The potential of organogels (oleogels) for oil structuring has been identified and investigated extensively using different gelator-oil systems in recent years. This review provides a comprehensive summary of all oil-structuring systems found in the literature, with an emphasis on ethyl-cellulose (EC), the only direct food-grade polymer oleogelator. EC is a semicrystalline material that undergoes a thermoreversible sol-gel transition in the presence of liquid oil. This unique behavior is based on the polymer's ability to associate through physical bonds. These interactions are strongly affected by external fields such as shear and temperature, as well as by solvent chemistry, which in turn strongly affect final gel properties. Recently, EC-based oleogels have been used as a replacement for fats in foods, as heat-resistance agents in chocolate, as oil-binding agents in bakery products, and as the basis for cosmetic pastes. Understanding the characteristics of the EC oleogel is essential for the development of new applications.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abdallah DJ, Weiss RG. 2000. n-Alkanes gel n-alkanes (and many other organic liquids). Langmuir 16:352–55 [Google Scholar]
  2. Agarwal V, Huber GW, Conner WC Jr, Auerbach SM. 2011. Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures. J. Chem. Phys. 135:1–13 [Google Scholar]
  3. Aiache J-M, Gauthier P. 2001. Stable gel mixture in the form of a mixture of oleogel and aqueous gel, process for its preparation, pharmaceutical and cosmetic compositions comprising it, and use of the pharmaceutical compositions. US Patent No. 6187323 B1
  4. Aiache JM, Gauthier P, Aiache S. 1992. New gelification method for vegetable oils I: cosmetic application. Int. J. Cosmet. Sci. 14:228–34 [Google Scholar]
  5. Alvarez-Mitre FM, Toro-Vázquez JF, Moscosa-Santillán M. 2013. Shear rate and cooling modeling for the study of candelilla wax organogels' rheological properties. J. Food Eng. 119:611–18 [Google Scholar]
  6. Atalla RH, Isogai A. 1998. Recent developments in spectroscopic and chemical characterization of cellulose. See Dumitriu 1998 123–57
  7. Balasubramanian R, Sughir AA, Damodar G. 2012. Oleogel: a promising base for transdermal formulations. Asian J. Pharm. 6:1–9 [Google Scholar]
  8. Beaucage G. 1995. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J. Appl. Crystallogr. 28:717–28 [Google Scholar]
  9. Beaucage G. 1996. Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 29:134–46 [Google Scholar]
  10. Blake AI, Co ED, Marangoni AG. 2014. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. J. Am. Chem. Soc. 91:885–903 [Google Scholar]
  11. Bot A, Agterof WGM. 2006. Structuring of edible oils by mixtures of γ-oryzanol with β-sitosterol or related phytosterols. J. Am. Chem. Soc. 83:513–21 [Google Scholar]
  12. Bot A, Gilbert EP, Bouwman WG, Sawalha H, Adel Rd. et al. 2012. Elucidation of density profile of self-assembled sitosterol + oryzanol tubules with small-angle neutron scattering. Faraday Discuss. 158:223–38 [Google Scholar]
  13. Bot A, Veldhuizen YSJ, den Adel R, Roijers EC. 2009. Non-TAG structuring of edible oils and emulsions. Food Hydrocoll. 23:1184–89 [Google Scholar]
  14. Bruno L, Kasapis S, Heng PWS. 2012. Effect of polymer molecular weight on the structural properties of non aqueous ethyl cellulose gels intended for topical drug delivery. Carbohydr. Polym. 88:382–88 [Google Scholar]
