1932

Abstract

Bile acids have emerged as important signaling molecules in the host, as they interact either locally or systemically with specific cellular receptors, in particular the farnesoid X receptor (FXR) and TGR5. These signaling functions influence systemic lipid and cholesterol metabolism, energy metabolism, immune homeostasis, and intestinal electrolyte balance. Through defined enzymatic activities, the gut microbiota can significantly modify the signaling properties of bile acids and therefore can have an impact upon host health. Alterations to the gut microbiota that influence bile acid metabolism are associated with metabolic disease, obesity, diarrhea, inflammatory bowel disease (IBD), infection, colorectal cancer, and hepatocellular carcinoma. Here, we examine the regulation of this gut-microbiota-liver axis in the context of bile acid metabolism and indicate how this pathway represents an important target for the development of new nutraceutical (diet and/or probiotics) and targeted pharmaceutical interventions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-041715-033159
2016-02-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/food/7/1/annurev-food-041715-033159.html?itemId=/content/journals/10.1146/annurev-food-041715-033159&mimeType=html&fmt=ahah

Literature Cited

  1. Ahmad NN, Pfalzer A, Kaplan LM. 2013. Roux-en-Y gastric bypass normalizes the blunted postprandial bile acid excursion associated with obesity. Int. J. Obes. 37:1553–59 [Google Scholar]
  2. Albrecht J, Schousboe A. 2005. Taurine interaction with neurotransmitter receptors in the CNS: an update. Neurochem. Res. 30:1615–21 [Google Scholar]
  3. Alrefai WA, Gill RK. 2007. Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm. Res. 24:1803–23 [Google Scholar]
  4. Apro J, Beckman L, Angelin B, Rudling M. 2015. Influence of dietary sugar on cholesterol and bile acid metabolism in the rat: marked reduction of hepatic Abcg5/8 expression following sucrose ingestion. Biochem. Biophys. Res. Commun. 461:592–97 [Google Scholar]
  5. Barrett KE, Keely SJ. 2000. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu. Rev. Physiol. 62:535–72 [Google Scholar]
  6. Baxter JD, Webb P. 2006. Metabolism: bile acids heat things up. Nature 439:402–3 [Google Scholar]
  7. Begley M, Gahan CG, Hill C. 2005. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29:625–51 [Google Scholar]
  8. Begley M, Hill C, Gahan CG. 2006. Bile salt hydrolase activity in probiotics. Appl. Environ. Microbiol. 72:1729–38 [Google Scholar]
  9. Begley M, Sleator RD, Gahan CG, Hill C. 2005. Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect. Immun. 73:894–904 [Google Scholar]
  10. Bennett BJ, de Aguiar Vallim TQ, Wang Z, Shih DM, Meng Y. et al. 2013. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17:49–60 [Google Scholar]
  11. Bjarnadottir TK, Gloriam DE, Hellstrand SH, Kristiansson H, Fredriksson R, Schioth HB. 2006. Comprehensive repertoire and phylogenetic analysis of the G protein–coupled receptors in human and mouse. Genomics 88:263–73 [Google Scholar]
  12. Bonfleur ML, Borck PC, Ribeiro RA, Caetano LC, Soares GM. et al. 2015. Improvement in the expression of hepatic genes involved in fatty acid metabolism in obese rats supplemented with taurine. Life Sci. 135:15–21 [Google Scholar]
  13. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W. et al. 2004. Bariatric surgery: a systematic review and meta-analysis. JAMA 292:1724–37 [Google Scholar]
  14. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L. et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–8 [Google Scholar]
  15. Calmus Y, Poupon R. 2014. Shaping macrophages function and innate immunity by bile acids: mechanisms and implication in cholestatic liver diseases. Clin. Res. Hepatol. Gastroenterol. 38:550–56 [Google Scholar]
  16. Camilleri M. 2015. Bile acid diarrhea: prevalence, pathogenesis, and therapy. Gut Liver 9:332–39 [Google Scholar]
  17. Cheng S, Larson MG, McCabe EL, Murabito JM, Rhee EP. et al. 2015. Distinct metabolomic signatures are associated with longevity in humans. Nat. Commun. 6:6791 [Google Scholar]
