Food allergy is receiving increased attention in recent years. Because there is currently no known cure for food allergy, avoiding the offending food is the best defense for sensitive individuals. Type I food allergy is mediated by food proteins, and thus, theoretically, any food protein is a potential allergen. Variability of an individual's immune system further complicates attempts to understand allergen-antibody interaction. In this article, we briefly review food allergy occurrence, prevalence, mechanisms, and detection. Efforts aimed at reducing/eliminating allergens through food processing are discussed. Future research needs are addressed.

Keyword(s): allergyepitopefoodprocessingprotein

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aalberse RC. 2000. Structural biology of allergens. J. Allergy Clin. Immunol. 106:228–38 [Google Scholar]
  2. Achouri A, Boye JI. 2013. Thermal processing, salt and high pressure treatment effects on molecular structure and antigenicity of sesame protein isolate. Food Res. Int. 53:240–51 [Google Scholar]
  3. Albrecht M, Kühne Y, Ballmer-Weber BK, Becker W-M, Holzhauser T. et al. 2009. Relevance of IgE binding to short peptides for the allergenic activity of food allergens. J. Allergy Clin. Immunol. 124:328–36 [Google Scholar]
  4. Allen KJ, Remington BC, Baumert JL, Crevel RW, Houben GF. et al. 2014a. Allergen reference doses for precautionary labeling (VITAL 2.0): clinical implications. J. Allergy Clin. Immunol. 133:156–64 [Google Scholar]
  5. Allen KJ, Turner PJ, Pawankar R, Taylor S, Sicherer S. et al. 2014b. Precautionary labelling of foods for allergen content: Are we ready for a global framework?. World Allergy Organ. J. 7:10 [Google Scholar]
  6. Alves RC, Pimentel FB, Nouws HP, Marques RC, González-García MB. et al. 2015. Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor. Biosens. Bioelectron. 64:19–24 [Google Scholar]
  7. Asai Y, Greenwood C, Hull PR, Alizadehfar R, Ben-Shoshan M. et al. 2013. Filaggrin gene mutation associations with peanut allergy persist despite variations in peanut allergy diagnostic criteria or asthma status. J. Allergy Clin. Immunol. 132:239–42.e7 [Google Scholar]
  8. Ayuso R, Sánchez-Garcia S, Lin J, Fu Z, Ibáñez MD. et al. 2010. Greater epitope recognition of shrimp allergens by children than by adults suggests that shrimp sensitization decreases with age. J. Allergy Clin. Immunol. 125:1286–93.e3 [Google Scholar]
  9. Babiker EE, Hiroyuki A, Matsudomi N, Iwata H, Ogawa T. et al. 1998. Effect of polysaccharide conjugation or transglutaminase treatment on the allergenicity and functional properties of soy protein. J. Agric. Food Chem. 46:866–71 [Google Scholar]
  10. Bansal A, Chee R, Nagendran V, Warner A, Hayman G. 2007. Dangerous liaison: sexually transmitted allergic reaction to Brazil nuts. J. Investig. Allergol. Clin. Immunol. 17:189–91 [Google Scholar]
  11. Berin MC, Mayer L. 2013. Can we produce true tolerance in patients with food allergy?. J. Allergy Clin. Immunol. 131:14–22 [Google Scholar]
  12. Berin MC, Sampson HA. 2013. Mucosal immunology of food allergy. Curr. Biol. 23:R389–R400 [Google Scholar]
  13. Beyer K, Morrowa E, Li X-M, Bardina L, Bannon GA. et al. 2001. Effects of cooking methods on peanut allergenicity. J. Allergy Clin. Immunol. 107:1077–81 [Google Scholar]
