73
    [Google Scholar]
  17. Durmaz E, Klaenhammer TR 2006. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J. Bacteriol 189:1417–25
    [Google Scholar]
  18. Field D, Begley M, O'Connor PM, Daly KM, Hugenholtz F et al. 2012. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens. PLOS ONE 7:e46884
    [Google Scholar]
  19. Goh YJ, Azcárate-Peril MA, O'Flaherty S, Durmaz E, Valence F et al. 2009. Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 75:3093–105
    [Google Scholar]
  20. Goh YJ, Klaenhammer TR 2014. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention. Microb. Cell Fact. 13:94
    [Google Scholar]
  21. Goh YJ, Klaenhammer TR 2015. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu. Rev. Food Sci. Technol. 6:137–56
    [Google Scholar]
  22. Hill C, Miller LA, Klaenhammer TR 1990. Nucleotide sequence and distribution of the pTR2030 resistance determinant (hsp) which aborts bacteriophage infection in lactococci. Appl. Environ. Microbiol. 56:2255–58
    [Google Scholar]
  23. Hill C, Miller LA, Klaenhammer TR 1991. In vivo genetic exchange of a functional domain from a type II A methylase between lactococcal plasmid pTR2030 and a virulent bacteriophage. J. Bacteriol. 173:4363–70
    [Google Scholar]
  24. Hill C, Pierce K, Klaenhammer TR 1989. The conjugative plasmid pTR2030 encodes two bacteriophage defense mechanisms in lactococci, restriction modification (R+/M+) and abortive infection (Hsp+). Appl. Environ. Microbiol. 55:2416–19
    [Google Scholar]
  25. Hymes JP, Johnson BR, Barrangou R, Klaenhammer TR 2016. Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 82:2676–85
    [Google Scholar]
  26. Johnson B, Selle K, O'Flaherty S, Goh YJ, Klaenhammer T 2013. Identification of extracellular surface-layer associated proteins in Lactobacillus acidophilus NCFM. Microbiology 159:2269–82
    [Google Scholar]
  27. Johnson BR, Klaenhammer TR 2014. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek 106:141–56
    [Google Scholar]
  28. Johnson BR, O'Flaherty S, Goh YJ, Carroll I, Barrangou R, Klaenhammer TR 2017. The S-layer associated serine protease homolog PrtX impacts cell surface–mediated microbe-host interactions of Lactobacillus acidophilus NCFM. Front. Microbiol. 8:1185
    [Google Scholar]
  29. Kajikawa A, Zhang L, LaVoy A, Bumgardner S, Klaenhammer TR, Dean GA 2010. Mucosal immunogenicity of genetically modified Lactobacillus acidophilus expressing an HIV-1 epitope within the surface layer protein. PLOS ONE 10:e0141713
    [Google Scholar]
  30. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human-mucus binding protein. PNAS 106:17193–98
    [Google Scholar]
  31. Khazaie K, Zadeh M, Khan MW, Bere P, Gounari F et al. 2012. Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. PNAS 109:10462–67
    [Google Scholar]
  32. Klaenhammer T, Altermann E, Arigoni F, Bolotin A, Breidt F et al. 2002. Discovering lactic acid bacteria by genomics. Antonie Van Leeuwenhoek 82:29–58
    [Google Scholar]
  33. Klaenhammer TR 1993. Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol. Rev. 12:39–85
    [Google Scholar]
  34. Klaenhammer TR, de Vos W 2011. An incredible scientific journey: the evolutionary tale of the lactic acid bacteria. The 10th LAB Symposium: Thirty Years of Research on Lactic Acid Bacteria A Ledeboer, J Hugenholtz, J Kok, W Konings, J Wouter 1–11 Rotterdam, Neth: 24 Media Labs
    [Google Scholar]
  35. Klaenhammer TR, Sanozky RB 1985. Conjugal transfer from Streptococcus lactis ME2 of plasmids encoding phage resistance, nisin resistance and lactose-fermenting ability: evidence for a high-frequency conjugative plasmid responsible for abortive infection of virulent bacteriophage. J. Gen. Microbiol. 131:1531–41
    [Google Scholar]
  36. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. PNAS 100:1990–95
    [Google Scholar]
  37. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK et al. 2008. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. PNAS 105:19474–79
    [Google Scholar]
  38. Kullen MJ, Klaenhammer TR 1999. Identification of the pH-inducible, proton-translocating F1F0-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol 33:1152–61
    [Google Scholar]
  39. Lightfoot YL, Selle K, Yang T, Goh YJ, Sahay B et al. 2015. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J 34:881–95
    [Google Scholar]
  40. Luchansky JB, Muriana PM, Klaenhammer TR 1988. Application of electroporation for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium. Mol. Microbiol 2:637–46
    [Google Scholar]
  41. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B et al. 2006. Comparative genomics of the lactic acid bacteria. PNAS 103:15611–16
    [Google Scholar]
  42. McKay LL 2015. An amazing journey. Annu. Rev. Food Sci. Technol. 6:1–17
    [Google Scholar]
