1932

Abstract

Consumer concerns about synthetically derived food additives have increased current research efforts to find naturally occurring alternatives. This review focuses on a group of natural surfactants, the saponins, that can be extracted from the Molina tree. saponins are triterpenoid saponins comprising a hydrophobic quillaic acid backbone and hydrophilic sugar moieties. Commercially available saponin products and their composition and properties are described, and the technofunctionality of saponins in a variety of food, cosmetic, and pharmaceutical product applications is discussed. These applications make use of the biological and interfacial activities of saponins and their ability to form and stabilize colloidal structures such as emulsions, foams, crystallized lipid particles, heteroaggregates, and micelles. Further emphasis is given to the complexation and functional properties of saponins with other cosurfactants to create mixed surfactant systems, an approach that has the potential to facilitate new interfacial structures and novel functionalities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-032818-122010
2019-03-25
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/food/10/1/annurev-food-032818-122010.html?itemId=/content/journals/10.1146/annurev-food-032818-122010&mimeType=html&fmt=ahah

Literature Cited

  1. Alarcon Camacho JG, Sainz Lobo JI 2010. Depth mapping using projected patterns US Patent Appl. 2010/0021583 A1
  2. Bai L, Huan S, Gu J, McClements DJ 2016. Fabrication of oil-in-water nanoemulsions by dual-channel microfluidization using natural emulsifiers: saponins, phospholipids, proteins, and polysaccharides. Food Hydrocoll 61:703–11
    [Google Scholar]
  3. Bai L, McClements DJ 2016. Formation and stabilization of nanoemulsions using biosurfactants: rhamnolipids. J. Colloid Interface Sci. 479:71–79
    [Google Scholar]
  4. Berlowska J, Dudkiewicz-Kołodziejska M, Pawlikowska E, Pielech-Przybylska K, Balcerek M et al. 2017. Utilization of post-fermentation yeasts for yeast extract production by autolysis: the effect of yeast strain and saponin from Quillaja saponaria. J. Inst. Brew. 123:396–401
    [Google Scholar]
  5. Berlowska J, Dudkiewicz M, Kregiel D, Czyzowska A, Witonska I 2015. Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria. Enzyme Microbial Technol 75–76:44–48
    [Google Scholar]
  6. Bezelgues JB, Serieye S, Crosset-Perrotin L, Leser ME 2008. Interfacial and foaming properties of some food grade low molecular weight surfactants. Colloids Surf. A 331:56–62
    [Google Scholar]
  7. Binks BP 2002. Particles as surfactants—similarities and differences. Curr. Opin. Colloid Interface Sci. 7:21–41
    [Google Scholar]
  8. Böttcher S, Drusch S 2016. Interfacial properties of saponin extracts and their impact on foam characteristics. Food Biophys 11:91–100
    [Google Scholar]
  9. Böttcher S, Drusch S 2017. Saponins: self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 243:105–13
    [Google Scholar]
  10. Böttcher S, Keppler JK, Drusch S 2017. Mixtures of Quillaja saponin and β-lactoglobulin at the oil/water-interface: adsorption, interfacial rheology and emulsion properties. Colloids Surf. A 518:46–56
    [Google Scholar]
  11. Böttcher S, Scampicchio M, Drusch S 2016. Mixtures of saponins and β-lactoglobulin differ from classical protein/surfactant-systems at the air-water interface. Colloids Surf. A 506:765–73
    [Google Scholar]
  12. Bouquerand P-E, Hafner V, Meyer F, Parker A 2014. Composition for the prevention/reduction of microbe-induced bio-corrosion caused by sulfate-reducing bacteria (SRB) and other microorganisms EP Patent 2552233 B1
    [Google Scholar]
  13. Can. Food Insp. Agency. 2017. List of food additives permitted as emulsifying, gelling, stabilizing or thickening agents Rep., Health Can. Ottawa, Can.:
    [Google Scholar]