  14. Blanc F, Vissers YM, Adel-Patient K, Rigby NM, Mackie AR. et al. 2011. Boiling peanut Ara h 1 results in the formation of aggregates with reduced allergenicity. Mol. Nutr. Food Res. 55:1887–94 [Google Scholar]
  15. Bock SA, Muñoz-Furlong A, Sampson HA. 2001. Fatalities due to anaphylactic reactions to foods. J. Allergy Clin. Immunol. 107:191–93 [Google Scholar]
  16. Bock SA, Muñoz-Furlong A, Sampson HA. 2007. Further fatalities caused by anaphylactic reactions to food, 2001–2006. J. Allergy Clin. Immunol. 119:1016–18 [Google Scholar]
  17. Boquete M, Iraola V, Morales M, Pinto H, Francisco C. et al. 2011. Seafood hypersensitivity in mite sensitized individuals: Is tropomyosin the only responsible allergen?. Ann. Allergy Asthma Immunol. 106:223–29 [Google Scholar]
  18. Boyce JA, Assa'ad A, Burks AW, Jones SM, Sampson HA. et al. 2010. Guidelines for the diagnosis and management of food allergy in the US: report of the NIAID-sponsored expert panel. J. Allergy Clin. Immunol. 126:S1–58 [Google Scholar]
  19. Boye JI. 2012. Food allergies in developing and emerging economies: need for comprehensive data on prevalence rates. Clin. Transl. Allergy 2:25 [Google Scholar]
  20. Breiteneder H, Ebner C. 2000. Molecular and biochemical classification of plant-derived food allergens. J. Allergy Clin. Immunol. 106:27–36 [Google Scholar]
  21. Breiteneder H, Mills EC. 2005. Molecular properties of food allergens. J. Allergy Clin. Immunol. 115:14–23 [Google Scholar]
  22. Breiteneder H, Radauer C. 2004. A classification of plant food allergens. J. Allergy Clin. Immunol. 113:821–30 [Google Scholar]
  23. Broekaert SM, Darsow U, Ollert M, Ring J, Krause I. et al. 2008. Anaphylactic shock caused by buffalo's mozzarella cheese. Ann. Allergy Asthma Immunol. 101:105–7 [Google Scholar]
  24. Burks AW, Tang M, Sicherer S, Muraro A, Eigenmann PA. et al. 2012. ICON: food allergy. J. Allergy Clin. Immunol. 129:906–20 [Google Scholar]
  25. Cabanillas B, Pedrosa MM, Rodríguez J, Gonzalez A, Muzquiz M. et al. 2010. Effects of enzymatic hydrolysis on lentil allergenicity. Mol. Nutr. Food Res. 54:1266–72 [Google Scholar]
  26. Careri M, Elviri L, Mangia A, Mucchino C. 2007. ICP-MS as a novel detection system for quantitative element-tagged immunoassay of hidden peanut allergens in foods. Anal. Bioanal. Chem. 387:1851–54 [Google Scholar]
  27. Careri M, Elviri L, Maffini M, Mangia A, Mucchino C, Terenghi M. 2008. Determination of peanut allergens in cereal-chocolate-based snacks: metal-tag inductively coupled plasma mass spectrometry immunoassay versus liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom. 22:807–11 [Google Scholar]
  28. Cartier A. 2010. The role of inhalant food allergens in occupational asthma. Curr. Allergy Asthma Rep. 10:349–56 [Google Scholar]
  29. Chan S, Turcanu V, Stephens A, Fox A, Grieve A, Lack G. 2012. Cutaneous lymphocyte antigen and α4β7 T-lymphocyte responses are associated with peanut allergy and tolerance in children. Allergy 67:336–42 [Google Scholar]
  30. Cho CY, Nowatzke W, Oliver K, Garber EA. 2015. Multiplex detection of food allergens and gluten. Anal. Bioanal. Chem. 407:4195–206 [Google Scholar]
  31. Colver AF, Nevantaus H, Macdougall CF, Cant AJ. 2005. Severe food-allergic reactions in children across the UK and Ireland, 1998–2000. Acta Paediatr. 94:689–95 [Google Scholar]
  32. Commins SP. 2015. Carbohydrates as allergens. Curr. Allergy Asthma Rep. 15:1–6 [Google Scholar]
  33. Commins SP, Satinover SM, Hosen J, Mozena J, Borish L. et al. 2009. Delayed anaphylaxis, angioedema, or urticaria after consumption of red meat in patients with IgE antibodies specific for galactose-α-1,3-galactose. J. Allergy Clin. Immunol. 123:426–33.e2 [Google Scholar]
  34. Cucu T, Devreese B, Kerkaert B, Rogge M, Vercruysse L, De Meulenaer B. 2012. ELISA-based detection of soybean proteins: a comparative study using antibodies against modified and native proteins. Food Anal. Methods 5:1121–30 [Google Scholar]
  35. Cucu T, Jacxsens L, De Meulenaer B. 2013. Analysis to support allergen risk management: which way to go?. J. Agric. Food Chem. 61:5624–33 [Google Scholar]
  36. Davis PJ, Smales CM, James DC. 2001. How can thermal processing modify the antigenicity of proteins?. Allergy 56:56–60 [Google Scholar]
  37. de Jongh HHJ, Robles CL, Timmerman E, Nordlee JA, Lee P-W. et al. 2013. Digestibility and IgE-binding of glycosylated codfish parvalbumin. BioMed Res. Int. 2013:1–10 [Google Scholar]
  38. de Silva D, Geromi M, Panesar S, Muraro A, Werfel T. et al. 2014. Acute and long-term management of food allergy: systematic review. Allergy 69:159–67 [Google Scholar]
  39. De Zorzi M, Curioni A, Simonato B, Giannattasio M, Pasini G. 2007. Effect of pasta drying temperature on GI digestibility and allergenicity of durum wheat proteins. Food Chem. 104:353–63 [Google Scholar]
  40. Denépoux S, Eibensteiner PB, Steinberger P, Vrtala S, Visco V. et al. 2000. Molecular characterization of human IgG monoclonal antibodies specific for the major birch pollen allergen Bet v 1. Anti-allergen IgG can enhance the anaphylactic reaction. FEBS Lett. 465:39–46 [Google Scholar]
  41. Dhakal S, Liu C, Zhang Y, Roux KH, Sathe SK, Balasubramaniam V. 2014. Effect of high pressure processing on the immunoreactivity of almond milk. Food Res. Int. 62:215–22 [Google Scholar]
  42. EFSA NDA Panel 2014. Scientific opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J. 12:3894 [Google Scholar]
  43. Eissa S, Tlili C, L'Hocine L, Zourob M. 2012. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens. Bioelectron. 38:308–13 [Google Scholar]
  44. Fæste CK, Rønning HT, Christians U, Granum PE. 2011. Liquid chromatography and mass spectrometry in food allergen detection. J. Food Prot. 74:316–45 [Google Scholar]
  45. FDA 2015. Archive for Recalls, Market Withdrawals & Safety Alerts. Washington, DC: US Food Drug Adm http://www.fda.gov/Safety/Recalls/ArchiveRecalls/default.htm
  46. Foucard T, Malmheden Yman I. 1999. A study on severe food reactions in Sweden—is soy protein an underestimated cause of food anaphylaxis?. Allergy 54:261–65 [Google Scholar]
  47. Fukutomi Y, Itagaki Y, Taniguchi M, Saito A, Yasueda H. et al. 2011. Rhinoconjunctival sensitization to hydrolyzed wheat protein in facial soap and induce wheat-dependant exercise-induced anaphylaxis. Clin. Transl. Allergy 1:49 [Google Scholar]
  48. Gabriel MF, González-Delgado P, Postigo I, Fernández J, Soriano V. et al. 2015. From respiratory sensitization to food allergy: anaphylactic reaction after ingestion of mushrooms (Agaricus bisporus). Med. Mycol. Case Rep. 8:14–16 [Google Scholar]
  49. García B, Gamboa P, Asturias J, López-Hoyos M, Sanz M. 2009. Guidelines on the clinical usefulness of determination of specific immunoglobulin E to foods. J. Investig. Allergol. Clin. Immunol. 19:423–32 [Google Scholar]
  50. García MC, Domínguez M, García-Ruiz C, Marina ML. 2006. Reversed-phase high-performance liquid chromatography applied to the determination of soybean proteins in commercial heat-processed meat products. Anal. Chim. Acta 559:215–20 [Google Scholar]
  51. Gendel SM. 2012. Comparison of international food allergen labeling regulations. Regul. Toxicol. Pharmacol. 63:279–85 [Google Scholar]
  52. Gendel SM, Zhu J. 2013. Analysis of US Food and Drug Administration food allergen recalls after implementation of the food allergen labeling and consumer protection act. J. Food Prot. 76:1933–38 [Google Scholar]
  53. Geroldinger-Simic M, Zelniker T, Aberer W, Ebner C, Egger C. et al. 2011. Birch pollen–related food allergy: clinical aspects and the role of allergen-specific IgE and IgG 4 antibodies. J. Allergy Clin. Immunol. 127:616–22.e1 [Google Scholar]
  54. Gomaa A, Boye J. 2015. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS). Food Chem. 175:585–92 [Google Scholar]
  55. Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N. et al. 2003. The biology of IgE and the basis of allergic disease. Annu. Rev. Immunol. 21:579–628 [Google Scholar]
  56. Green PH, Lebwohl B, Greywoode R. 2015. Celiac disease. J. Allergy Clin. Immunol. 135:1099–106 [Google Scholar]
  57. Gupta R, Holdford D, Bilaver L, Dyer A, Holl JL, Meltzer D. 2013. The economic impact of childhood food allergy in the US. JAMA Pediatr. 167:1026–31 [Google Scholar]
  58. Hawrylowicz C, O'Garra A. 2005. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat. Rev. Immunol. 5:271–83 [Google Scholar]
  59. Hegde VL, Venkatesh YP. 2004. Anaphylaxis to excipient mannitol: evidence for an immunoglobulin E-mediated mechanism. Clin. Exp. Allergy 34:1602–9 [Google Scholar]
  60. Hildebrandt S, Kratzin HD, Schaller R, Fritsché R, Steinhart H, Paschke A. 2008. In vitro determination of the allergenic potential of technologically altered hen's egg. J. Agric. Food Chem. 56:1727–33 [Google Scholar]
  61. Hirao T, Imai S, Sawada H, Shiomi N, Hachimura S, Kato H. 2005. PCR method for detecting trace amounts of buckwheat (Fagopyrum spp.) in food. Biosci. Biotechnol. Biochem. 69:724–31 [Google Scholar]
  62. Ho MH-K, Wong WH-S, Chang C. 2014. Clinical spectrum of food allergies: a comprehensive review. Clin. Rev. Allergy Immunol. 46:225–40 [Google Scholar]
  63. Hoffmann-Sommergruber K, Mills EC. 2009. Food allergen protein families and their structural characteristics and application in component-resolved diagnosis: new data from the EuroPrevall project. Anal. Bioanal. Chem. 395:25–35 [Google Scholar]
  64. Holzhauser T, Dehne L, Hoffmann A, Haustein D, Vieths S. 1998. Rocket immunoelectrophoresis (RIE) for determination of potentially allergenic peanut proteins in processed foods as a simple means for quality assurance and food safety. Z. Lebensm. Unters. Forsch. 206:1–8 [Google Scholar]
  65. Holzhauser T, Stephan O, Vieths S. 2002. Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J. Agric. Food Chem. 50:5808–15 [Google Scholar]
  66. Holzhauser T, Wangorsch A, Vieths S. 2000. Polymerase chain reaction (PCR) for detection of potentially allergenic hazelnut residues in complex food matrixes. Eur. Food Res. Technol. 211:360–65 [Google Scholar]
  67. Husband FA, Aldick T, van der Plancken I, Grauwet T, Hendrickx M. et al. 2011. High-pressure treatment reduces the immunoreactivity of the major allergens in apple and celeriac. Mol. Nutr. Food Res. 55:1087–95 [Google Scholar]
  68. IEDB 2015. Immune Epitope Database and Analysis Resource Bethesda, MD: Natl. Inst. Infect. Dis http://www.iedb.org
  69. Ilchmann A, Burgdorf S, Scheurer S, Waibler Z, Nagai R. et al. 2010. Glycation of a food allergen by the Maillard reaction enhances its T-cell immunogenicity: role of macrophage scavenger receptor class A type I and II. J. Allergy Clin. Immunol. 125:175–83.e11 [Google Scholar]
  70. Janzi M, Kull I, Sjöberg R, Wan J, Melén E. et al. 2009. Selective IgA deficiency in early life: association to infections and allergic diseases during childhood. Clin. Immunol. 133:78–85 [Google Scholar]
  71. Järvinen KM, Chatchatee P. 2009. Mammalian milk allergy: clinical suspicion, cross-reactivities and diagnosis. Curr. Opin. Allergy Clin. Immunol. 9:251–58 [Google Scholar]
  72. Jayasena S, Smits M, Fiechter D, de Jong A, Nordlee J. et al. 2015. Comparison of six commercial ELISA kits for their specificity and sensitivity in detecting different major peanut allergens. J. Agric. Food Chem. 63:1849–55 [Google Scholar]
  73. Jenkins JA, Breiteneder H, Mills EC. 2007. Evolutionary distance from human homologs reflects allergenicity of animal food proteins. J. Allergy Clin. Immunol. 120:1399–405 [Google Scholar]
  74. Jenkins JA, Griffiths-Jones S, Shewry PR, Breiteneder H, Mills EC. 2005. Structural relatedness of plant food allergens with specific reference to cross-reactive allergens: an in silico analysis. J. Allergy Clin. Immunol. 115:163–70 [Google Scholar]
  75. Jiang D, Ji J, Sun X, Zhang Y, Zhang G, Tang L. 2013. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin). Biosens. Bioelectron. 50:150–56 [Google Scholar]
  76. Jiménez-Saiz R, Belloque J, Molina E, López-Fandino R. 2011. Human immunoglobulin E (IgE) binding to heated and glycated ovalbumin and ovomucoid before and after in vitro digestion. J. Agric. Food Chem. 59:10044–51 [Google Scholar]
  77. Kamath SD, Rahman AMA, Komoda T, Lopata AL. 2013. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies. Food Chem. 141:4031–39 [Google Scholar]
  78. Kamath SD, Rahman AMA, Voskamp A, Komoda T, Rolland JM. et al. 2014. Effect of heat processing on antibody reactivity to allergen variants and fragments of black tiger prawn: a comprehensive allergenomic approach. Mol. Nutr. Food Res. 58:1144–55 [Google Scholar]
  79. Kamemura N, Tada H, Shimojo N, Morita Y, Kohno Y. et al. 2012. Intrauterine sensitization of allergen-specific IgE analyzed by a highly sensitive new allergen microarray. J. Allergy Clin. Immunol. 130:113–21.e2 [Google Scholar]
  80. Kerkaert B, Mestdagh F, De Meulenaer B. 2010. Detection of hen's egg white lysozyme in food: comparison between a sensitive HPLC and a commercial ELISA method. Food Chem. 120:580–84 [Google Scholar]
  81. Khuda SE, Jackson LS, Fu T-J, Williams KM. 2015. Effects of processing on the recovery of food allergens from a model dark chocolate matrix. Food Chem. 168:580–87 [Google Scholar]
  82. Kirsch S, Fourdrilis S, Dobson R, Scippo M-L, Maghuin-Rogister G, De Pauw E. 2009. Quantitative methods for food allergens: a review. Anal. Bioanal. Chem. 395:57–67 [Google Scholar]
  83. Klemans R, Os-Medendorp H, Blankestijn M, Bruijnzeel-Koomen C, Knol E, Knulst A. 2015. Diagnostic accuracy of specific IgE to components in diagnosing peanut allergy: a systematic review. Clin. Exp. Allergy 45:720–30 [Google Scholar]
  84. Köppel R, van Velsen-Zimmerli F, Bucher T. 2012. Two quantitative hexaplex real-time PCR systems for the detection and quantification of DNA from twelve allergens in food. Eur. Food Res. Technol. 235:843–52 [Google Scholar]
  85. Larché M, Akdis CA, Valenta R. 2006. Immunological mechanisms of allergen-specific immunotherapy. Nat. Rev. Immunol. 6:761–71 [Google Scholar]
  86. Lee J-W, Seo J-H, Kim J-H, Lee S-Y, Byun M-W. 2007. Comparison of the changes of the antigenicities of a hen's egg albumin by a gamma and an electron beam irradiation. Rad. Phys. Chem. 76:879–85 [Google Scholar]
  87. Levy MB, Goldberg MR, Nachshon L, Tabachnik E, Katz Y. 2012. Lessons from cases of mortality due to food allergy in Israel: cow's milk protein should be considered a potentially fatal allergen. IMAJ 14:29 [Google Scholar]
  88. Li H, Zhu K, Zhou H, Peng W. 2012. Effects of high hydrostatic pressure treatment on allergenicity and structural properties of soybean protein isolate for infant formula. Food Chem. 132:808–14 [Google Scholar]
  89. Liew WK, Williamson E, Tang ML. 2009. Anaphylaxis fatalities and admissions in Australia. J. Allergy Clin. Immunol. 123:434–42 [Google Scholar]
  90. Lin J, Sampson HA. 2009. The role of immunoglobulin E-binding epitopes in the characterization of food allergy. Curr. Opin. Allergy Clin. Immunol. 9:357–63 [Google Scholar]
  91. Lin RY, Anderson AS, Shah SN, Nurruzzaman F. 2008. Increasing anaphylaxis hospitalizations in the first 2 decades of life: New York State, 1990–2006. Ann. Allergy Asthma Immunol. 101:387–93 [Google Scholar]
  92. Longo G, Berti I, Burks AW, Krauss B, Barbi E. 2013. IgE-mediated food allergy in children. Lancet 382:1656–64 [Google Scholar]
  93. Lopata AL, Kamath S. 2012. Shellfish allergy diagnosis—gaps and needs: review article. Curr. Allergy Clin. Immunol. 25:60–66 [Google Scholar]
  94. Lopata AL, Lehrer SB. 2009. New insights into seafood allergy. Curr. Opin. Allergy Clin. Immunol. 9:270–77 [Google Scholar]
  95. López-Calleja IM, de la Cruz S, González I, García T, Martín R. 2015. Development of real-time PCR assays to detect cashew (Anacardium occidentale) and macadamia (Macadamia intergrifolia) residues in market analysis of processed food products. LWT Food Sci. Technol. 62:233–41 [Google Scholar]
  96. Ma Y, Griesmeier U, Susani M, Radauer C, Briza P. et al. 2008. Comparison of natural and recombinant forms of the major fish allergen parvalbumin from cod and carp. Mol. Nutr. Food Res. 52:S196–207 [Google Scholar]
  97. Ma Y, Zuidmeer L, Bohle B, Bolhaar S, Gadermaier G. et al. 2006. Characterization of recombinant Mal d 4 and its application for component-resolved diagnosis of apple allergy. Clin. Exp. Allergy 36:1087–96 [Google Scholar]
  98. Maleki SJ, Chung S-Y, Champagne ET, Raufman J-P. 2000. The effects of roasting on the allergenic properties of peanut proteins. J. Allergy Clin. Immunol. 106:763–68 [Google Scholar]
  99. Mandalari G, Rigby NM, Bisignano C, Curto RBL, Mulholland F. et al. 2014. Effect of food matrix and processing on release of almond protein during simulated digestion. LWT Food Sci. Technol. 59:439–47 [Google Scholar]
  100. Martos G, Lopez-Exposito I, Bencharitiwong R, Berin MC, Nowak-Węgrzyn A. 2011. Mechanisms underlying differential food allergy response to heated egg. J. Allergy Clin. Immunol. 127:990–97.e2 [Google Scholar]
  101. Mattison CP, Grimm CC, Wasserman RL. 2014. In vitro digestion of soluble cashew proteins and characterization of surviving IgE-reactive peptides. Mol. Nutr. Food Res. 58:884–93 [Google Scholar]
  102. Mills EC, Mackie AR. 2008. The impact of processing on allergenicity of food. Curr. Opin. Allergy Clin. Immunol. 8:249–53 [Google Scholar]
  103. Molberg Ø, McAdam SN, Körner R, Quarsten H, Kristiansen C. et al. 1998. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat. Med. 4:713–17 [Google Scholar]
  104. Monaci L, van Hengel AJ. 2008. Development of a method for the quantification of whey allergen traces in mixed-fruit juices based on liquid chromatography with mass spectrometric detection. J. Chromatogr. A 1192113–20
  105. Monaci L, Visconti A. 2009. Mass spectrometry–based proteomics methods for analysis of food allergens. Trends Anal. Chem. 28:581–91 [Google Scholar]
  106. Monaghan EK, Venkatachalam M, Seavy M, Beyer K, Sampson HA. et al. 2008. Enzyme-linked immunosorbent assay (ELISA) for detection of sulfur-rich protein (SRP) in soybeans (Glycine max L.) and certain other edible plant seeds. J. Agric. Food Chem. 56:765–77 [Google Scholar]
  107. Montserrat M, Sanz D, Juan T, Herrero A, Sánchez L. et al. 2015. Detection of peanut (Arachis hypogaea) allergens in processed foods by immunoassay: influence of selected target protein and ELISA format applied. Food Control 54:300–7 [Google Scholar]
  108. Mustorp SL, Drømtorp SM, Holck AL. 2011. Multiplex, quantitative, ligation-dependent probe amplification for determination of allergens in food. J. Agric. Food Chem. 59:5231–39 [Google Scholar]
  109. Netting MJ, Middleton PF, Makrides M. 2014. Does maternal diet during pregnancy and lactation affect outcomes in offspring? A systematic review of food-based approaches. Nutrition 30:1225–41 [Google Scholar]
  110. Nowak-Węgrzyn A, Katz Y, Mehr SS, Koletzko S. 2015. Non-IgE-mediated GI food allergy. J. Allergy Clin. Immunol. 135:1114–24 [Google Scholar]
  111. Padavattan S, Flicker S, Schirmer T, Madritsch C, Randow S. et al. 2009. High-affinity IgE recognition of a conformational epitope of the major respiratory allergen Phl p 2 as revealed by ray crystallography. J. Immunol. 182:2141–51 [Google Scholar]
  112. Palle-Reisch M, Hochegger R, Cichna-Markl M. 2015. Development and validation of a triplex real-time PCR assay for the simultaneous detection of three mustard species and three celery varieties in food. Food Chem. 184:46–56 [Google Scholar]
  113. Paschke A. 2009. Aspects of food processing and its effect on allergen structure. Mol. Nutr. Food Res. 53:959–62 [Google Scholar]
  114. Pedersen MH, Holzhauser T, Bisson C, Conti A, Jensen LB. et al. 2008. Soybean allergen detection methods—a comparison study. Mol. Nutr. Food Res. 52:1486–96 [Google Scholar]
  115. Perrier C, Corthesy B. 2011. Gut permeability and food allergies. Clin. Exp. Allergy 41:20–28 [Google Scholar]
  116. Peters RL, Gurrin LC, Dharmage SC, Koplin JJ, Allen KJ. 2013. The natural history of IgE-mediated food allergy: Can skin prick tests and serum-specific IgE predict the resolution of food allergy?. Int. J. Environ. Res. Public Health 10:5039–61 [Google Scholar]
  117. Pilolli R, Monaci L, Visconti A. 2013. Advances in biosensor development based on integrating nanotechnology and applied to food-allergen management. Trends Anal. Chem. 47:12–26 [Google Scholar]
  118. Pilolli R, Visconti A, Monaci L. 2015. Rapid and label-free detection of egg allergen traces in wines by surface plasmon resonance biosensor. Anal. Bioanal. Chem. 407:3787–97 [Google Scholar]
  119. Platteau C, De Loose M, De Meulenaer B, Taverniers I. 2011. Quantitative detection of hazelnut (Corylus avellana) in cookies: ELISA versus real-time PCR. J. Agric. Food Chem. 59:11395–402 [Google Scholar]
  120. Pollet J, Delport F, Janssen K, Tran D, Wouters J. et al. 2011. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 83:1436–41 [Google Scholar]
  121. Poms R, Klein C, Anklam E. 2004. Methods for allergen analysis in food: a review. Food Addit. Contam. 21:1–31 [Google Scholar]
  122. Pongracic JA, Bock SA, Sicherer SH. 2012. Oral food challenge practices among allergists in the US. J. Allergy Clin. Immunol. 129:564–66 [Google Scholar]
  123. Posada-Ayala M, Alvarez-Llamas G, Maroto AS, Maes X, Muñoz-Garcia E. et al. 2015. Novel liquid chromatography–mass spectrometry method for sensitive determination of the mustard allergen Sin a 1 in food. Food Chem. 183:58–63 [Google Scholar]
  124. Posthumus J, James HR, Lane CJ, Matos LA, Platts-Mills TA, Commins SP. 2013. Initial description of pork-cat syndrome in the US. J. Allergy Clin. Immunol. 131:923–25 [Google Scholar]
  125. Pumphrey R. 2000. Lessons for management of anaphylaxis from a study of fatal reactions. Clin. Exp. Allergy 30:1144–50 [Google Scholar]
  126. Pumphrey RS, Gowland MH. 2007. Further fatal allergic reactions to food in the United Kingdom, 1999–2006. J. Allergy Clin. Immunol. 119:1018–19 [Google Scholar]
  127. Quirce S, Maranon F, Umpierrez A, De Las Heras M, Fernández-Caldas E, Sastre J. 2001. Chicken serum albumin (Gal d 5) is a partially heat-labile inhalant and food allergen implicated in the bird-egg syndrome. Allergy 56:754–62 [Google Scholar]
  128. Radauer C, Bublin M, Wagner S, Mari A, Breiteneder H. 2008. Allergens are distributed into few protein families and possess a restricted number of biochemical functions. J. Allergy Clin. Immunol. 121:847–52.e7 [Google Scholar]
  129. Roux KH, Teuber SS, Robotham JM, Sathe SK. 2001. Detection and stability of the major almond allergen in foods. J. Agric. Food Chem. 49:2131–36 [Google Scholar]
  130. Sackesen C, Assa'ad A, Baena-Cagnani C, Ebisawa M, Fiocchi A. et al. 2011. Cow's milk allergy as a global challenge. Curr. Opin. Allergy Clin. Immunol. 11:243–48 [Google Scholar]
  131. Sampson HA. 2004. Update on food allergy. J. Allergy Clin. Immunol. 113:805–19 [Google Scholar]
  132. Sampson HA, Mendelson L, Rosen JP. 1992. Fatal and near-fatal anaphylactic reactions to food in children and adolescents. N. Engl. J. Med. 327:380–84 [Google Scholar]
  133. Sanz ML, Blázquez AB, Garcia BE. 2011. Microarray of allergenic component-based diagnosis in food allergy. Curr. Opin. Allergy Clin. Immunol. 11:204–9 [Google Scholar]
  134. Sathe SK, Sharma GM. 2009. Effects of food processing on food allergens. Mol. Nutr. Food Res. 53:970–78 [Google Scholar]
  135. Sathe SK, Teuber SS, Roux KH. 2005. Effects of food processing on the stability of food allergens. Biotechnol. Adv. 23:423–29 [Google Scholar]
  136. Sathe SK, Wolf WJ, Roux KH, Teuber SS, Venkatachalam M, Sze-Tao KWC. 2002. Biochemical characterization of amandin, the major storage protein in almond (Prunus dulcis L.). J. