As we are approaching the twentieth anniversary of PulseNet, a network of public health and regulatory laboratories that has changed the landscape of foodborne illness surveillance through molecular subtyping, public health microbiology is undergoing another transformation brought about by so-called next-generation sequencing (NGS) technologies that have made whole-genome sequencing (WGS) of foodborne bacterial pathogens a realistic and superior alternative to traditional subtyping methods. Routine, real-time, and widespread application of WGS in food safety and public health is on the horizon. Technological, operational, and policy challenges are still present and being addressed by an international and multidisciplinary community of researchers, public health practitioners, and other stakeholders.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allard MW, Luo Y, Strain E, Pettengill J, Timme R. et al. 2013. On the evolutionary history, population genetics and diversity among isolates of Salmonella Enteritidis PFGE pattern JEGX01.0004. PLOS ONE 8:1e55254 [Google Scholar]
  2. Allos BM, Moore MR, Griffin PM, Tauxe RV. 2004. Surveillance for sporadic foodborne disease in the 21st century: the FoodNet perspective. Clin. Infect. Dis. 38:Suppl. 3S115–20 [Google Scholar]
  3. Aziz N, Zhao Q, Bry L, Driscoll DK, Funke B. et al. 2015. College of American Pathologists' laboratory standards for next-generation sequencing clinical tests. Arch. Pathol. Lab. Med. 139:4481–93 [Google Scholar]
  4. Baez-Ortega A, Lorenzo-Diaz F, Hernandez M, Gonzalez-Vila CI, Roda-Garcia JL. et al. 2015. IonGAP: Integrative bacterial genome analysis for Ion Torrent sequence data. Bioinformatics 31:2870–73 [Google Scholar]
  5. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M. et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19:5455–77 [Google Scholar]
  6. Barco L, Barrucci F, Olsen JE, Ricci A. 2013. Salmonella source attribution based on microbial subtyping. Int. J. Food Microbiol. 163:2–3193–203 [Google Scholar]
  7. Bazinet AL, Zwickl DJ, Cummings MP. 2014. A gateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Syst. Biol. 63:5812–18 [Google Scholar]
  8. Bolton DJ. 2015. Campylobacter virulence and survival factors. Food Microbiol. 48:99–108 [Google Scholar]
  9. Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O. et al. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58:73895–903 [Google Scholar]
  10. Cent. Dis. Control Prev 2008. Salmonella Annual Summary 2006.. Atlanta, GA: CDC [Google Scholar]
  11. Chevreux B. 2005. MIRA: an automated genome and EST assembler PhD Thesis, Ruprecht-Karls-Univ., Heidelberg, Ger.
  12. Clark TA, Murray IA, Morgan RD, Kislyuk AO, Spittle KE. et al. 2012. Characterization of DNA methyltransferase specificities using single-molecule, real-time DNA sequencing. Nucleic Acids Res. 40:4e29 [Google Scholar]
  13. Cody AJ, McCarthy ND, Jansen van Rensburg M, Isinkaye T, Bentley SD. et al. 2013. Real-time genomic epidemiological evaluation of human Campylobacter isolates by use of whole-genome multilocus sequence typing. J. Clin. Microbiol. 51:82526–34 [Google Scholar]
  14. Collins FS, Hamburg MA. 2013. First FDA authorization for next-generation sequencer. N. Engl. J. Med. 369:252369–71 [Google Scholar]
  15. Compeau PEC, Pevzner PA, Tesler G. 2011. How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29:11987–91 [Google Scholar]
  16. Counc. Eur. Union 1990. On expenditure in the veterinary field. Counc. Decis. 90/424/EEC, Counc. Eur. Union., Brussels, Belg.
  17. Counc. Eur. Union 1992. Concerning measures for protection against specified zoonoses and specified zoonotic agents in animals and products of animal origin in order to prevent outbreaks of food-borne infections and intoxications. Counc. Dir. 92/117/EEC, Counc. Eur. Union., Brussels, Belg.
  18. Counc. Eur. Union 2003a. On the control of Salmonella and other specified food-borne zoonotic agents. Counc. Dir. 2160/2003, Counc. Eur. Union., Brussels, Belg. [Google Scholar]
  19. Counc. Eur. Union 2003b. On the monitoring of zoonoses and zoonotic agents. Counc. Dir. 2003/99/EC, Counc. Eur. Union., Brussels, Belg.
