This review elucidates the state-of-the-art knowledge about pathogen population heterogeneity and describes the genotypic and phenotypic analyses of persister subpopulations and stress-resistant variants. The molecular mechanisms underlying the generation of persister phenotypes and genetic variants are identified. Zooming in on , a comparative whole-genome sequence analysis of wild types and variants that enabled the identification of mutations in variants obtained after a single exposure to lethal food-relevant stresses is described. Genotypic and phenotypic features are compared to those for persistent strains isolated from food processing environments. Inactivation kinetics, models used for fitting, and the concept of kinetic modeling–based schemes for detection of variants are presented. Furthermore, robustness and fitness parameters of wild type and variants are used to model their performance in food chains. Finally, the impact of stress-resistant variants and persistence in food processing environments on food safety is discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abee T, Wels M, de Been M, den Besten H. 2011. From transcriptional landscapes to the identification of biomarkers for robustness. Microb. Cell Fact. 10:Suppl. 1S9 [Google Scholar]
  2. Akanuma G, Nanamiya H, Natori Y, Yano K, Suzuki S. et al. 2012. Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. J. Bacteriol. 194:6282–91 [Google Scholar]
  3. Amato SM, Fazen CH, Henry TC, Mok WW, Orman MA. et al. 2014. The role of metabolism in bacterial persistence. Front. Microbiol. 5:70 [Google Scholar]
  4. Aryani DC, den Besten HMW, Hazeleger WC, Zwietering MH. 2015. Quantifying variability and the effect of growth history on thermal resistance of Listeria monocytogenes. Int. J. Food Microbiol. 193:130–38 [Google Scholar]
  5. Avery SV. 2006. Microbial cell individuality and the underlying sources of heterogeneity. Nat. Rev. Microbiol. 4:8577–87 [Google Scholar]
  6. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S. 2004. Bacterial persistence as a phenotypic switch. Science 305:56901622–25 [Google Scholar]
  7. Begley M, Hill C. 2015. Stress adaptation in foodborne pathogens. Annu. Rev. Food Sci. Technol. 6:191–210 [Google Scholar]
  8. Bergholz TM, Moreno Switt A, Wiedmann M. 2014. Omics approaches in food safety: fulfilling the promise?. Trends Microbiol. 22:5275–81 [Google Scholar]
  9. Booth I. 2002. Stress and the single cell: Intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. Int. J. Food Microbiol. 78:19–30 [Google Scholar]
  10. Cabrita P, Trigo MJ, Ferreira RB, Brito L. 2015. Differences in the expression of cold stress–related genes and in the swarming motility among persistent and sporadic strains of Listeria monocytogenes. Foodborne Pathog. Dis. 12:7576–84 [Google Scholar]
  11. Carpentier B, Cerf O. 2011. Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 145:11–8 [Google Scholar]
  12. Cerf O. 1977. Tailing of survival curves of bacterial spores. J. Appl. Bacteriol. 42:11–19 [Google Scholar]
  13. Chick H. 1908. An investigation of the laws of disinfection. J. Hyg. 8:92–158 [Google Scholar]
  14. Coroller L, Leguerinel I, Mettler E, Savy N, Mafart P. 2006. General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Appl. Environ. Microbiol. 72:106493–502 [Google Scholar]
  15. Cotter PD, O'Reilly K, Hill C. 2001. Role of the glutamate decarboxylase acid resistance system in the survival of Listeria monocytogenes LO28 in low pH foods. J. Food Prot. 64:1362–68 [Google Scholar]
  16. den Besten HMW, Mataragas M, Moezelaar R, Abee T, Zwietering MH. 2006. Quantification of the effects of salt stress and physiological state on thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579.. Appl. Environ. Microbiol. 72:95884–94 [Google Scholar]
  17. Durack J, Ross T, Bowman JP. 2013. Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms. PLOS ONE 8:e73603 [Google Scholar]
  18. Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. 2014. Listeria monocytogenes persistence in food-associated environments: epidemiology, strain characteristics, and implications for public health. J. Food Prot. 77:1150–70 [Google Scholar]
  19. Fox EM, Leonard N, Jordan K. 2011. Physiological and transcriptional characterization of persistent and nonpersistent Listeria monocytogenes isolates. Appl. Environ. Microbiol. 77:186559–69 [Google Scholar]
  20. Geeraerd AH, Herremans CH, Van Impe JF. 2000. Structural model requirements to describe microbial inactivation during a mild heat treatment. Int. J. Food Microbiol. 59:185–209 [Google Scholar]
  21. Geeraerd AH, Valdramidis VP, Van Impe JF. 2005. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 102:95–105 [Google Scholar]
  22. Geeraerd AH, Valdramidis VP, Van Impe JF. 2005. GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. Int. J. Food Microbiol. 102:95–105 Erratum. 2006 Int. J. Food Microbiol. 110:297 [Google Scholar]
  23. Germain E, Castro-Roa D, Zenkin N, Gerdes K. 2013. Molecular mechanism of bacterial persistence by HipA. Mol. Cell 52:2248–54 [Google Scholar]
  24. Goeders N, Van Melderen L. 2014. Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 6:1304–24 [Google Scholar]
  25. Hein I, Klinger S, Dooms M, Flekna G, Stessl B. et al. 2011. Stress survival islet 1 (SSI-1) survey in Listeria monocytogenes reveals an insert common to Listeria innocua in sequence type 121 L. monocytogenes strains. Appl. Environ. Microbiol. 77:62169–73 [Google Scholar]
  26. Helaine S, Kugelberg E. 2014. Bacterial persisters: formation, eradication, and experimental systems. Trends Microbiol. 22:7417–24 [Google Scholar]
  27. Holch A, Webb K, Lukjancenko O, Ussery D, Rosenthal BM, Gram L. 2013. Genome sequencing identifies two nearly unchanged strains of persistent Listeria monocytogenes isolated at two different fish processing plants sampled 6 years apart. Appl. Environ. Microbiol. 79:92944–51 [Google Scholar]
  28. Ivy RA, Wiedmann M, Boor KJ. 2012. Listeria monocytogenes grown at 7°C shows reduced acid survival and an altered transcriptional response to acid shock compared to L. monocytogenes grown at 37°C. Appl. Environ. Microbiol. 78:113824–36 [Google Scholar]
  29. Karatzas KA, Bennik MH. 2002. Characterization of a Listeria monocytogenes Scott A isolate with high tolerance towards high hydrostatic pressure. Appl. Environ. Microbiol. 68:73183–89 [Google Scholar]
  30. Karatzas KA, Suur L, O'Byrne CP. 2012. Characterization of the intracellular glutamate decarboxylase system: analysis of its function, transcription, and role in the acid resistance of various strains of Listeria monocytogenes. Appl. Environ. Microbiol. 78:103571–79 [Google Scholar]
  31. Karatzas KA, Wouters JA, Gahan CG, Hill C, Abee T, Bennik MH. 2003. The CtsR regulator of Listeria monocytogenes contains a variant glycine repeat region that affects piezotolerance, stress resistance, motility and virulence. Mol. Microbiol. 49:51227–38 [Google Scholar]
  32. Karatzas KA, Valdramidis VP, Wells-Bennik MH. 2005. Contingency locus in ctsR of Listeria monocytogenes Scott A: a strategy for occurrence of abundant piezotolerant isolates within clonal populations. Appl. Environ. Microbiol. 71:128390–96 [Google Scholar]
  33. Kastbjerg VG, Hein-Kristensen L, Gram L. 2014. Triclosan-induced aminoglycoside-tolerant Listeria monocytogenes isolates can appear as small-colony variants. Antimicrob. Agents Chemother. 58:63124–32 [Google Scholar]
  34. Lewis K. 2012. Persister cells. Annu. Rev. Microbiol. 64:357–72 [Google Scholar]
  35. Mafart P, Couvert O, Gaillard S, Leguerinel I. 2002. On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. Int. J. Food Microbiol. 72:107–13 [Google Scholar]