  18. Chiang JY. 2009. Bile acids: regulation of synthesis. J. Lipid Res. 50:1955–66 [Google Scholar]
  19. Claesson MJ, Jeffery IB, Conde S, Power SE, O'Connor EM. et al. 2012. Gut microbiota composition correlates with diet and health in the elderly. Nature 488:178–84 [Google Scholar]
  20. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N. et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:585–88 [Google Scholar]
  21. D'Aldebert E, Biyeyeme Bi Mve MJ, Mergey M, Wendum D, Firrincieli D. et al. 2009. Bile salts control the antimicrobial peptide cathelicidin through nuclear receptors in the human biliary epithelium. Gastroenterology 136:1435–43 [Google Scholar]
  22. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  23. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. 2013. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17:657–69 [Google Scholar]
  24. Degirolamo C, Rainaldi S, Bovenga F, Murzilli S, Moschetta A. 2014. Microbiota modification with probiotics induces hepatic bile acid synthesis via downregulation of the Fxr-Fgf15 axis in mice. Cell Rep. 7:12–18 [Google Scholar]
  25. De Preter V, Arijs I, Windey K, Vanhove W, Vermeire S. et al. 2012. Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis. Inflamm. Bowel Dis. 18:2371–80 [Google Scholar]
  26. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H. et al. 2012. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487:104–8 [Google Scholar]
  27. Duboc H, Rainteau D, Rajca S, Humbert L, Farabos D. et al. 2012. Increase in fecal primary bile acids and dysbiosis in patients with diarrhea-predominant irritable bowel syndrome. Neurogastroenterol. Motil. 24:513–20e246–47 [Google Scholar]
  28. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert M-A. et al. 2013. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62:531–39 [Google Scholar]
  29. Duro D, Mitchell PD, Kalish LA, Martin C, McCarthy M. et al. 2011. Risk factors for parenteral nutrition–associated liver disease following surgical therapy for necrotizing enterocolitis: A Glaser Pediatric Research Network Study [corrected]. J. Pediatr. Gastroenterol. Nutr. 52:595–600 [Google Scholar]
  30. Evans RM, Emsley CL, Gao S, Sahota A, Hall KS. et al. 2000. Serum cholesterol, APOE genotype, and the risk of Alzheimer's disease: a population-based study of African Americans. Neurology 54:240–42 [Google Scholar]
  31. Falany CN, Johnson MR, Barnes S, Diasio RB. 1994. Glycine and taurine conjugation of bile acids by a single enzyme. Molecular cloning and expression of human liver bile acid CoA:amino acid N-acyltransferase. J. Biol. Chem. 269:19375–79 [Google Scholar]
  32. Fang S, Suh JM, Reilly SM, Yu E, Osborn O. et al. 2015. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat. Med. 21:159–65 [Google Scholar]
  33. Gadaleta RM, van Erpecum KJ, Oldenburg B, Willemsen EC, Renooij W. et al. 2011. Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease. Gut 60:463–72 [Google Scholar]
  34. Goldberg AA, Richard VR, Kyryakov P, Bourque SD, Beach A. et al. 2010. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging 2:393–414 [Google Scholar]
  35. Guban J, Korver DR, Allison GE, Tannock GW. 2006. Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poult. Sci. 85:2186–94 [Google Scholar]
  36. Halmy L, Feher T, Steczek K, Farkas A. 1986. High serum bile acid level in obesity: its decrease during and after total fasting. Acta Med. Hung. 43:55–58 [Google Scholar]
  37. Hanniman EA, Lambert G, McCarthy TC, Sinal CJ. 2005. Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res. 46:2595–604 [Google Scholar]
  38. Hara E. 2015. Relationship between obesity, gut microbiome and hepatocellular carcinoma development. Dig. Dis. 33:346–50 [Google Scholar]
  39. Haselow K, Bode JG, Wammers M, Ehlting C, Keitel V. et al. 2013. Bile acids PKA-dependently induce a switch of the IL-10/IL-12 ratio and reduce proinflammatory capability of human macrophages. J. Leukoc. Biol. 94:1253–64 [Google Scholar]
  40. Haverkamp S. 2012. Glycine receptor diversity in the mammalian retina. Webvision: The Organization of the Retina and Visual System H Kolb, E Fernandez, R Nelson Salt Lake City, UT: Univ. Utah Health Sci. Cent. [Google Scholar]
  41. Hofmann AF, Eckmann L. 2006. How bile acids confer gut mucosal protection against bacteria. PNAS 103:4333–34 [Google Scholar]
  42. Ichikawa R, Takayama T, Yoneno K, Kamada N, Kitazume MT. et al. 2012. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136:153–62 [Google Scholar]
  43. Imae M, Asano T, Murakami S. 2014. Potential role of taurine in the prevention of diabetes and metabolic syndrome. Amino Acids 46:81–88 [Google Scholar]
  44. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G. et al. 2006. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. PNAS 103:3920–25 [Google Scholar]
  45. Islam KB, Fukiya S, Hagio M, Fujii N, Ishizuka S. et al. 2011. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141:1773–81 [Google Scholar]
  46. Jackson H, Solaymani-Dodaran M, Card TR, Aithal GP, Logan R, West J. 2007. Influence of ursodeoxycholic acid on the mortality and malignancy associated with primary biliary cirrhosis: a population-based cohort study. Hepatology 46:1131–37 [Google Scholar]
  47. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. 2008. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. PNAS 105:13580–85 [Google Scholar]
  48. Jones ML, Tomaro-Duchesneau C, Martoni CJ, Prakash S. 2013. Cholesterol lowering with bile salt hydrolase–active probiotic bacteria, mechanism of action, clinical evidence, and future direction for heart health applications. Expert Opin. Biol. Ther. 13:631–42 [Google Scholar]
  49. Joyce SA, Gahan CG. 2014. The gut microbiota and the metabolic health of the host. Curr. Opin. Gastroenterol. 30:120–27 [Google Scholar]
  50. Joyce SA, MacSharry J, Casey PG, Kinsella M, Murphy EF. et al. 2014a. Regulation of host weight gain and lipid metabolism by bacterial bile acid modification in the gut. PNAS 111:7421–26 [Google Scholar]
  51. Joyce SA, Shanahan F, Hill C, Gahan CG. 2014b. Bacterial bile salt hydrolase in host metabolism: potential for influencing gastrointestinal microbe-host crosstalk. Gut Microbes 5:669–74 [Google Scholar]
  52. Kersten S. 2014. Integrated physiology and systems biology of PPARα. Mol. Metab. 3:354–71 [Google Scholar]
  53. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E. et al. 2013. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19:576–85 [Google Scholar]
  54. Kurz AK, Graf D, Schmitt M, Vom Dahl S, Haussinger D. 2001. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121:407–19 [Google Scholar]
  55. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F. et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–46 [Google Scholar]
  56. Li F, Jiang C, Krausz KW, Li Y, Albert I. et al. 2013. Microbiome remodelling leads to inhibition of intestinal farnesoid X receptor signalling and decreased obesity. Nat. Commun. 4:2384 [Google Scholar]
  57. Li T, Chiang JY. 2014. Bile acid signaling in metabolic disease and drug therapy. Pharmacol. Rev. 66:948–83 [Google Scholar]
  58. Lim SC, Han SI. 2015. Ursodeoxycholic acid effectively kills drug-resistant gastric cancer cells through induction of autophagic death. Oncol. Rep. 34:1261–68 [Google Scholar]
  59. Lin J. 2014. Antibiotic growth promoters enhance animal production by targeting intestinal bile salt hydrolase and its producers. Front. Microbiol. 5:33 [Google Scholar]
  60. Lin J, Negga R, Zeng X, Smith K. 2014. Effect of bile salt hydrolase inhibitors on a bile salt hydrolase from Lactobacillus acidophilus. Pathogens 3:947–56 [Google Scholar]
  61. Liou AP, Paziuk M, Luevano JM Jr, Machineni S, Turnbaugh PJ, Kaplan LM. 2013. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5:178ra41 [Google Scholar]
  62. Lorbek G, Lewinska M, Rozman D. 2012. Cytochrome P450s in the synthesis of cholesterol and bile acids—from mouse models to human diseases. FEBS J. 279:1516–33 [Google Scholar]
  63. Lund EG, Xie C, Kotti T, Turley SD, Dietschy JM, Russell DW. 2003. Knockout of the cholesterol 24-hydroxylase gene in mice reveals a brain-specific mechanism of cholesterol turnover. J. Biol. Chem. 278:22980–88 [Google Scholar]
  64. Luo J, Ko B, Elliott M, Zhou M, Lindhout DA. et al. 2014. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci. Transl. Med. 6:247ra100 [Google Scholar]