  14. Chen XW, Chen YJ, Wang JM, Guo J, Yin SW, Yang XQ 2016. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties. Food Funct 7:3694–702
    [Google Scholar]
  15. Chen XW, Yang DX, Zou Y, Yang XQ 2017. Stabilization and functionalization of aqueous foams by Quillaja saponin–coated nanodroplets. Food Res. Int. 99:679–87
    [Google Scholar]
  16. Cheok CY, Salman HAK, Sulaiman R 2014. Extraction and quantification of saponins: a review. Food Res. Int. 59:16–40
    [Google Scholar]
  17. Chung C, Sher A, Rousset P, Decker EA, McClements DJ 2017.a Formulation of food emulsions using natural emulsifiers: utilization of Quillaja saponin and soy lecithin to fabricate liquid coffee whiteners. J. Food Eng. 209:1–11
    [Google Scholar]
  18. Chung C, Sher A, Rousset P, McClements DJ 2017.b Influence of homogenization on physical properties of model coffee creamers stabilized by Quillaja saponin. Food Res. Int. 99:770–77
    [Google Scholar]
  19. Chung C, Sher A, Rousset P, McClements DJ 2017.c Use of natural emulsifiers in model coffee creamers: physical properties of Quillaja saponin–stabilized emulsions. Food Hydrocoll 67:111–19
    [Google Scholar]
  20. Cohen SM, Fukushima S, Gooderham NJ, Hecht SS, Marnett LJ et al. 2015. GRAS flavoring substances 27. Food Technol 69:40–59
    [Google Scholar]
  21. Copaja SV, Blackburn C, Carmona R 2003. Variation of saponin contents in Quillaja saponica Molina. Wood Sci. Technol. 37:103–8
    [Google Scholar]
  22. Dalsgaard K 1978. A study of the isolation and characterization of the saponin Quil A. Evaluation of its adjuvant activity, with a special reference to the application in the vaccination of cattle against foot-and-mouth disease. Acta Vet. Scand. Suppl. 69:7–40
    [Google Scholar]
  23. Dan A, Kotsmar C, Ferri JK, Javadi A, Karbaschi M et al. 2012. Mixed protein-surfactant adsorption layers formed in a sequential and simultaneous way at water-air and water-oil interfaces. Soft Matter 8:6057–65
    [Google Scholar]
  24. Dan A, Wüstneck R, Krägel J, Aksenenko EV, Fainerman VB, Miller R 2013. Adsorption and dilational rheology of mixed β-casein/DoTAB layers formed by sequential and simultaneous adsorption at the water/hexane interface. Langmuir 29:2233–41
    [Google Scholar]
  25. de Faria JT, de Oliveira EB, Minim VPR, Minim LA 2017. Emulsifying properties of β-lactoglobulin and Quillaja bark saponin mixtures: effects of number of homogenization passes, pH, and NaCl concentration. Int. J. Food Prop. 20:1643–54
    [Google Scholar]
  26. De Geyter E, Smagghe G, Rahbé Y, Geelen D 2011. Triterpene saponins of Quillaja saponaria show strong aphicidal and deterrent activity against the pea aphid Acyrthosiphon pisum. Pest Manag. Sci 68:164–69
    [Google Scholar]
  27. Demana PH, Davies NM, Vosgerau U, Rades T 2004. Pseudo-ternary phase diagrams of aqueous mixtures of Quil A, cholesterol and phospholipid prepared by the lipid-film hydration method. Int. J. Pharm. 270:229–39
    [Google Scholar]
  28. Dickinson E 2009. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll 23:1473–82
    [Google Scholar]
  29. Donoso S, Peña K, Pacheco C, Luna G, Aguirre A 2011. Physiological and growth response in Quillaja saponaria and Cryptocarya alba plants under restricted water conditions. Bosque 32:187–95
    [Google Scholar]
  30. Drenckhan W, Saint-Jalmes A 2015. The science of foaming. Adv. Colloid Interface Sci. 222:228–59
    [Google Scholar]
  31. Ebbesen P, Dalsgaard K, Høier-Madsen M 1976. Prolonged survival of AKR mice treated with the saponin adjuvant Quil A. Acta Pathol. Microbiol. Scand. A 84:358–60
    [Google Scholar]
  32. Fainerman VB, Leser ME, Michel M, Lucassen-Reynders EH, Miller R 2005. Kinetics of the desorption of surfactants and proteins from adsorption layers at the solution/air interface. J. Phys. Chem. B 109:9672–77
    [Google Scholar]
  33. Fainerman VB, Lucassen-Reynders EH, Miller R 2003. Description of the adsorption behaviour of proteins at water/fluid interfaces in the framework of a two-dimensional solution model. Adv. Colloid Interface Sci. 106:237–59