  36. Maisonneuve E, Gerdes K. 2014. Molecular mechanisms underlying bacterial persisters. Cell 157:3539–48 [Google Scholar]
  37. Malley TJ, Butts J, Wiedmann M. 2015. Seek and destroy process: Listeria monocytogenes process controls in the ready-to-eat meat and poultry industry. J. Food Prot. 78:2436–45 [Google Scholar]
  38. Metselaar KI, den Besten HMW, Abee T, Moezelaar R, Zwietering MH. 2013. Isolation and quantification of highly resistant variants of Listeria monocytogenes. Int. J. Food Microbiol. 166:508–14 [Google Scholar]
  39. Metselaar KI, den Besten HMW, Boekhorst J, Van Hijum SAFT, Zwietering MH, Abee T. 2015a. Diversity of acid stress resistant variants of Listeria monocytogenes and the potential role of ribosomal protein S21 encoded by rpsU. Front. Microbiol. 8:6422 [Google Scholar]
  40. Metselaar KI, Saá Ibusquiza P, Ortiz Camargo AR, Krieg M, Zwietering MH. et al. 2015b. Performance of stress resistant variants of Listeria monocytogenes in mixed species biofilms with Lactobacillus plantarum. Int. J. Food Microbiol. 213:24–30 [Google Scholar]
  41. Mols M, Abee T. 2011. Bacillus cereus responses to acid stress. Environ. Microbiol. (11):2835–43
  42. Müller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B. et al. 2013. Tn6188: a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLOS ONE 8:10e76835 [Google Scholar]
  43. Ochiai Y, Yamada F, Mochizuki M, Takano T, Hondo R, Ueda F. 2015. Biofilm formation under different temperature conditions by a single genotype of persistent Listeria monocytogenes strains. J. Food Prot. 77:1133–40 [Google Scholar]
  44. O'Connell KP, Thomashow MF. 2000. Transcriptional organization and regulation of a polycistronic cold shock operon in Sinorhizobium meliloti RM1021 encoding homologs of the Escherichia coli major cold shock gene cspA and ribosomal protein gene rpsU. Appl. Environ. Microbiol. 66:1392–400 [Google Scholar]
  45. Ortiz S, López V, Martínez-Suárez JV. 2014. Control of Listeria monocytogenes contamination in an Iberian pork processing plant and selection of benzalkonium chloride–resistant strains. Food Microbiol. 39:81–88 [Google Scholar]
  46. Patchett RA, Watson N, Fernandez PS, Kroll RG. 1996. The effect of temperature and growth rate on the susceptibility of Listeria monocytogenes to environmental stress conditions. Lett. Appl. Microbiol. 22:121–24 [Google Scholar]
  47. Peleg M, Cole MB. 1998. Reinterpretation of microbial survival curves. Crit. Rev. Food Sci. Nutr. 38:5353–80 [Google Scholar]
  48. Phan K, Ferenci T. 2013. A design-constraint trade-off underpins the diversity in ecologically important traits in species Escherichia coli. ISME J. 7:2034–43 [Google Scholar]
  49. Prax M, Bertram R. 2014. Metabolic aspects of bacterial persisters. Front. Cell. Infect. Microbiol. 22:4148 [Google Scholar]
  50. Rajkovic A, Smigic N, Uyttendaele M, Medic H, de Zutter L, Devlieghere F. 2009. Resistance of Listeria monocytogenes, Escherichia coli O157:H7 and Campylobacter jejuni after exposure to repetitive cycles of mild bactericidal treatments. Food Microbiol. 26:8889–95 [Google Scholar]
  51. Ramisetty BC, Natarajan B, Santhosh RS. 2015. mazEF-mediated programmed cell death in bacteria: “What is this?”. Crit. Rev. Microbiol. 41:189–100 [Google Scholar]
  52. Ryall B, Eydallin G, Ferenci T. 2012. Culture history and population heterogeneity as determinants of bacterial adaptation: the adaptomics of a single environmental transition. Microbiol. Mol. Biol. Rev. 76:3597–625 [Google Scholar]
  53. Sato N, Tachikawa T, Wada A, Tanaka A. 1997. Temperature-dependent regulation of the ribosomal small-subunit protein S21 in the cyanobacterium Anabaena variabilis M3. J. Bacteriol. 179:7063–71 [Google Scholar]
  54. Schmitz-Esser S, Müller A, Stessl B, Wagner M. 2015. Genomes of sequence type 121 Listeria monocytogenes strains harbor highly conserved plasmids and prophages. Front. Microbiol. 28:6380 [Google Scholar]
  55. Stasiewicz MJ, Oliver HF, Wiedmann M, den Bakker HC. 2015. Whole genome sequencing allows for improved identification of persistent Listeria monocytogenes in food associated environments. Appl. Environ. Microbiol. 81:6024–37 [Google Scholar]
  56. Stessl B, Fricker M, Fox E, Karpiskova R, Demnerova K. et al. 2014. Collaborative survey on the colonization of different types of cheese-processing facilities with Listeria monocytogenes. Foodborne Pathog. Dis. 11:18–14 [Google Scholar]
  57. Stumbo CR. 1973. Thermal Bacteriology in Food Processing New York: Academic
  58. Takada H, Morita M, Shiwa Y, Sugimoto R, Suzuki S. et al. 2014. Cell motility and biofilm formation in Bacillus subtilis are affected by the ribosomal proteins, S11 and S21. Biosci. Biotechnol. Biochem. 78:5898–907 [Google Scholar]
  59. Van Boeijen IKH, Casey PG, Hill C, Moezelaar R, Zwietering MH. et al. 2013. Virulence aspects of Listeria monocytogenes LO28 high pressure–resistant variants. Microb. Pathog. 59–60:48–51 [Google Scholar]
  60. Van Boeijen IKH, Chavaroche AAE, Valderrama WB, Moezelaar R, Zwietering MH, Abee T. 2010. Population diversity of Listeria monocytogenes LO28: phenotypic and genotypic characterization of variants resistant to high hydrostatic pressure. Appl. Environ. Microbiol. 76:72225–33 [Google Scholar]
  61. Van Boeijen IKH, Francke C, Moezelaar R, Abee T, Zwietering MH. 2011. Isolation of highly heat-resistant Listeria monocytogenes variants by use of a kinetic modeling-based sampling scheme. Appl. Environ. Microbiol. 77:82617–24 [Google Scholar]
  62. Van Boeijen IKH, Moezelaar R, Abee T, Zwietering MH. 2008. Inactivation kinetics of three Listeria monocytogenes strains under high hydrostatic pressure. J. Food Prot. 71:102007–13 [Google Scholar]
  63. Van Boekel MAJS. 2002. On the use of the Weibull model to describe thermal inactivation of microbial vegetative cells. Int. J. Food Microbiol. 74:139–59 [Google Scholar]
  64. van der Veen S, Abee T. 2011. Bacterial SOS response: a food safety perspective. Curr. Opin. Biotechnol. 22:2136–42 [Google Scholar]
  65. van der Veen S, van Schalkwijk S, Molenaar D, de Vos WM, Abee T, Wells-Bennik MH. 2010. The SOS response of Listeria monocytogenes is involved in stress resistance and mutagenesis. Microbiology 156:374–84 [Google Scholar]
  66. Vanlint D, Rutten N, Michiels CW, Aertsen A. 2012. Emergence and stability of high-pressure resistance in different food-borne pathogens. Appl. Environ. Microbiol. 78:93234–41 [Google Scholar]
  67. Van Melderen L. 2010. Toxin-antitoxin systems: why so many, what for?. Curr. Opin. Microbiol. 13:6781–85 [Google Scholar]
  68. Veening JW, Smits WK, Kuipers OP. 2008. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62:193–210 [Google Scholar]
  69. Verghese B, Lok M, Wen J, Alessandria V, Chen Y. et al. 2011. comK prophage junction fragments as markers for Listeria monocytogenes genotypes unique to individual meat and poultry processing plants and a model for rapid niche-specific adaptation, biofilm formation, and persistence. Appl. Environ. Microbiol. 77:103279–92 [Google Scholar]
  70. Vongkamjan K, Roof S, Stasiewicz MJ, Wiedmann M. 2013. Persistent Listeria monocytogenes subtypes isolated from a smoked fish processing facility included both phage susceptible and resistant isolates. Food Microbiol. 35:138–48 [Google Scholar]
  71. Whiting RC. 1993. Modeling bacterial survival in unfavourable environments. J. Ind. Microbiol. 12:240–46 [Google Scholar]
  72. Zwietering MH. 2009. Quantitative risk assessment: Is more complex always better? Simple is not stupid and complex is not always more correct. Int. J. Food Microbiol. 134:1–257–62 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error