  20. Crim SM, Iwamoto M, Huang JY, Griffin PM, Gilliss D. et al. 2014. Incidence and trends of infection with pathogens transmitted commonly through food: Foodborne Diseases Active Surveillance Network, 10 U.S. sites, 2006–2013. Morb. Mortal. Wkly. Rep. 63:15328–32 [Google Scholar]
  21. Cronquist AB, Mody RK, Atkinson R, Besser J, Tobin-D'Angelo M. et al. 2012. Impacts of culture-independent diagnostic practices on public health surveillance for bacterial enteric pathogens. Clin. Infect. Dis. 54:Suppl. 5S432–39 [Google Scholar]
  22. den Bakker HC, Allard MW, Bopp D, Brown EW, Fontana J. et al. 2014. Rapid whole-genome sequencing for surveillance of Salmonella enterica serovar Enteritidis. Emerg. Infect. Dis. 20:81306–14 [Google Scholar]
  23. den Bakker HC, Switt AIM, Cummings CA, Hoelzer K, Degoricija L. et al. 2011. A whole-genome single nucleotide polymorphism–based approach to trace and identify outbreaks linked to a common Salmonella enterica subsp. enterica serovar Montevideo pulsed-field gel electrophoresis type. Appl. Environ. Microbiol. 77:248648–55 [Google Scholar]
  24. Deng X, Desai PT, den Bakker HC, Mikoleit M, Tolar B. et al. 2014. Genomic epidemiology of Salmonella enterica erotype Enteritidis based on population structure of prevalent lineages. Emerg. Infect. Dis. 20:91481–89 [Google Scholar]
  25. Deng X, Shariat N, Driebe EM, Roe CC, Tolar B. et al. 2015. Comparative analysis of subtyping methods against a whole-genome-sequencing standard for Salmonella enterica serotype Enteritidis. J. Clin. Microbiol. 53:1212–18 [Google Scholar]
  26. Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. 2012. Transforming clinical microbiology with bacterial genome sequencing. Nat. Rev. Genet. 13:601–12 [Google Scholar]
  27. Didelot X, Wilson DJ. 2015. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput. Biol. 11:2e1004041 [Google Scholar]
  28. Doyle MP, Erickson MC, Alali W, Cannon J, Deng X. et al. 2015. The food industry's current and future role in preventing microbial foodborne illness within the United States. Clin. Infect. Dis. 61:2252–59 [Google Scholar]
  29. Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29:81969–73 [Google Scholar]
  30. Earl DA, Bradnam K, St. John J, Darling A, Lin D. et al. 2011. Assemblathon 1: a competitive assessment of de novo short read assembly methods. Genome Res. 21:122224–41 [Google Scholar]
  31. Eur. Cent. Dis. Prev. Control 2013. Surveillance of communicable diseases in Europe - a concept to integrate molecular typing data into EU-level surveillance. Stockholm, Sweden: Eur. Cent. Dis. Prev. Control http://ecdc.europa.eu/en/publications/Publications/surveillance-concept-molecular%20typing-sept2011.pdf
  32. Eur. Food Saf. Auth 2010. Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in the European Union in 2008. Parma, Italy: EFSA http://www.efsa.europa.eu/en/efsajournal/pub/1496 [Google Scholar]
  33. Eur. Food Saf. Auth 2014. Technical specifications for the pilot on the collection of data on molecular testing of food-borne pathogens from food, feed and animal samples. Parma, Italy: EFSA http://www.efsa.europa.eu/it/supporting/pub/712e [Google Scholar]
  34. Farber JM, Peterkin PI. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 55:3476–511 [Google Scholar]
  35. Fisher IST, Threlfall EJ. Enter-net, Salm-gene 2005. The Enter-net and Salm-gene databases of foodborne bacterial pathogens that cause human infections in Europe and beyond: An international collaboration in surveillance and the development of intervention strategies. Epidemiol. Infect. 133:11–7 [Google Scholar]
  36. Foxman B, Zhang L, Koopman JS, Manning SD, Marrs CF. 2005. Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiol. Perspect. Innov. 2:10 [Google Scholar]
  37. Gardner SN, Hall BG. 2013. When whole-genome alignments just won't work: kSNP v2 software for alignment-free SNP discovery and phylogenetics of hundreds of microbial genomes. PLOS ONE 8:12e81760 [Google Scholar]
  38. Gardner SN, Slezak T, Hall BG. 2015. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics 31:2877–78 [Google Scholar]
  39. Gargis AS, Kalman L, Berry MW, Bick DP, Dimmock DP. et al. 2012. Assuring the quality of next-generation sequencing in clinical laboratory practice. Nat. Biotechnol. 30:111033–36 [Google Scholar]
  40. Garrison E, Marth G. 2012. Haplotype-based variant detection from short-read sequencing. arXiv:1207.3907v2
  41. Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S. et al. 2006. PulseNet USA: a five-year update. Foodborne Pathog. Dis. 3:19–19 [Google Scholar]
  42. Gilbert JM, White DG, McDermott PF. 2007. The US national antimicrobial resistance monitoring system. Future Microbiol. 2:5493–500 [Google Scholar]
  43. Gilmour MW, Graham M, van Domselaar G, Tyler S, Kent H. et al. 2010. High-throughput genome sequencing of two Listeria monocytogenes clinical isolates during a large foodborne outbreak. BMC Genomics 11:120 [Google Scholar]
  44. Glob. Microb. Identif 2011. Perspectives of a Global, Real-Time Microbiological Genomic Identification System - Implications for National and Global Detection and Control of Infectious Diseases. Consensus Report of an Expert Meeting 1–2 September 2011, Bruxelles, Belgium. Lyngby, Den: Natl. Food Inst. Tech. Univ Den. http://www.globalmicrobialidentifier.org/-/media/Sites/gmi/News-and-events/2011/1-meeting-2011-report.ashx?la=da
  45. Gordon NC, Price JR, Cole K, Everitt R, Morgan M. et al. 2014. Prediction of Staphylococcus aureus antimicrobial resistance by whole-genome sequencing. J. Clin. Microbiol. 52:41182–91 [Google Scholar]
  46. Grad YH, Lipsitch M. 2014. Epidemiologic data and pathogen genome sequences: a powerful synergy for public health. Genome Biol. 15:11538 [Google Scholar]
  47. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC. et al. 2012. Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. PNAS 109:83065–70 [Google Scholar]
  48. Grimont PAD, Weill F. 2007. Antigenic formulae of the Salmonella serovars. WHO Collab. Cent. Ref. Res. Salmonella, Paris, Fr.
  49. Hald T, Vose D, Wegener HC, Koupeev T. 2004. A Bayesian approach to quantify the contribution of animal-food sources to human salmonellosis. Risk Anal. 24:1255–69 [Google Scholar]
  50. Hedge J, Wilson DJ. 2014. Bacterial phylogenetic reconstruction from whole genomes is robust to recombination but demographic inference is not. mBio 5:6e02158–14 [Google Scholar]
  51. Hendriksen RS, Vieira AR, Karlsmose S, Lo Fo Wong DM, Jensen AB. et al. 2011. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 8:887–900 [Google Scholar]
  52. Hernandez D, François P, Farinelli L, Osterås M, Schrenzel J. 2008. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res. 18:5802–9 [Google Scholar]
  53. Hoffmann M, Luo Y, Monday SR, Gonzales-Escalona N, Ottesen AR, Muruvanda T. et al. 2016. Tracing origins of the Salmonella Bareilly strain causing a food-borne outbreak in the United States. J. Infect Dis. 2134502–8
  54. Hohmann EL. 2001. Nontyphoidal salmonellosis. Clin. Infect. Dis. 32:2263–69 [Google Scholar]
  55. Holmes EC, Urwin R, Maiden MC. 1999. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol. 16:6741–49 [Google Scholar]
  56. Inouye M, Dashnow H, Raven L-A, Schultz MB, Pope BJ. et al. 2014. SRST2: rapid genomic surveillance for public health and hospital microbiology labs. Genome Med. 6:1190 [Google Scholar]
  57. Inst. Med 2012. Improving Food Safety Through a One Health Approach: Workshop Summary. Washington, DC: Natl. Acad. Press
  58. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. 2012. De novo assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44:2226–32 [Google Scholar]
  59. Iqbal Z, Turner I, McVean G. 2013. High-throughput microbial population genomics using the Cortex variation assembler. Bioinformatics 29:2275–76 [Google Scholar]
  60. Jamison DT, Bremen JG, Measham AR, Alleyne G, Claeson M. et al. 2006. Disease Control Priorities in Developing Countries Washington, DC: World Bank, 2nd ed..
  61. Joensen KG, Scheutz F, Lund O, Hasman H, Kaas RS. et al. 2014. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 52:51501–10 [Google Scholar]
  62. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. 2015. Rapid and easy in silico serotyping of Escherichia coli isolates by use of whole-genome sequencing data. J. Clin. Microbiol. 53:82410–26 [Google Scholar]
  63. Jones TF, Scallan E, Angulo FJ. 2007. FoodNet: overview of a decade of achievement. Foodborne Pathog. Dis. 4:160–66 [Google Scholar]
  64. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. 2015. Global epidemiology of Campylobacter infection. Clin. Microbiol. Rev. 28:3687–720 [Google Scholar]
  65. Katz LS, Petkau A, Beaulaurier J, Tyler S, Antonova ES. et al. 2013. Evolutionary dynamics of Vibrio cholerae O1 following a single-source introduction to Haiti. mBio 4:4e00398–13 [Google Scholar]
  66. Keim P, van Ert MN, Pearson T, Vogler AJ, Huynh LY, Wagner DM. 2004. Anthrax molecular epidemiology and forensics: using the appropriate marker for different evolutionary scales. Infect. Genet. Evol. 4:3205–13 [Google Scholar]
  67. Klumpp J, Fouts DE, Sozhamannan S. 2012. Next generation sequencing technologies and the changing landscape of phage genomics. Bacteriophage 2:3190–99 [Google Scholar]
  68. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD. et al. 2012. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22:3568–76 [Google Scholar]
  69. Koren S, Phillippy A. 2015. One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly. Curr. Opin. Microbiol. 23:110–20 [Google Scholar]
  70. Köser CU, Ellington MJ, Cartwright EJP, Gillespie SH, Brown NM. et al. 2012. Routine use of microbial whole genome sequencing in diagnostic and public health microbiology. PLOS Pathog. 8:8e1002824 [Google Scholar]
  71. Kupferschmidt K. 2011. Epidemiology. Outbreak detectives embrace the genome era. Science 30:1818–19 [Google Scholar]
  72. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Meth. 9:4357–59 [Google Scholar]
  73. Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H. et al. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50:41355–61 [Google Scholar]
  74. Leekitcharoenphon P, Kaas RS, Thomsen MCF, Friis C, Rasmussen S, Aarestrup FM. 2012. snpTree: a web-server to identify and construct SNP trees from whole genome sequence data. BMC Genomics 13:Suppl. 7S6 [Google Scholar]
  75. Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:141754–60 [Google Scholar]
  76. Lienau EK, Strain E, Wang C, Zheng J, Ottesen AR. et al. 2011. Identification of a salmonellosis outbreak by means of molecular sequencing. N. Engl. J. Med. 364:10981–82 [Google Scholar]
  77. Liljebjelke KA, Hofacre CL, Liu T, White DG, Ayers S. et al. 2005. Vertical and horizontal transmission of Salmonella within integrated broiler production system. Foodborne Pathog. Dis. 2:190–102 [Google Scholar]
  78. Lindstedt B-A, Heir E, Gjernes E, Kapperud G. 2003. DNA fingerprinting of Salmonella enterica subsp. enterica serovar Typhimurium with emphasis on phage type DT104 based on variable number of tandem repeat loci. J. Clin. Microbiol. 41:41469–79 [Google Scholar]
  79. Lipkin WI. 2013. The changing face of pathogen discovery and surveillance. Nat. Rev. Microbiol. 11:2133–41 [Google Scholar]
  80. Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ-M. et al. 2013. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309:141502–10 [Google Scholar]
  81. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE. et al. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30:434–39 [Google Scholar]
  82. Maiden MCJ, Bygraves JA, Feil EJ, Morelli G, Russell JE. et al. 1998. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. PNAS 95:63140–45 [Google Scholar]
  83. Majowicz SE, Scallan E, Jones-Bitton A, Sargeant JM, Stapleton J. et al. 2014. Global incidence of human Shiga toxin-producing Escherichia coli infections and deaths: a systematic review and knowledge synthesis. Foodborne Pathog. Dis. 11:6447–55 [Google Scholar]
  84. Marçais G, Kingsford C. 2011. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27:6764–70 [Google Scholar]
  85. Martin SM, Bean NH. 1995. Data management issues for emerging diseases and new tools for managing surveillance and laboratory data. Emerg. Infect. Dis. 1:4124–28 [Google Scholar]
  86. Mather AE, Reid SWJ, Maskell DJ, Parkhill J, Fookes MC. et al. 2013. Distinguishable epidemics of multidrug-resistant Salmonella Typhimurium DT104 in different hosts. Science 341:61531514–17 [Google Scholar]
  87. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K. et al. 2010. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:91297–303 [Google Scholar]
  88. Meacham F, Boffelli D, Dhahbi J, Martin DIK, Singer M, Pachter L. 2011. Identification and correction of systematic error in high-throughput sequence data. BMC Bioinform. 12:451 [Google Scholar]
  89. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR. et al. 2011. Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104:H4 outbreak by rapid next generation sequencing technology. PLOS ONE 6:7e22751 [Google Scholar]
  90. Miller JR, Koren S, Sutton G. 2010. Assembly algorithms for next-generation sequencing data. Genomics 95:6315–27 [Google Scholar]
  91. Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP. et al. 2000. A whole-genome assembly of Drosophila. Science 287:54612196–204 [Google Scholar]
  92. Neuman JA, Isakov O, Shomron N. 2013. Analysis of insertion-deletion from deep-sequencing data: software evaluation for optimal detection. Brief. Bioinform. 14:146–55 [Google Scholar]
  93. O'Brien SJ, Gillespie IA, Adak GK. 2005. Foodborne disease surveillance as a basis for policy-making. Food Safety Assurance and Veterinary Public Health: Risk Management Strategies, Monitoring and Surveillance FJM Smulders, JD Collins 33–52 Wageningen, Neth: Wageningen Acad. Publ. [Google Scholar]
  94. Octavia S, Wang Q, Tanaka MM, Kaur S, Sintchenko V, Lan R. 2015. Delineating community outbreaks of Salmonella enterica serovar Typhimurium by use of whole-genome sequencing: insights into genomic variability within an outbreak. J. Clin. Microbiol. 53:41063–71 [Google Scholar]
  95. Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM. et al. 2012. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat. Genet. 44:1215–21 [Google Scholar]
  96. Olson ND, Lund SP, Colman RE, Foster JT, Sahl JW. et al. 2015. Best practices for evaluating single nucleotide variant calling methods for microbial genomics. Front. Genet. 6:235 [Google Scholar]
  97. Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C. et al. 2008. Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 9:539 [Google Scholar]
  98. Pettengill JB, Luo Y, Davis S, Chen Y, González-Escalona N. et al. 2014. An evaluation of alternative methods for constructing phylogenies from whole genome sequence data: a case study with Salmonella. PeerJ 2:e620 [Google Scholar]
  99. Pires SM, Vieira AR, Hald T, Cole D. 2014. Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne Pathog. Dis. 11:9667–76 [Google Scholar]
  100. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2: approximately maximum-likelihood trees for large alignments. PLOS ONE 5:3e9490 [Google Scholar]
  101. Quail MA, Smith M, Coupland P, Otto TD, Harris SR. et al. 2012. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:1341 [Google Scholar]
  102. Quick J, Ashton P, Calus S, Chatt C, Gossain S. et al. 2015. Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella. Genome Biol. 16:1114 [Google Scholar]
  103. Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB. et al. 2006. Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog. Dis. 3:159–67 [Google Scholar]
  104. Robinson ER, Walker TM, Pallen MJ. 2013. Genomics and outbreak investigation: from sequence to consequence. Genome Med. 5:436 [Google Scholar]
  105. Rohde H, Qin J, Cui Y, Li D, Loman NJ. et al. 2011. Open-source genomic analysis of Shiga-toxin-producing E. coli O104:H4. N. Engl. J. Med. 365:8718–24 [Google Scholar]
  106. Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ. et al. 2013. Characterizing and measuring bias in sequence data. Genome Biol. 14:5R51 [Google Scholar]
  107. Rump B, Cornelis C, Woonink F, Verweij M. 2013. The need for ethical reflection on the use of molecular microbial characterisation in outbreak management. Eur. Surveill. 18:420384 [Google Scholar]
  108. Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL. et al. 2015. Defining and evaluating a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Listeria monocytogenes. J. Clin. Microbiol. 53:92869–76 [Google Scholar]
  109. Sabat AJ, Budimir A, Nashev D, Sa-Leao R, van Dijl JM. et al. 2013. Overview of molecular typing methods for outbreak detection and epidemiological surveillance. Eur. Surveill. 18:420380 [Google Scholar]
  110. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA. et al. 2011. Foodborne illness acquired in the United States: major pathogens. Emerg. Infect. Dis. 17:17–15 [Google Scholar]
  111. Smith HW. 1951. The typing of Salmonella Thompson by means of bacteriophage. J. Gen. Microbiol. 5:3472–79 [Google Scholar]
  112. Smith JM, Smith NH, O'Rourke M, Spratt BG. 1993. How clonal are bacteria?. PNAS 90:104384–88 [Google Scholar]
  113. Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:212688–90 [Google Scholar]
  114. Stasiewicz MJ, Oliver HF, Wiedmann M, den Bakker HC. 2015. Whole genome sequencing allows for improved identification of persistent Listeria monocytogenes in food associated environments. Appl. Environ. Microbiol. In press
  115. Swaminathan B, Barrett TJ, Fields P. 2006a. Surveillance for human Salmonella infections in the United States. J. AOAC Int. 89:2553–59 [Google Scholar]
  116. Swaminathan B, Gerner-Smidt P, Ng L-K, Lukinmaa S, Kam K-M. et al. 2006b. Building PulseNet International: an interconnected system of laboratory networks to facilitate timely public health recognition and response to foodborne disease outbreaks and emerging foodborne diseases. Foodborne Pathog. Dis. 3:136–50 [Google Scholar]
  117. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30:122725–29 [Google Scholar]
  118. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE. et al. 1995. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J. Clin. Microbiol. 33:92233–39 [Google Scholar]
  119. Timme RE, Pettengill JB, Allard MW, Strain E, Barrangou R. et al. 2013. Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome. Biol. Evol. 5:112109–23 [Google Scholar]
  120. Treangen TJ, Ondov BD, Koren S, Phillippy A. 2014. The Harvest suite for rapid core-genome alignment and visualization of thousands of intraspecific microbial genomes. Genome Biol. 15:11524 [Google Scholar]
  121. Tyson GH, McDermott PF, Li C, Chen Y, Tadesse DA. et al. 2015. WGS accurately predicts antimicrobial resistance in Escherichia coli. J. Antimicrob. Chemother. 70:2763–69 [Google Scholar]
  122. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B. et al. 2007. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 13:Suppl. 31–46 [Google Scholar]
  123. van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G. et al. 2013. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 11:111011.10.1–11.10.33 [Google Scholar]
  124. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. 2014. Ten years of next-generation sequencing technology. Trends Genet. 30:9418–26 [Google Scholar]
  125. Vergnaud G, Pourcel C. 2009. Multiple locus variable number of tandem repeats analysis. Methods Mol. Biol. 551:141–58 [Google Scholar]
  126. Ward LR, de Sa JD, Rowe B. 1987. A phage-typing scheme for Salmonella enteritidis. Epidemiol. Infect. 99:2291–94 [Google Scholar]
  127. Wilson MR, Naccache SN, Samayoa E, Biagtan M, Bashir H. et al. 2014. Actionable diagnosis of neuroleptospirosis by next-generation sequencing. N. Engl. J. Med. 370:252408–17 [Google Scholar]
  128. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S. et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67:112640–44 [Google Scholar]
  129. Zerbino DR. 2010. Using the Velvet de novo assembler for short-read sequencing technologies. Curr. Protoc. Bioinform. Chapter 11:Unit 11.5
  130. Zhang S, Yin Y, Jones MB, Zhang Z, Deatherage Kaiser BL. et al. 2015. Salmonella serotype determination utilizing high-throughput genome sequencing data. J. Clin. Microbiol. 53:51685–92 [Google Scholar]
  131. Zheng J, Pettengill J, Strain E, Allard MW, Ahmed R. et al. 2014. Genetic diversity and evolution of Salmonella enterica serovar Enteritidis strains with different phage types. J. Clin. Microbiol. 52:51490–500 [Google Scholar]
  132. Zhou Z, McCann A, Litrup E, Murphy R, Cormican M. et al. 2013. Neutral genomic microevolution of a recently emerged pathogen, Salmonella enterica serovar Agona. PLOS Genet. 9:4e1003471 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error