    [Google Scholar]
  34. Fainerman VB, Zholob SA, Leser ME, Michel M, Miller R 2004.a Adsorption from mixed ionic surfactant/protein solutions: analysis of ion binding. J. Phys. Chem. B 108:16780–85
    [Google Scholar]
  35. Fainerman VB, Zholob SA, Leser M, Michel M, Miller R 2004.b Competitive adsorption from mixed nonionic surfactant/protein solutions. J. Colloid Interface Sci. 274:496–501
    [Google Scholar]
  36. FAO-WHO. 2005. Safety evaluation of certain food additives. Chemical and technical assessment: Quillaja extract type 1 and type 2 Rep., Int. Prog. Chem. Saf. World Health Organ. Geneva, Switz.:
    [Google Scholar]
  37. Fernández-Tejada A, Tan DS, Gin DY 2015. Versatile strategy for the divergent synthesis of linear oligosaccharide domain variants of Quillaja saponin vaccine adjuvants. Chem. Commun. 51:13949–52
    [Google Scholar]
  38. Fukuda K, Utsumi H, Shoji J, Hamada A 1985. Saponins can cause the agglutination of phospholipid vesicles. Biochim. Biophys. Acta 820:199–206
    [Google Scholar]
  39. Fuller GG 2003. Rheology of mobile interfaces. Rheol. Rev. 2003:77–123
    [Google Scholar]
  40. Gaete-Garretón L, Vargas-Hernández Y, Cares-Pacheco MG, Sainz J, Alarcón J 2011. Ultrasonically enhanced extraction of bioactive principles from Quillaja saponaria Molina. Ultrasonics 51:581–85
    [Google Scholar]
  41. Gillespie L 2016. Use of saponins to replace egg whites in alcoholic and non-alcoholic beverages US Patent Appl. 2016/0353777 A1
  42. Golemanov K, Tcholakova S, Denkov N, Pelan E, Stoyanov SD 2012. Surface shear rheology of saponin adsorption layers. Langmuir 28:12071–84
    [Google Scholar]
  43. Güçlü-Üstündağ Ö, Mazza G 2007. Saponins: properties, applications and processing. Crit. Rev. Food Sci. Nutr. 47:231–58
    [Google Scholar]
  44. Guo S, Kenne L 2000. Structural studies of triterpenoid saponins with new acyl components from Quillaja saponaria Molina. Phytochemistry 55:419–28
    [Google Scholar]
  45. Guo S, Lennart K, Lundgren LN, Rönnberg B, Sundquist BG 1998. Triterpenoid saponins from Quillaja saponaria. Phytochemistry 48:175–80
    [Google Scholar]
  46. Gutbier A, Huber J, Haug R 1921. Studien über schutzkolloide. Zehnte reihe: saponin als schutzkolloid. 1. Mitteilung: allgemeine kolloidchemische untersuchungen über guajac-saponin und Quillaja-saponin. Kolloid-Zeitschrift 29:19–25
    [Google Scholar]
  47. Hall RL, Oser BL 1965. Recent progress in the consideration of flavor ingredients under the Food Additives Amendment. 3. GRAS substances. Food Technol 19:151–97
    [Google Scholar]
  48. Hassan SM, Byrd JA, Cartwright AL, Bailey CA 2010. Hemolytic and antimicrobial activities differ among saponin-rich extracts from guar, Quillaja, Yucca, and soybean. Appl. Biochem. Biotechnol. 162:1008–17
    [Google Scholar]
  49. Hiemenz PC, Rajagopalan R 1997. Principles of Colloid and Surface Chemistry Boca Raton, FL: CRC Press
  50. Higuchi R, Komori T 1987. Structures of compounds derived from the acyl moieties of quillaja saponin. Phytochemistry 26:2357–60
    [Google Scholar]
  51. Higuchi R, Tokimitsu Y, Fujioka T, Komori T, Kawasaki T, Oakenful DG 1986. Structure of desacylsaponins obtained from the bark of Quillaja saponaria. Phytochemistry 26:229–35
    [Google Scholar]
  52. Hill C, Eastoe J 2017. Foams: from nature to industry. Adv. Colloid Interface Sci. 247:496–513
    [Google Scholar]
  53. Hostettmann K, Marston A 1995. Saponins Cambridge, UK: Cambridge Univ. Press
  54. Islam AM, Chowdhry BZ, Snowden MJ 1995. Heteroaggregation in colloidal dispersions. Adv. Colloid Interface Sci. 62:109–36
    [Google Scholar]
  55. Joshi M, Adhikari B, Aldred P, Panozzo JF, Kasapis S, Barrow CJ 2012. Interfacial and emulsifying properties of lentil protein isolate. Food Chem 134:1343–53
    [Google Scholar]