  65. Ma K, Saha PK, Chan L, Moore DD. 2006. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Investig. 116:1102–9 [Google Scholar]
  66. Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G. et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–39 [Google Scholar]
  67. Mano N, Goto T, Uchida M, Nishimura K, Ando M. et al. 2004. Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J. Lipid Res. 45:295–300 [Google Scholar]
  68. Martoni CJ, Labbe A, Ganopolsky JG, Prakash S, Jones ML. 2015. Changes in bile acids, FGF-19 and sterol absorption in response to bile salt hydrolase active L. reuteri NCIMB 30242. Gut Microbes 6:57–65 [Google Scholar]
  69. Mazuy C, Helleboid A, Staels B, Lefebvre P. 2015. Nuclear bile acid signaling through the farnesoid X receptor. Cell. Mol. Life Sci. 72:1631–50 [Google Scholar]
  70. Mencarelli A, Renga B, Distrutti E, Fiorucci S. 2009. Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol. 296:H272–81 [Google Scholar]
  71. Mencarelli A, Renga B, Migliorati M, Cipriani S, Distrutti E. et al. 2009. The bile acid sensor farnesoid X receptor is a modulator of liver immunity in a rodent model of acute hepatitis. J. Immunol. 183:6657–66 [Google Scholar]
  72. Miras AD, le Roux CW. 2014. Can medical therapy mimic the clinical efficacy or physiological effects of bariatric surgery?. Int. J. Obes. 38:325–33 [Google Scholar]
  73. Miyata M, Takamatsu Y, Kuribayashi H, Yamazoe Y. 2009. Administration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression. J. Pharmacol. Exp. Ther. 331:1079–85 [Google Scholar]
  74. Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J. 2009. Bile acids: chemistry, physiology, and pathophysiology. World J. Gastroenterol. 15:804–16 [Google Scholar]
  75. Mroz MS, Keating N, Ward JB, Sarker R, Amu S. et al. 2014. Farnesoid X receptor agonists attenuate colonic epithelial secretory function and prevent experimental diarrhoea in vivo. Gut 63:808–17 [Google Scholar]
  76. Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU. et al. 2013. Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145:574–82.e1 [Google Scholar]
  77. Murphy EF, Clarke SF, Marques TM, Hill C, Stanton C. et al. 2013. Antimicrobials: strategies for targeting obesity and metabolic health?. Gut Microbes 4:48–53 [Google Scholar]
  78. Neff KJ, Chuah LL, Aasheim ET, Jackson S, Dubb SS. et al. 2014. Beyond weight loss: evaluating the multiple benefits of bariatric surgery after Roux-en-Y gastric bypass and adjustable gastric band. Obes. Surg. 24:684–91 [Google Scholar]
  79. Ogilvie LA, Jones BV. 2012. Dysbiosis modulates capacity for bile acid modification in the gut microbiomes of patients with inflammatory bowel disease: a mechanism and marker of disease?. Gut 61:1642–43 [Google Scholar]
  80. Ohkohchi N, Andoh T, Izumi U, Igarashi Y, Ohi R. 1997. Disorder of bile acid metabolism in children with short bowel syndrome. J. Gastroenterol. 32:472–79 [Google Scholar]
  81. Oja SS, Saransaari P. 2007. Pharmacology of taurine. Proc. West Pharmacol. Soc. 50:8–15 [Google Scholar]
  82. Pereira-Fantini PM, Lapthorne S, Joyce SA, Dellios NL, Wilson G. et al. 2014. Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome–associated liver disease. J. Hepatol. 61:1115–25 [Google Scholar]
  83. Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. 2003. Bile acids induce the expression of the human peroxisome proliferator–activated receptor alpha gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17:259–72 [Google Scholar]
  84. Prawitt J, Abdelkarim M, Stroeve JH, Popescu I, Duez H. et al. 2011. Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity. Diabetes 60:1861–71 [Google Scholar]
  85. Prinz P, Hofmann T, Ahnis A, Elbelt U, Goebel-Stengel M. et al. 2015. Plasma bile acids show a positive correlation with body mass index and are negatively associated with cognitive restraint of eating in obese patients. Front. Neurosci. 9:199 [Google Scholar]
  86. Quinn M, McMillin M, Galindo C, Frampton G, Pae HY, DeMorrow S. 2014. Bile acids permeabilize the blood brain barrier after bile duct ligation in rats via Rac1-dependent mechanisms. Dig. Liver Dis. 46:527–34 [Google Scholar]
  87. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE. et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1241214 [Google Scholar]
  88. Ridlon JM, Alves JM, Hylemon PB, Bajaj JS. 2013. Cirrhosis, bile acids and gut microbiota: unraveling a complex relationship. Gut Microbes 4:382–87 [Google Scholar]
  89. Ridlon JM, Hylemon PB. 2012. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J. Lipid Res. 53:66–76 [Google Scholar]
  90. Ridlon JM, Kang DJ, Hylemon PB. 2006. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47:241–59 [Google Scholar]
  91. Ridlon JM, Kang DJ, Hylemon PB, Bajaj JS. 2014. Bile acids and the gut microbiome. Curr. Opin. Gastroenterol. 30:332–38 [Google Scholar]
  92. Ripps H, Shen W. 2012. Review: taurine: a “very essential” amino acid. Mol. Vis. 18:2673–86 [Google Scholar]
  93. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A. et al. 2014. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 509:183–88 [Google Scholar]
  94. Sayin SI, Wahlstrom A, Felin J, Jantti S, Marschall HU. et al. 2013. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-β-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17:225–35 [Google Scholar]
  95. Schaap FG, Trauner M, Jansen PL. 2014. Bile acid receptors as targets for drug development. Nat. Rev. Gastroenterol. Hepatol. 11:55–67 [Google Scholar]
  96. Schauer PR, Kashyap SR, Wolski K, Brethauer SA, Kirwan JP. et al. 2012. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366:1567–76 [Google Scholar]
  97. Seedorf H, Griffin NW, Ridaura VK, Reyes A, Cheng J. et al. 2014. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 159:253–66 [Google Scholar]
  98. Seeley RJ, Chambers AP, Sandoval DA. 2015. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 21:369–78 [Google Scholar]
  99. Silva T, Teixeira J, Remiao F, Borges F. 2013. Alzheimer's disease, cholesterol, and statins: the junctions of important metabolic pathways. Angew. Chem. Int. Ed. Engl. 52:1110–21 [Google Scholar]
  100. Sjostrom L, Gummesson A, Sjostrom CD, Narbro K, Peltonen M. et al. 2009. Effects of bariatric surgery on cancer incidence in obese patients in Sweden (Swedish Obese Subjects Study): a prospective, controlled intervention trial. Lancet Oncol. 10:653–62 [Google Scholar]
  101. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B. et al. 2007. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357:741–52 [Google Scholar]
  102. Sjostrom L, Peltonen M, Jacobson P, Sjostrom CD, Karason K. et al. 2012. Bariatric surgery and long-term cardiovascular events. JAMA 307:56–65 [Google Scholar]
  103. Smith K, Zeng X, Lin J. 2014. Discovery of bile salt hydrolase inhibitors using an efficient high-throughput screening system. PLOS ONE 9:e85344 [Google Scholar]
  104. Sorg JA, Sonenshein AL. 2008. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190:2505–12 [Google Scholar]
  105. Swann JR, Want EJ, Geier FM, Spagou K, Wilson ID. et al. 2011. Systemic gut microbial modulation of bile acid metabolism in host tissue compartments. PNAS 108:Suppl. 14523–30 [Google Scholar]
  106. Sweeney TE, Morton JM. 2014. Metabolic surgery: action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract. Res. Clin. Gastroenterol. 28:727–40 [Google Scholar]
  107. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB. et al. 2013. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368:1575–84 [Google Scholar]
  108. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J. et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–29 [Google Scholar]
  109. Uchida K, Nomura Y, Kadowaki M, Takase H, Takano K, Takeuchi N. 1978. Age-related changes in cholesterol and bile acid metabolism in rats. J. Lipid Res. 19:544–52 [Google Scholar]
  110. Uranga RM, Keller JN. 2010. Diet and age interactions with regards to cholesterol regulation and brain pathogenesis. Curr. Gerontol. Geriatr. Res. 2010:219683 [Google Scholar]
  111. Vang S, Longley K, Steer CJ, Low WC. 2014. The unexpected uses of urso- and tauroursodeoxycholic acid in the treatment of non-liver diseases. Glob. Adv. Health Med. 3:58–69 [Google Scholar]
  112. Vaquero J, Monte MJ, Dominguez M, Muntane J, Marin JJ. 2013. Differential activation of the human farnesoid X receptor depends on the pattern of expressed isoforms and the bile acid pool composition. Biochem. Pharmacol. 86:926–39 [Google Scholar]
  113. Voigt RM, Forsyth CB, Green SJ, Mutlu E, Engen P. et al. 2014. Circadian disorganization alters intestinal microbiota. PLOS ONE 9:e97500 [Google Scholar]
  114. Vrieze A, Out C, Fuentes S, Jonker L, Reuling I. et al. 2014. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol. 60:824–31 [Google Scholar]
  115. Walters JR, Appleby RN. 2015. A variant of FGF19 for treatment of disorders of cholestasis and bile acid metabolism. Ann. Transl. Med. 3:S7 [Google Scholar]
  116. Walters JR, Johnston IM, Nolan JD, Vassie C, Pruzanski ME, Shapiro DA. 2015. The response of patients with bile acid diarrhoea to the farnesoid X receptor agonist obeticholic acid. Aliment. Pharmacol. Ther. 41:54–64 [Google Scholar]
  117. Walters JR, Tasleem AM, Omer OS, Brydon WG, Dew T, le Roux CW. 2009. A new mechanism for bile acid diarrhea: defective feedback inhibition of bile acid biosynthesis. Clin. Gastroenterol. Hepatol. 7:1189–94 [Google Scholar]
  118. Wang Y, Karu K, Meljon A, Turton J, Yau JL. et al. 2014. 24S,25-Epoxycholesterol in mouse and rat brain. Biochem. Biophys. Res. Commun. 449:229–34 [Google Scholar]
  119. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS. et al. 2011. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472:57–63 [Google Scholar]
  120. Ward JB, Mroz MS, Keely SJ. 2013. The bile acid receptor, TGR5, regulates basal and cholinergic-induced secretory responses in rat colon. Neurogastroenterol. Motil. 25:708–11 [Google Scholar]
  121. Watanabe M, Horai Y, Houten SM, Morimoto K, Sugizaki T. et al. 2011. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286:26913–20 [Google Scholar]
  122. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW. et al. 2006. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–89 [Google Scholar]
  123. Wedlake L, A'Hern R, Russell D, Thomas K, Walters JR, Andreyev HJ. 2009. Systematic review: the prevalence of idiopathic bile acid malabsorption as diagnosed by SeHCAT scanning in patients with diarrhoea-predominant irritable bowel syndrome. Aliment. Pharmacol. Ther. 30:707–17 [Google Scholar]
  124. Wewalka M, Patti M-E, Barbato C, Houten SM, Goldfine AB. 2014. Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin. J. Clin. Endocrinol. Metab. 99:1442–51 [Google Scholar]
  125. Wong BS, Camilleri M, Carlson P, McKinzie S, Busciglio I. et al. 2012. Increased bile acid biosynthesis is associated with irritable bowel syndrome with diarrhea. Clin. Gastroenterol. Hepatol. 10:1009–15.e3 [Google Scholar]
  126. Xie G, Zhong W, Li H, Li Q, Qiu Y. et al. 2013. Alteration of bile acid metabolism in the rat induced by chronic ethanol consumption. FASEB J. 27:3583–93 [Google Scholar]
  127. Yoshimoto S, Loo TM, Atarashi K, Kanda H, Sato S. et al. 2013. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499:97–101 [Google Scholar]
  128. Zhang S, Wang J, Liu Q, Harnish DC. 2009. Farnesoid X receptor agonist WAY-362450 attenuates liver inflammation and fibrosis in murine model of non-alcoholic steatohepatitis. J. Hepatol. 51:380–88 [Google Scholar]
  129. Zhang Y, Lee FY, Barrera G, Lee H, Vales C. et al. 2006. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. PNAS 103:1006–11 [Google Scholar]
  130. Zhang Y, Wang X, Vales C, Lee FY, Lee H. et al. 2006. FXR deficiency causes reduced atherosclerosis in Ldlr−/− mice. Arterioscler. Thromb. Vasc. Biol. 26:2316–21 [Google Scholar]
  131. Zheng ZH, Lv GP, Si SY, Dong YS, Zhao BH. et al. 2007. A cell-based high-throughput screening assay for Farnesoid X receptor agonists. Biomed. Environ. Sci. 20:465–69 [Google Scholar]
  132. Zhou H, Hylemon PB. 2014. Bile acids are nutrient signaling hormones. Steroids 86:62–68 [Google Scholar]
/content/journals/10.1146/annurev-food-041715-033159
Loading
/content/journals/10.1146/annurev-food-041715-033159
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error