  43. Mohamadzadeh M, Duong T, Sandwick SJ, Hoover T, Klaenhammer TR 2009. Dendritic cell targeting of Bacillus anthracis protective antigen expressed by Lactobacillus acidophilus protects mice from lethal challenge. PNAS 106:4331–36
    [Google Scholar]
  44. Mohamadzadeh M, Durmaz E, Zadeh M, Pakanati KC, Gramarossa M et al. 2010. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol 5:1289–96
    [Google Scholar]
  45. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M et al. 2011. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. PNAS 108:Suppl. 14623–30
    [Google Scholar]
  46. O'Flaherty S, Klaenhammer TR 2016. Multivalent chromosomal expression of the Clostridium botulinum serotype A neurotoxin heavy-chain antigen and the Bacillus anthracis protective antigen in Lactobacillus acidophilus. Appl. Environ. Microbiol 82:6091–101
    [Google Scholar]
  47. O'Sullivan DJ, Zagula K, Klaenhammer TR 1995. In vivo restriction by LlaI is encoded by three genes, arranged in an operon with llaIM, on the conjugative Lactococcus plasmid pTR2030. J. Bacteriol. 177:134–43
    [Google Scholar]
  48. Pfeiler EA, Klaenhammer TR 2009. Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl. Environ. Microbiol 75:6013–16
    [Google Scholar]
  49. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C et al. 2004. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC533. PNAS 101:2512–17
    [Google Scholar]
  50. Raya RR, Kleeman EG, Luchansky JB, Klaenhammer TR 1989. Characterization of the temperate bacteriophage phi adh and plasmid transduction in Lactobacillus acidophilus ADH. Appl. Environ. Microbiol. 55:2206–13
    [Google Scholar]
  51. Russell WM, Klaenhammer TR 2001. Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl. Environ. Microbiol. 67:4361–64
    [Google Scholar]
  52. Sahay B, Colliou N, Zadeh M, Ge Y, Gong M et al. 2018. Dual-route targeted vaccine protects efficiently against botulinum neurotoxin A complex. Vaccine 36:155–64
    [Google Scholar]
  53. Sanders ME, Klaenhammer TR 1981. Evidence for plasmid linkage of restriction and modification in Streptococcus cremoris KH. Appl. Environ. Microbiol. 42:944–50
    [Google Scholar]
  54. Sanders ME, Klaenhammer TR 1983. Characterization of phage-sensitive mutants from a phage-insensitive strain of Streptococcus lactis: evidence for a plasmid determinant that prevents phage adsorption. Appl. Environ. Microbiol. 46:1125–33
    [Google Scholar]
  55. Sanders ME, Leonhard PJ, Sing WD, Klaenhammer TR 1986. Conjugal strategy for construction of fast acid-producing, bacteriophage-resistant lactic streptococci for use in dairy fermentations. Appl. Environ. Microbiol. 52:1001–7
    [Google Scholar]
  56. Savaiano DA, Ritter AJ, Klaenhammer TR, James GM, Longcore AT et al. 2013. Improving lactose digestion and symptoms of lactose intolerance with a novel galacto-oligosaccharide (RP-G28): a randomized, double-blind clinical trial. Nutr. J. 12:160
    [Google Scholar]
  57. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B et al. 2002. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. PNAS 99:14422–27
    [Google Scholar]
  58. Selle K, Goh YJ, Johnson BR, O'Flaherty S, Andersen JM et al. 2017. Deletion of lipoteichoic acid synthase impacts expression of genes encoding cell surface proteins in Lactobacillus acidophilus. Front. Microbiol 8:553
    [Google Scholar]
  59. Selle K, Klaenhammer TR, Barrangou R 2015. CRISPR-based screening of genomic island excision events in bacteria. PNAS 112:8076–81
    [Google Scholar]
  60. Sing WD, Klaenhammer TR 1993. A strategy for rotation of different bacteriophage defenses in a lactococcal single-strain starter culture system. Appl. Environ. Microbiol. 59:365–72
    [Google Scholar]
  61. Speck ML 1984. Compendium of Methods for the Microbiological Examination of Foods Washington, DC: Am. Public Health Assoc, 2nd ed..
    [Google Scholar]
  62. Steenson LR, Klaenhammer TR 1985. Streptococcus cremoris M12R transconjugants carrying the conjugal plasmid pTR2030 are insensitive to attack by lytic bacteriophages. Appl. Environ. Microbiol. 50:851–58
    [Google Scholar]
  63. Stevens KA, Sheldon BW, Klapes NA, Klaenhammer TR 1991. Nisin treatment for inactivation of Salmonella species and other gram-negative bacteria. Appl. Environ. Microbiol. 57:3613–15
    [Google Scholar]
  64. Stout E, Klaenhammer T, Barrangou R 2017. CRISPR-Cas technologies and applications in food bacteria. Annu. Rev. Food Sci. Technol. 8:413–37
    [Google Scholar]
  65. van de Guchte M, Penaud S, Grimaldi C, Barbe V, Bryson K et al. 2006. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. PNAS 103:9274–79
    [Google Scholar]
  66. Wells JM, Mercenier A 2008. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat. Rev. Microbiol. 6:349–62
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-121826
Loading
/content/journals/10.1146/annurev-food-032818-121826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error