  56. Jpn. Food Chem. Res. Found. 2018. List of existing food additives Rep., Jpn. Food Chem. Res. Found. Osaka: https://www.ffcr.or.jp/en/tenka/list-of-existing-food-additives/list-of-existing-food-additives.html
  57. Kaczorek E, Smułek W, Zdarta A, Sawczuk A, Zgoła-Grześkowiak A 2016. Influence of saponins on the biodegradation of halogenated phenols. Ecotoxicol. Environ. Safety 131:127–34
    [Google Scholar]
  58. Karthik S, Raghavan CV, Marslin G, Rahman H, Selvaraj D et al. 2016. Quillaja saponin: a prospective emulsifier for the preparation of solid lipid nanoparticles. Colloids Surf. B 147:274–80
    [Google Scholar]
  59. Kenney RT, Rabinovich RN, Pichyangkul S, Price VL, Engers HD 2002. 2nd meeting on novel adjuvants currently in/close to human clinical testing: World Health Organization–Organization Mondiale de la Santé Fondation Mérieux, Annecy, France, 5–7 June 2000. Vaccine 20:2155–63
    [Google Scholar]
  60. Kensil CA, Marciani DJ 1991. Saponin adjuvant US Patent 5,057,540 A
  61. Kensil CR, Patel U, Lennick M, Marciani D 1991. Separation and characterization of saponins with adjuvant activity from Quillaja saponaria Molina cortex. J. Immunol. 146:431–37
    [Google Scholar]
  62. Kersten GFA, Crommelin DJA 2003. Liposomes and ISCOMs. Vaccine 21:915–20
    [Google Scholar]
  63. Kezwon A, Wojciechowski K 2014. Interaction of Quillaja bark saponins with food-relevant proteins. Adv. Colloid Interface Sci. 209:185–95
    [Google Scholar]
  64. Kite GC, Howes MJR, Simmonds MSJ 2004. Metabolomic analysis of saponins in crude extracts of Quillaja saponaria by liquid chromatography/mass spectrometry for product authentication. Rapid Commun. Mass Spectrom. 18:2859–70
    [Google Scholar]
  65. Kotsmar C, Pradines V, Alahverdjieva VS, Aksenenko EV, Fainerman VB et al. 2009. Thermodynamics, adsorption kinetics and rheology of mixed protein–surfactant interfacial layers. Adv. Colloid Interface Sci. 150:41–54
    [Google Scholar]
  66. López-López JM, Schmitt A, Moncho-Jordá A, Hidalgo-Álvarez R 2009. Electrostatic heteroaggregation regimes in colloidal suspensions. Adv. Colloid Interface Sci. 147–148:186–204
    [Google Scholar]
  67. Luo X, Zhou Y, Bai L, Liu F, Zhang R et al. 2017. Production of highly concentrated oil-in-water emulsions using dual-channel microfluidization: use of individual and mixed natural emulsifiers (saponin and lecithin). Food Res. Int. 96:103–12
    [Google Scholar]
  68. Mackie AR, Gunning AP, Wilde PJ, Morris VJ 1999. Orogenic displacement of protein from the air/water interface by competitive adsorption. J. Colloid Interface Sci. 210:157–66
    [Google Scholar]
  69. Mackie AR, Gunning AP, Wilde PJ, Morris VJ 2000. Orogenic displacement of protein from the oil/water interface. Langmuir 16:2242–47
    [Google Scholar]
  70. Maier C, Conrad J, Carle R, Weiss J, Schweiggert RM 2015.a Phenolic constituents in commercial aqueous Quillaja (Quillaja saponaria Molina) wood extracts. J. Agric. Food Chem. 63:1756–62
    [Google Scholar]
  71. Maier C, Conrad J, Steingass CB, Beifuss U, Carle R, Schweiggert RM 2015.b Quillajasides A and B: new phenylpropanoid sucrose esters from the inner bark of Quillaja saponaria Molina. J. Agric. Food Chem. 63:8905–11
    [Google Scholar]
  72. Maier C, Oechsle AM, Weiss J 2015.c Cross-linking oppositely charged oil-in-water emulsions to enhance heteroaggregate stability. Colloids Surf. B 135:525–32
    [Google Scholar]
  73. Maier C, Reichert CL, Weiss J 2016. Characterization of chemically and thermally treated oil-in-water heteroaggregates and comparison to conventional emulsions. J. Food Sci. 81:E2484–91
    [Google Scholar]
  74. Maier C, Zeeb B, Weiss J 2014. Investigations into aggregate formation with oppositely charged oil-in-water emulsions at different pH values. Colloids Surf. B 117:368–75
    [Google Scholar]
  75. Maldonado-Valderrama J, Rodríguez Patino JM 2010. Interfacial rheology of protein–surfactant mixtures. Curr. Opin. Colloid Interface Sci. 15:271–82