  15. Bruno L, Kasapis T, Chaudhary V, Chow KT, Heng PWS, Leong LP. 2011. Temperature and time effects on the structural properties of a non-aqueous ethyl cellulose topical drug delivery system. Carbohydr. Polym. 86:644–51 [Google Scholar]
  16. Calligaris S, Mirolo G, Pieve SD, Arrighetti G, Nicoli MC. 2014. Effect of oil type on formation, structure and thermal properties of γ-oryzanol and β-sitosterol-based organogels. Food Biophys. 9:69–75 [Google Scholar]
  17. Cattaruzza A, Radford S, Marangoni AG. 2012. Dough products comprising ethylcellulose and exhibiting reduced oil migration. WO Patent No. 2012/066277
  18. Ceballos MR, Brailovsky V, Bierbrauer KL, Cuffini SL, Beltramo DM, Bianco ID. 2014. Effect of ethylcellulose on the structure and stability of non-aqueous oil based propylene glycol emulsions. Food Res. Int. 62:416–23 [Google Scholar]
  19. Cegla-Nemirovsky Y, Aserin A, Garti N. 2015. Oleogels from glycerol-based lyotropic liquid crystals: phase diagrams and structural characterization. J. Am. Chem. Soc. 92:439–47 [Google Scholar]
  20. Chen C, Terentjev EM. 2011. Monoglycerides in oils. See Marangoni & Garti 2011 173–201
  21. Co E, Marangoni AG. 2013. The formation of a 12-hydroxystearic acid/vegetable oil organogel under shear and thermal fields. J. Am. Oil Chem. Soc. 90:529–44 [Google Scholar]
  22. Co ED, Marangoni AG. 2012. Organogels: an alternative edible oil-structuring method. J. Am. Chem. Soc. 89:749–80 [Google Scholar]
  23. Cousins SK, Brown RM. 1995. Cellulose I microfibril assembly: Computational molecular mechanics energy analysis favours bonding by van der Waals forces as initial step in crystalization. Polymer 36:3885–88 [Google Scholar]
  24. Crowley MM, Schroeder B, Fredersdorf A, Obara S, Talarico M. et al. 2004. Physicochemical properties and mechanism of drug release from ethyl cellulose matrix tablets prepared by direct compression and hot-melt extrusion. Int. J. Pharm. 269:509–22 [Google Scholar]
  25. Daniel J, Rajasekharan R. 2003. Organogelation of plant oils and hydrocarbons by long-chain saturated FA, fatty alcohols, wax esters, and dicarboxylic acids. J. Am. Chem. Soc. 80:417–21 [Google Scholar]
  26. Dassanayake LSK, Kodali DR, Ueno S. 2011. Formation of oleogels based on edible lipid materials. Curr. Opin. Colloid Interface Sci. 16:432–39 [Google Scholar]
  27. Dassanayake LSK, Kodali DR, Ueno S, Sato K. 2009. Physical properties of rice bran wax in bulk and organogels. J. Am. Chem. Soc. 86:1163–73 [Google Scholar]
  28. Davidovich-Pinhas M, Barbut S, Marangoni AG. 2015a. The role of surfactants on ethylcellulose oleogel structure and mechanical properties. Carbohydr. Polym. 127:355–62 [Google Scholar]
  29. Davidovich-Pinhas M, Barbut S, Marangoni AG. 2015b. The gelation of oil using ethyl cellulose. Carbohydr. Polym. 117:869–78 [Google Scholar]
  30. Davidovich-Pinhas M, Co E, Barbut S, Marangoni AG. 2014. Physical structure and thermal behavior of ethylcellulose. Cellulose 21:3243–55 [Google Scholar]
  31. Davidovich-Pinhas M, Gravelle AJ, Barbut S, Marangoni AG. 2015c. Temperature effects on the gelation of ethylcellulose oleogels. Food Hydrocoll. 46:76–83 [Google Scholar]
  32. Dey T, Kim DA, Marangoni AG. 2011. Ethylcellulose oleogels.. See Marangoni & Garti 2011 295–311
  33. Dow Cellul 2005. ETHOCEL™: Ethylcellulose Polymers Technical Handbook Midland, MI: Dow Chem. Co. [Google Scholar]
  34. Duarte ARC, Gordillo MD, Cardoso MM, Simplício AL, Duarte CMM. 2006. Preparation of ethyl cellulose/methyl cellulose blends by supercritical antisolvent precipitation. Int. J. Pharm. 311:50–54 [Google Scholar]
  35. Dumitriu S. 1998. Polysaccharides: Structural Diversity and Functional Versatility New York: Marcel Dekker [Google Scholar]
  36. Eur. Food Saf. Auth 2004. Ethyl cellulose as a food additive. EFSA J. 35:1–6 [Google Scholar]
  37. Flory PJ, Vrij A. 1963. Melting points of linear-chain homologs. The normal paraffin hydrocarbons. J. Am. Chem. Soc. 85:3548–53 [Google Scholar]
  38. Fox TG, Flory PJ. 1950. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 21:581–91 [Google Scholar]
  39. Gallegoa R, Arteaga JF, Valencia C, Franco JM. 2013. Rheology and thermal degradation of isocyanate-functionalized methyl cellulose-based oleogels. Carbohydr. Polym. 98:152–60 [Google Scholar]
  40. Gandolfo FG, Bot A, Flöter E. 2004. Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. J. Am. Chem. Soc. 81:1–6 [Google Scholar]
  41. Gao J, Wu S, Emge TJ, Rogers MA. 2013. Nanoscale and microscale structural changes alter the critical gelator concentration of self-assembled fibrillar networks. CrystEngComm 15:4507–15 [Google Scholar]
  42. Gopalan M, Mandelkern L. 1967. The effect of crystallization temperature and molecular weight on the melting temperature of linear polyethylene. J. Phys. Chem. 71:3833–41 [Google Scholar]
  43. Gravelle AJ, Barbut S, Marangoni AG. 2012. Ethylcellulose oleogels: manufacturing considerations and effects of oil oxidation. Food Res. Int. 48:578–83 [Google Scholar]
  44. Gravelle AJ, Barbut S, Marangoni AG. 2013. Fractionation of ethylcellulose oleogels during setting. Food Funct. 4:153–61 [Google Scholar]
  45. Gravelle AJ, Barbut S, Quinton M, Marangoni AG. 2014. Towards the development of a predictive model of the formulation-dependent mechanical behaviour of ethylcellulose oleogels. J. Food Eng. 143:114–22 [Google Scholar]
  46. Gravelle AJ, Davidovich-Pinhas M, Zetzl AK, Barbut S, Marangoni AG. 2016. Influence of solvent quality on the mechanical strength of ethylcellulose oleogels. Carbohydr. Polym. 135:169–79 [Google Scholar]
  47. Grysko M, Daniels R. 2013. Evaluation of the mechanism of gelation of an oleogel based on a triterpene extract from the outer bark of birch. Pharmazie 68:572–77 [Google Scholar]
  48. Han L-J, Li L, Zhao L, Li B, Liu G-Q. et al. 2013. Rheological properties of organogels developed by sitosterol and lecithin. Food Res. Int. 53:42–48 [Google Scholar]
  49. Harris P. 1990. Food Gels Essex, UK: Elsevier Sci. Publ. [Google Scholar]
  50. Heng PWS, Chan LW, Chow KT. 2005. Development of novel nonaqueous ethylcellulose gel matrices: rheological and mechanical characterization. Pharm. Res. 22:676–84 [Google Scholar]
  51. Higaki K, Koyano T, Hachiya I, Sato K. 2004. In situ optical observation of microstructure of β-fat gel made of binary mixtures of high-melting and low-melting fats. Food Res. Int. 37:2–10 [Google Scholar]
  52. Higaki K, Sasakura Y, Koyano T, Hachiya I, Sato K. 2003. Physical analyses of gel-like behavior of binary mixtures of high- and low-melting fats. J. Am. Chem. Soc. 80:263–70 [Google Scholar]
  53. Hughes NE, Marangoni AG, Wright AJ, Rogers MA, Rush JWE. 2009. Potential food applications of edible oil organogels. Food Sci. Technol. 20:470–80 [Google Scholar]
  54. Hwang H-S, Kim S, Singh M, Winkler-Moser JK, Liu SX. 2012. Organogel formation of soybean oil with waxes. J. Am. Chem. Soc. 89:639–47 [Google Scholar]
  55. Jana S, Martini S. 2014. Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils. J. Agric. Food Chem. 62:10192–202 [Google Scholar]
  56. Jeffries R. 1968. Preparation and properties of films and fibers of disordered cellulose. J. Appl. Polym. Sci. 12:425–45 [Google Scholar]
  57. Jullien R. 1987. Aggregation phenomena and fractal aggregates. Contemp. Phys. 28:477–93 [Google Scholar]
  58. Kjøniksen A-L, Nystrom B, Lindman B. 1998. Dynamic viscoelasticity of gelling and nongelling aqueous mixtures of ethyl(hydroxyethyl)cellulose and an ionic surfactant. Macromolecules 31:1852–58 [Google Scholar]
  59. Knill CJ, Kennedy JF. 1998. Cellulosic biomass-derived products. See Dumitriu 1998 937–56
  60. Kobayashi K, Huang C-I, Lodge TP. 1999. Thermoreversible gelation of aqueous methylcellulose solutions. Macromolecules 32:7070–77 [Google Scholar]
  61. Koch W. 1937. Properties and uses of ethylcellulose. Ind. Eng. Chem. 29:687–90 [Google Scholar]
  62. Kondo T. 1998. Hydrogen bonds in cellulose and cellulose derivatives. See Dumitriu 1998, pp. 69–98
  63. Kondo T, Sawatari C. 1996. A Fourier transform infra-red spectroscopic analysis of the character of hydrogen bonds in amorphous cellulose. Polymer 37:393–99 [Google Scholar]
  64. Laredo T, Barbut S, Marangoni AG. 2011. Molecular interactions of polymer oleogelation. Soft Matter 7:2734–43 [Google Scholar]
  65. Lefebvre J, Doublier J-L. 1998. Rheological behavior of polysaccharides aqueous systems. See Dumitriu 1998 357–409
  66. Libster D, Aserin A, Garti N. 2011. Oleogels based on non-lamellar lyotropic liquid crystalline structures for food applications. See Marangoni & Garti 2011 235–69
  67. Liu C, Corradini M, Rogers MA. 2015. Self-assembly of 12-hydroxystearic acid molecular gels in mixed solvent systems rationalized using Hansen solubility parameters. Colloid Polym. Sci. 293:975–83 [Google Scholar]
  68. López-Martínez A, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso MA, Marangoni AG, Toro-Vazquez JF. 2014. Comparing the crystallization and rheological behavior of organogels developed by pure and commercial monoglycerides in vegetable oil. Food Res. Int. 64:946–57 [Google Scholar]
  69. Lunn J, Theobald HE. 2006. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 31:178–224 [Google Scholar]
  70. Lupi FR, Gabriele D, Greco V, Baldino N, Seta L, de Cindio B. 2013. A rheological characterisation of an olive oil/fatty alcohols organogel. Food Res. Int. 51:510–17 [Google Scholar]
  71. Malaki-Nik A, Corredig M, Wright AJ. 2010. Changes in WPI-stabilized emulsion interfacial properties in relation to lipolysis and β-carotene transfer during exposure to simulated gastric-duodenal fluids of variable composition. Food Dig. 1:14–27 [Google Scholar]
  72. Mangionea MR, Giacomazza D, Bulone D, Martorana V, Biagio PLS. 2003. Thermoreversible gelation of k-carrageenan: relation between conformational transition and aggregation. Biophys. Chem. 104:95–105 [Google Scholar]
  73. Marangoni AG. 2010a. Polymer gelation of oils. WO Patent No. 2010/143066
  74. Marangoni AG. 2010b. Chocolate compositions containing ethylcellulose. WO Patent No. 2010/143067
  75. Marangoni AG. 2012a. Structure-Function Analysis of Edible Fats Urbana, IL: AOCS Press [Google Scholar]
  76. Marangoni AG. 2012b. Thixotropic compositions. WO Patent No. 2012/071651
  77. Marangoni AG, Garti N. 2011. Edible Oleogels: Structure and Health Implications Urbana: AOCS Press [Google Scholar]
  78. Mezzenga R. 2011. Protein-templated oil gels and powder. See Marangoni & Garti 2011 271–93
  79. Meakin P, Jullien R. 1985. Structural readjustment effects in cluster-cluster aggregation. J. Phys. France 46:1543–52 [Google Scholar]
  80. Mensink RP, Zock PL, Kester AD, Katan MB. 2003. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 77:1146–55 [Google Scholar]
  81. Mezzenga R, Ulrich S. 2010. Spray-dried oil powder with ultrahigh oil content. Langmuir 26:16658–61 [Google Scholar]
  82. Miyoshi E, Takaya T, Nishinari K. 1996. Rheological and thermal studies of gelsol transition in gellan gum aqueous solutions. Carbohydr. Polym. 30:109–19 [Google Scholar]
  83. Mohammed ZH, Hember MWN, Richardson RK, Morris ER. 1998. Kinetic and equilibrium processes in the formation and melting of agarose gels. Carbohydr. Polym. 35:15–26 [Google Scholar]
  84. Moniruzzaman M, Sundararajan PR. 2005. Low molecular weight organogels based on long-chain carbamates. Langmuir 21:3802–7 [Google Scholar]
  85. Motulskya A, Lafleurb M, Couffin-Hoaraua A-C, Hoarauc D, Bouryd F. et al. 2005. Characterization and biocompatibility of organogels based on l-alanine for parenteral drug delivery implants. Biomaterials 26:6242–53 [Google Scholar]
  86. Nelson ML, O'Conner RT. 1964. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, 11, I11 and of amorphous cellulose. J. Appl. Polym. Sci. 8:1311–24 [Google Scholar]
  87. Nikiforidis CV. 2015. Lipid mesophase nanostructures. Edible Nanostructures: A Bottom-Up Approach AG Marangoni, D Pink 114–43 Cambridge, UK: R. Soc. Chem. [Google Scholar]
  88. Nikiforidis CV, Scholten E. 2014. Self-assemblies of lecithin and α-tocopherol as gelators of lipid material. RSC Adv. 4:2466–73 [Google Scholar]
  89. Oakenfull D, Scott A. 1984. Hydrophobic interaction in the gelation of high methoxyl pectins. J. Food Sci. 49:1093–98 [Google Scholar]
  90. O'Sullivan AC. 1997. Cellulose: the structure slowly unravels. Cellulose 4:173–207 [Google Scholar]
  91. Overney RM, Buenviaje C, Luginbuhl R, Dinelli F. 2000. Glass and structural transitions measured at polymer surfaces on the nanoscale. J. Therm. Anal. Calorim. 59:205–25 [Google Scholar]
  92. Patel AR, Cludts N, Sintang MDB, Lewille B, Lesaffer A, Dewettinck K. 2014. Polysaccharide-based oleogels prepared with an emulsion-templated approach. Chem. Phys. Chem. 15:3435–39 [Google Scholar]
  93. Patel AR, Rajarethinem PS, Cludts N, Lewille B, de Vos WH. et al. 2015. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Langmuir 31:2065–73 [Google Scholar]
  94. Patel AR, Schatteman D, de Vos WH, Dewettinck K. 2013a. Shellac as a natural material to structure a liquid oil-based thermo reversible soft matter system. RSC Adv. 3:5324–27 [Google Scholar]
  95. Patel AR, Schatteman D, Lesafferb A, Dewettinck K. 2013b. A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Adv. 3:22900–3 [Google Scholar]
  96. Patel AR, Schatteman D, de Vos WH, Lesaffer A, Dewettinck K. 2013c. Preparation and rheological characterization of shellac oleogels and oleogel-based emulsions. J. Colloid Interface Sci. 411:114–21 [Google Scholar]
  97. Perez S, Mazeau K. 1998. Conformations, structures, and morphologies of celluloses. See Dumitru 1998 41–68
  98. Pernetti M, van Malssen KF, Flöter E, Bot A. 2007a. Structuring of edible oils by alternatives to crystalline fat. Curr. Opin. Colloid Interface Sci. 12:221–31 [Google Scholar]
  99. Pernetti M, van Malssen K, Kalnin D, Flöter E. 2007b. Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocoll. 21:855–61 [Google Scholar]
  100. Peyronel F, Marangoni AG. 2014. In search of confectionary fat blends stable to heat: hydrogenated palm kernel oil stearin with sorbitan monostearate. Food Res. Int. 55:93–102 [Google Scholar]
  101. Pieve SD, Calligaris S, Co E, Nicoli MC, Marangoni AG. 2010. Shear nanostructuring of monoglyceride organogels. Food Biophys. 5:211–17 [Google Scholar]
  102. Rekhi GS, Jambhekar SS. 1995. Ethylcellulose: a polymer review. Drug Dev. Ind. Pharm. 21:61–77 [Google Scholar]
  103. Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. 2013. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. Food Res. Int. 50:318–23 [Google Scholar]
  104. Rogers MA. 2009. Novel structuring strategies for unsaturated fats—meeting the zero-trans, zero-saturated fat challenge: a review. Food Res. Int. 42:747–53 [Google Scholar]
  105. Rogers MA, Strober T, Bot A, Toro-Vazquez JF, Stortz T, Marangoni AG. 2014. Edible oleogels in molecular gastronomy. Int. J. Gastron. Food Sci. 2:22–31 [Google Scholar]
  106. Rogers MA, Wright AJ, Marangoni AG. 2009a. Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. Curr. Opin. Colloid Interface Sci. 14:33–42 [Google Scholar]
  107. Rogers MA, Wright AJ, Marangoni AG. 2009b. Oil organogels: the fat of the future?. Soft Matter 5:1594–96 [Google Scholar]
  108. Rogers MA, Wright AJ, Marangoni AG. 2011. Ceramide oleogels. See Marangoni & Garti 2011 221–34
  109. Romoscanu AI, Mezzenga R. 2006. Emulsion-templated fully reversible protein-in-oil gels. Langmuir 22:7812–18 [Google Scholar]
  110. Roos Y, Karel M. 1991. Water and molecular weight effects on glass transitions in amorphous carbohydrates and carbohydrate solutions. J. Food Sci. 56:1676–81 [Google Scholar]
  111. Rousseau D, Marangoni AG. 2002. Chemical interesterification of food lipids: theory and practice. Food Lipids: Chemistry, Nutrition, and Biotechnology CC Akoh, DB Min 267–98 New-York: Marcel Dekker [Google Scholar]
  112. Rowe RC, Kotaras AD, White EFT. 1984. An evaluation of the plasticizing efficiency of the dialkyl phthalates in ethyl cellulose films using the torsional braid pendulum. Int. J. Pharm. 22:57–62 [Google Scholar]
  113. Roy D, Semsarilar M, Guthrie JT, Perrier S. 2009. Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38:2046–64 [Google Scholar]
  114. Sagiri SS, Singh VK, Pal K, Banerjee I, Basak P. 2015. Stearic acid based oleogels: a study on the molecular, thermal and mechanical properties. Mater. Sci. Eng. C 48:688–99 [Google Scholar]
  115. Sakellariou P, Rowe RC, White EFT. 1985. The thermomechanical properties and glass transition temperatures of some cellulose derivatives used in film coating. Int. J. Pharm. 27:267–77 [Google Scholar]
  116. Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2009. Development of new green lubricating grease formulations based on cellulosic derivatives and castor oil. Green Chem. 11:686–93 [Google Scholar]
  117. Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2011a. Rheological and mechanical properties of oleogels based on castor oil and cellulosic derivatives potentially applicable as bio-lubricating greases: influence of cellulosic derivatives concentration ratio. J. Ind. Eng. Chem. 17:705–11 [Google Scholar]
  118. Sánchez R, Franco JM, Delgado MA, Valencia C, Gallegos C. 2011b. Thermal and mechanical characterization of cellulosic derivatives-based oleogels potentially applicable as bio-lubricating greases: influence of ethyl cellulose molecular weight. Carbohydr. Polym. 83:151–58 [Google Scholar]
  119. Sánchez R, Stringari GB, Franco JM, Valencia C, Gallegos C. 2011c. Use of chitin, chitosan and acylated derivatives as thickener agents of vegetable oils for bio-lubricant applications. Carbohydr. Polym. 85:705–14 [Google Scholar]
  120. Sandford PA, Cottrell IW, Pettitt DJ. 1984. Microbial polysaccharides: new products and their commercial applications. Pure Appl. Chem. 56:879–92 [Google Scholar]
  121. Scartazzini R, Luisi PL. 1988. Organogels from lecithins. J. Phys. Chem. 92:829–33 [Google Scholar]
  122. Schaefer DW, Hurd AJ. 1990. Growth and structure of combustion aerosols fumed silica. Aerosol Sci. Technol. 12:876–90 [Google Scholar]
  123. Schaink HM, van Malssen KF, Morgado-Alves S, Kalnin D, van der Linden E. 2007. Crystal network for edible oil organogels: possibilities and limitations of the fatty acid and fatty alcohol systems. Food Res. Int. 40:1185–93 [Google Scholar]
  124. Shah DK, Sagiri SS, Behera B, Pal K, Pramanik K. 2013. Development of olive oil based organogels using sorbitan monopalmitate and sorbitan monostearate: a comparative study. J. Appl. Polym. Sci. 129:793–805 [Google Scholar]
  125. Singh VK, Pramanik K, Ray SS, Pal K. 2014. Development and characterization of sorbitan monostearate and sesame oil–based organogels for topical delivery of antimicrobials. AAPS Pharm. Sci. Technol. 16:293–305 [Google Scholar]
  126. Sinha SK, Freltoft T, Kjems J. 1984. Observation of power law correlations in silica-particle aggregates by small-angle neutron scattering. Kinetics of Aggregation and Gelation F Family, DP Landau 87–90 Amsterdam: North-Holland Phys. Publ. [Google Scholar]
  127. Skillas G, Agashe N, Kohls DJ, Ilavsky J, Jemian P. et al. 2002. Relation of the fractal structure of organic pigments to their performance. J. Appl. Phys. 91:6120–24 [Google Scholar]
  128. Stortz TA, Laredo T, Marangoni AG. 2014a. The role of lecithin and solvent addition in ethylcellulose-stabilized heat resistant chocolate. Food Biophys. 10:253–63 [Google Scholar]
  129. Stortz TA, Marangoni AG. 2011. Heat resistant chocolate. Trends Food Sci. Technol. 22:201–14 [Google Scholar]
  130. Stortz TA, Marangoni AG. 2013. Ethylcellulose solvent substitution method of preparing heat resistant chocolate. Food Res. Int. 51:797–803 [Google Scholar]
  131. Stortz TA, Marangoni AG. 2014. The replacement for petrolatum: thixotropic ethylcellulose oleogels in triglyceride oils. Green Chem. 16:3064–70 [Google Scholar]
  132. Stortz TA, Moura DCD, Laredo T, Marangoni AG. 2014b. Molecular interactions of ethylcellulose with sucrose particles. RSC Adv. 4:55048–61 [Google Scholar]
  133. Stortz TA, Zetzl AK, Barbut S, Cattaruzza A, Marangoni AG. 2012. Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technol. 24:151–54 [Google Scholar]
  134. Takahashi M, Shimazaki M, Yamamoto J. 2001. Thermoreversible gelation and phase separation in aqueous methyl cellulose solutions. J. Polym. Sci. B 39:91–100 [Google Scholar]
  135. Tarvainen M, Sutinen R, Peltonen S, Mikkonen H, Maunus J. et al. 2003. Enhanced film-forming properties for ethyl cellulose and starch acetate using n-alkenyl succinic anhydrides as novel plasticizers. Eur. J. Pharm. Sci. 19:363–71 [Google Scholar]
  136. Toro-Vazquez JF, Morales-Rueda JA, Dibildox-Alvarado E, Charó-Alonso M, Alonzo-Macias M, González-Chávez MM. 2007. Thermal and textural properties of organogels developed by candelilla wax in safflower oil. J. Am. Chem. Soc. 84:989–1000 [Google Scholar]
  137. Toro-Vazquez JF, Morales-Rueda J, Torres-Martínez A, Charó-Alonso MA, Mallia VA, Weiss RG. 2014. Cooling rate effects on the microstructure, solid content, and rheological properties of organogels of amides derived from stearic and (R)-12-hydroxystearic acid in vegetable oil. Langmuir 29:7642–54 [Google Scholar]
  138. Torres FE, Russel WB, Schowalter WR. 1991. Simulations of coagulation in viscous flows. J. Colloid Interface Sci. 145:51–73 [Google Scholar]
  139. Wada M. 2002. Lateral thermal expansion of cellulose I and IIII polymorphs. J. Polym. Sci. Part B 40:1095–102 [Google Scholar]
  140. Wada M, Hori R, Kim U-J, Sasaki S. 2010. X-ray diffraction study on the thermal expansion behavior of cellulose Ib and its high-temperature phase. Polym. Degrad. Stab. 95:1330–34 [Google Scholar]
  141. Ward TC. 1981. Molecular weight and molecular weight distributions in synthetic polymers. J. Chem. Educ. 58:867–79 [Google Scholar]
  142. Wassell P, Bonwick G, Smith CJ, Almiron-Roig E, Young NWG. 2010. Towards a multidisciplinary approach to structuring in reduced saturated fat–based systems: a review. Int. J. Food Sci. Technol. 45:642–55 [Google Scholar]
  143. Whitby CP, Onnink AJ. 2014. Rheological properties and structural correlations in particle-in-oil gels. Adv. Powder Technol. 25:1185–89 [Google Scholar]
  144. WHO 2004. Global Strategy on Diet, Physical Activity and Health Geneva, Switz.: World Health Organ. [Google Scholar]
  145. Witten TA, Sander LM. 1983. Diffusion-limited aggregation. Phys. Rev. B 27:5686–97 [Google Scholar]
  146. Wright AJ, Marangoni AG. 2006. Formation, structure, and rheological properties of ricinelaidic acid–vegetable oil organogels. J. Am. Chem. Soc. 83:497–503 [Google Scholar]
  147. Wright AJ, Marangoni AG. 2007. Time, temperature, and concentration dependence of ricinelaidic acid–canola oil organogelation. J. Am. Chem. Soc. 84:3–9 [Google Scholar]
  148. Wu S, Gao J, Emge TJ, Rogers MA. 2013. Solvent-induced polymorphic nanoscale transitions for 12-hydroxyoctadecanoic acid molecular gels. Cryst. Growth Des. 13:1360–66 [Google Scholar]
  149. Yilmaz E, Öğütcü M. 2014. Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. J. Am. Chem. Soc. 91:1007–17 [Google Scholar]
  150. Yilmaz E, Öğütcü M. 2015. The texture, sensory properties and stability of cookies prepared with wax oleogels. Food Funct. 6:1194–204 [Google Scholar]
  151. Youssef MK, Barbut S. 2009. Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters. Meat Sci. 82:228–33 [Google Scholar]
  152. Yuguchi Y, Urakawa H, Kitamura S, Ohno S, Kajiwara K. 1995. Gelation mechanism of methylhydroxypro-pylcellulose in aqueous solution. Food Hydrocoll. 9:173–79 [Google Scholar]
  153. Zetzl AK, Marangoni AG, Barbut S. 2012. Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters. Food Funct. 3:327–37 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error