    [Google Scholar]
  76. Marciani DJ 2015. Is fucose the answer to the immunomodulatory paradox of Quillaja saponins. Int. Immunopharmacol. 29:908–13
    [Google Scholar]
  77. Mayer S, Weiss J, McClements DJ 2013. Vitamin E–enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. J. Colloid Interface Sci. 402:122–30
    [Google Scholar]
  78. McClements DJ 2005. Food Emulsions Principles, Practices, and Techniques Boca Raton, FL: CRC Press
    [Google Scholar]
  79. McClements DJ 2014. Nanoparticle- and Microparticle-Based Delivery Systems: Encapsulation, Protection and Release of Active Compounds Boca Raton, FL: CRC Press
  80. McClements DJ, Gumus CE 2016. Natural emulsifiers—biosurfactants, phospholipids, biopolymers, and colloidal particles: molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 234:3–26
    [Google Scholar]
  81. Mehnert W, Mäder K 2012. Solid lipid nanoparticles: production, characterization and applications. Adv. Drug Deliv. Rev. 64:83–101
    [Google Scholar]
  82. Minist. Health People's Repub. China. 2011. National standard of food security: usage standard of food additives Rep. GB1760–2011 Minist. Health People's Republic China Beijing: http://www.svscr.cz/wp-content/files/zivocisne-produkty/GB_2760-2011_Food-Additives.pdf
  83. Mitra S, Dungan SR 1997. Micellar properties of Quillaja saponin. 1. Effects of temperature, salt, and pH on solution properties. J. Agric. Food Chem. 45:1587–95
    [Google Scholar]
  84. Morein B, Loevgren BK 2012. Iscom preparation and use thereof WO Patent 2004004762A1
  85. Morein B, Sundquist B, Höglund S, Dalsgaard K, Osterhaus A 1984. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 308:457–60
    [Google Scholar]
  86. Mostafa AE, El-Hela AA, Mohammad AEI, Cutler SJ, Ross SA 2016. New triterpenoidal saponins from Koelreuteria paniculata. Phytochem. Lett. 17:213–18
    [Google Scholar]
  87. Müller RH, Mäder K, Gohla S 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery: a review of the state of the art. Eur. J. Pharm. Biopharm. 50:161–77
    [Google Scholar]
  88. Müller RH, Radtke M, Wissing SA 2002. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54:Suppl. 1S131–55
    [Google Scholar]
  89. Neufang H 2014. Zusammensetzung sowie kosmetische Zubereitung mit einer derartigen Zusammensetzung EP Patent 2711050 A1
  90. Nord LI, Kenne L 1999. Separation and structural analysis of saponins in a bark extract from Quillaja saponaria Molina. Carbohydr. Res. 320:70–81
    [Google Scholar]
  91. Nord LI, Kenne L, Jacobsson SP 2001. Multivariate analysis of 1H NMR spectra for saponins from Quillaja saponaria Molina. Anal. Chim. Acta 446:199–209
    [Google Scholar]
  92. Noskov BA, Krycki MM 2017. Formation of protein/surfactant adsorption layer as studied by dilational surface rheology. Adv. Colloid Interface Sci. 247:81–99
    [Google Scholar]
  93. Oakenfull D 1981. Saponins in food: a review. Food Chem 6:19–40
    [Google Scholar]
  94. Ogasawara M, Yamamoto K, Watanabe M 2000. Compositions containing novel protein complexes US Patent 6,066,352
  95. Ozturk B, Argin S, Ozilgen M, McClements DJ 2015. Nanoemulsion delivery systems for oil-soluble vitamins: influence of carrier oil type on lipid digestion and vitamin D3 bioaccessibility. Food Chem 187:499–506
    [Google Scholar]
  96. Pagureva N, Tcholakova S, Golemanov K, Denkov N, Pelan E, Stoyanov SD 2016. Surface properties of adsorption layers formed from triterpenoid and steroid saponins. Colloids Surf. A 491:18–28
    [Google Scholar]
  97. Park JY, Plahar MA, Hung YC, McWatters KH, Eun JB 2005. Effect of saponins on the foam/flow properties of paste and physical characteristics of Akara made from decorticated black-eyed cowpeas. J. Sci. Food Agric. 85:1845–51
    [Google Scholar]
  98. Patra AK, Stiverson J, Yu Z 2012. Effects of Quillaja and Yucca saponins on communities and select populations of rumen bacteria and archaea, and fermentation in vitro. J. Appl. Microbiol. 113:1329–40
    [Google Scholar]
  99. Pedebos C, Pol-Fachin L, Pons R, Teixeira CV, Verli H 2014. Atomic model and micelle dynamics of QS-21 saponin. Molecules 19:3744–60
    [Google Scholar]
  100. Pekdemir T, Çopur M, Urum K 2005. Emulsification of crude oil–water systems using biosurfactants. Process Saf. Environ. Prot. 83:38–46
    [Google Scholar]
  101. Piotrowski M, Lewandowska J, Wojciechowski K 2012. Biosurfactant-protein mixtures: Quillaja bark saponin at water/air and water/oil interfaces in presence of β-lactoglobulin. J. Phys. Chem. B 116:4843–50
    [Google Scholar]
  102. Plahar MA, Hung YC, McWatters KH, Phillips RD, Chinnan MS 2006. Effect of saponins on the physical characteristics, composition and quality of Akara (fried cowpea paste) made from non-decorticated cream cowpeas. LWT Food Sci. Technol. 39:275–84
    [Google Scholar]
  103. Posocco P, Perazzo A, Preziosi V, Laurini E, Pricl S, Guido S 2016. Interfacial tension of oil/water emulsions with mixed non-ionic surfactants: comparison between experiments and molecular simulations. RSC Adv 6:4723–29
    [Google Scholar]
  104. Potter SM, Jimenez-Flores R, Pollack J, Lone TA, Berber-Jimenez MD 1993. Protein–saponin interaction and its influence on blood lipids. J. Agric. Food Chem. 41:1287–91
    [Google Scholar]
  105. Pugnaloni LA, Dickinson E, Ettelaie R, Mackie AR, Wilde PJ 2004. Competitive adsorption of proteins and low-molecular-weight surfactants: computer simulation and microscopic imaging. Adv. Colloid Interface Sci. 107:27–49
    [Google Scholar]
  106. Ralla T, Salminen H, Edelmann M, Dawid C, Hofmann T, Weiss J 2017.a Stability of emulsions using a new natural emulsifier: sugar beet extract (Beta vulgaris L.). Food Biophys 12:269–78
    [Google Scholar]
  107. Ralla T, Salminen H, Edelmann M, Dawid C, Hofmann T, Weiss J 2017.b Sugar beet extract (Beta vulgaris L.) as a new natural emulsifier: emulsion formation. J. Agric. Food Chem. 65:4153–60
    [Google Scholar]
  108. Reichert CL, Salminen H, Badolato Bönisch G, Schäfer C, Weiss J 2018. Concentration effect of Quillaja saponin–co-surfactant mixtures on emulsifying properties. J. Colloid Interface Sci. 519:71–80
    [Google Scholar]
  109. Reichert CL, Salminen H, Leuenberger BH, Hinrichs J, Weiss J 2015. Miscibility of Quillaja saponins with other co-surfactants under different pH values. J. Food Sci. 80:E2495–503
    [Google Scholar]
  110. Reichert CL, Salminen H, Leuenberger BH, Weiss J 2016. Influence of heat on miscibility of Quillaja saponins in mixtures with a co-surfactant. Food Res. Int. 88:16–23
    [Google Scholar]
  111. Reichert CL, Salminen H, Utz J, Badolato Boenisch G, Schäfer C, Weiss J 2017. Aging behavior of Quillaja saponin–pea protein interfaces. Colloid Interface Sci. Commun. 21:15–18
    [Google Scholar]
  112. Resnik S, Kuznesof PM, Valente Soares LM 2005. Quillaia extracts: type 1 and type 2 Paper presented at the 65th Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA) Geneva, Switz.:
    [Google Scholar]
  113. Ribeiro BD, Alviano DS, Barreto DW, Coelho MAZ 2013. Functional properties of saponins from sisal (Agave sisalana) and juá (Ziziphus joazeiro): critical micellar concentration, antioxidant and antimicrobial activities. Colloids Surf. A 436:736–43
    [Google Scholar]
  114. Riess T, Sabater-Lüntzel C, Homner C, Schrader D 2010. Solubilization agent for solubilizing polyphenols, flavonoids and/or diterpenoid glucosides EP Patent 2359702 A1
    [Google Scholar]
  115. Rio E, Drenckhan W, Salonen A, Langevin D 2014. Unusually stable liquid foams. Adv. Colloid Interface Sci. 205:74–86
    [Google Scholar]
  116. Rodríguez-Díaz M, Delporte C, Cartagena C, Cassels BK, González P et al. 2011. Topical anti-inflammatory activity of quillaic acid from Quillaja saponaria Mol. and some derivatives. J. Pharm. Pharmacol. 63:718–24
    [Google Scholar]
  117. Roner MR, Sprayberry J, Spinks M, Dhanji S 2007. Antiviral activity obtained from aqueous extracts of the Chilean soapbark tree (Quillaja saponaria Molina). J. Gen. Virol. 88:275–85
    [Google Scholar]
  118. Rundel PW, Weisser PJ 1975. La Campana, a new national park in central Chile. Biol. Conserv. 8:35–46
    [Google Scholar]
  119. Salminen H, Aulbach S, Leuenberger BH, Tedeschi C, Weiss J 2014. Influence of surfactant composition on physical and oxidative stability of Quillaja saponin–stabilized lipid particles with encapsulated ω-3 fish oil. Colloids Surf. B 122:46–55
    [Google Scholar]
  120. Salminen H, Gömmel C, Leuenberger BH, Weiss J 2016. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: towards bioactive-based design of delivery systems. Food Chem 190:928–37
    [Google Scholar]
  121. San Martín R, Briones R 1999. Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ. Bot. 53:302–11
    [Google Scholar]
  122. San Martín R, Briones R 2000. Quality control of commercial Quillaja (Quillaja saponaria Molina) extracts by reverse phase HPLC. J. Sci. Food Agric. 80:2063–68
    [Google Scholar]
  123. Sarkhel S 2015. Evaluation of the anti-inflammatory activities of Quillaja saponaria Mol. saponin extract in mice. Toxicol. Rep. 2:1–3
    [Google Scholar]
  124. Schlotterbeck T, Castillo-Ruiz M, Cañon-Jones H, San Martín R 2015. The use of leaves from young trees of Quillaja saponaria (Molina) plantations as a new source of saponins. Econ. Bot. 69:262–72
    [Google Scholar]
  125. Schrader D, Sabater-Lüntzel C, Homner C 2011. Compositions with a surfactant system comprising saponins, and lecithin EP Patent 2359698 A1
    [Google Scholar]
  126. Schultz M, Monnier V 2015. Composition and method for manufacturing clear beverages comprising nanoemulsions with Quillaja saponins US Patent Appl. 2015/0030748 A1
  127. Serrano AE 2013. Effects of Quillaja saponins on growth, feed efficiency, digestive enzyme activities and metabolism of common carp (Cyprinus carpio L). Aquac. Nutr. 19:468–74
    [Google Scholar]
  128. Stanimirova R, Marinova K, Tcholakova S, Denkov ND, Stoyanov S, Pelan E 2011. Surface rheology of saponin adsorption layers. Langmuir 27:12486–98
    [Google Scholar]
  129. Sun HX, Xie Y, Ye YP 2009. Advances in saponin-based adjuvants. Vaccine 27:1787–96
    [Google Scholar]
  130. Sundfeld E, Krochta JM, Richardson T 1994. Aqueous process to remove cholesterol from food products US Patent 5,370,890
  131. Tam KI, Roner MR 2011. Characterization of in vivo anti-rotavirus activities of saponin extracts from Quillaja saponaria Molina. Antivir. Res. 90:231–41
    [Google Scholar]
  132. Thalhamer B, Himmelsbach M 2014. Characterization of Quillaja bark extracts and evaluation of their purity using liquid chromatography–high resolution mass spectrometry. Phytochem. Lett. 8:97–100
    [Google Scholar]
  133. Tharabenahalli-Nagaraju V, Chang-Su P, Heung-Yun K, Sung-Ju J 2014. Toxicity and dose determination of Quillaja saponin, aluminum hydroxide and squalene in olive flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol. 158:73–85
    [Google Scholar]
  134. Tippel J, Lehmann M, von Klitzing R, Drusch S 2016.a Interfacial properties of Quillaja saponins and its use for micellisation of lutein esters. Food Chem 212:35–42
    [Google Scholar]
  135. Tippel J, Reim V, Rohn S, Drusch S 2016.b Colour stability of lutein esters in liquid and spray dried delivery systems based on Quillaja saponins. Food Res. Int. 87:68–75
    [Google Scholar]
  136. Tran I, Li JZ 2012. Emulsions useful in beverages US Patent 8,318,233 B2
  137. Uluata S, McClements DJ, Decker EA 2015. Physical stability, autoxidation, and photosensitized oxidation of ω-3 oils in nanoemulsions prepared with natural and synthetic surfactants. J. Agric. Food Chem. 63:9333–40
    [Google Scholar]
  138. Van De Ven H, Vermeersch M, Shunmugaperumal T, Vandervoort J, Maes L, Ludwig A 2009. Solid lipid nanoparticle (SLN) formulations as a potential tool for the reduction of cytotoxicity of saponins. Pharmazie 64:172–76
    [Google Scholar]
  139. Vargaftik NB, Volkov BN, Voljak LD 1983. International tables of the surface tension of water. J. Phys. Chem. Ref. Data 12:817–20
    [Google Scholar]
  140. Vietnam Food Adm. 2012. List of food additives allowed in use in food Rep. No. 27/2012/TT-BYT Vietnam Food Adm. Hanoi: https://gain.fas.usda.gov/Recent%20GAIN%20Publications/Vietnam%20Revises%20List%20of%20Additives%20Approved%20for%20Use%20in%20Food_Hanoi_Vietnam_1-31-2013.pdf
  141. Vinarova L, Vinarov Z, Damyanova B, Tcholakova S, Denkov N, Stoyanov S 2015. Mechanisms of cholesterol and saturated fatty acid lowering by Quillaja saponaria extract, studied by in vitro digestion model. Food Funct 6:1319–30
    [Google Scholar]
  142. Walkowicz WE, Fernández-Tejada A, George C, Corzana F, Jiménez-Barbero J et al. 2016. Quillaja saponin variants with central glycosidic linkage modifications exhibit distinct conformations and adjuvant activities. Chem. Sci. 7:2371–80
    [Google Scholar]
  143. Walstra P 1993. Principles of emulsion formation. Chem. Eng. Sci. 48:333–49
    [Google Scholar]
  144. Wang Y, Lu X, Xu G 2008. Development of a comprehensive two-dimensional hydrophilic interaction chromatography/quadrupole time-of-flight mass spectrometry system and its application in separation and identification of saponins from Quillaja saponaria. J. Chromatogr. A 1181:51–59
    [Google Scholar]
  145. Weigel F, Weiss J, Decker EA, McClements DJ 2018. Lutein-enriched emulsion-based delivery systems: influence of emulsifiers and antioxidants on physical and chemical stability. Food Chem 242:395–403
    [Google Scholar]
  146. Weiss J, Maier C, Leuenberger BH, Novotny M, Tedeschi C, Kessler A 2016. Solid lipid nanoparticles. US Patent Appl. 2016/0022550 A1
  147. Wiersma JG 1998. Method and composition for food flavoring US Patent 5,804,239
  148. Wilde P, Mackie A, Husband F, Gunning P, Morris V 2004. Proteins and emulsifiers at liquid interfaces. Adv. Colloid Interface Sci. 108–109:63–71
    [Google Scholar]
  149. Wojciechowski K 2013. Surface activity of saponin from Quillaja bark at the air/water and oil/water interfaces. Colloids Surf. B 108:95–102
    [Google Scholar]
  150. Wojciechowski K, Kezwon A, Lewandowska J, Marcinkowski K 2014.a Effect of β-casein on surface activity of Quillaja bark saponin at fluid/fluid interfaces. Food Hydrocoll 34:208–16
    [Google Scholar]
  151. Wojciechowski K, Orczyk M, Gutberlet T, Trapp M, Marcinkowski K et al. 2014.b Unusual penetration of phospholipid mono- and bilayers by Quillaja bark saponin biosurfactant. Biochim. Biophys. Acta 1838:1931–40
    [Google Scholar]
  152. Wojciechowski K, Orczyk M, Marcinkowski K, Kobiela T, Trapp M et al. 2014.c Effect of hydration of sugar groups on adsorption of Quillaja bark saponin at air/water and Si/water interfaces. Colloids Surf. B 117:60–67
    [Google Scholar]
  153. Wojciechowski K, Piotrowski M, Popielarz W, Sosnowski TR 2011. Short- and mid-term adsorption behaviour of Quillaja bark saponin and its mixtures with lysozyme. Food Hydrocoll 25:687–93
    [Google Scholar]
  154. Yang Y, Leser ME, Sher AA, McClements DJ 2013. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocoll 30:589–96
    [Google Scholar]
  155. Yang Y, McClements DJ 2013.a Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocoll 30:712–20
    [Google Scholar]
  156. Yang Y, McClements DJ 2013.b Vitamin E bioaccessibility: influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chem 141:473–81
    [Google Scholar]
  157. Zhang J, Bing L, Reineccius GA 2015. Formation, optical property and stability of orange oil nanoemulsions stabilized by Quillaja saponins. LWT Food Sci. Technol. 64:1063–70
    [Google Scholar]
/content/journals/10.1146/annurev-food-032818-122010
Loading
/content/journals/10.1146/annurev-food-032818-122010
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error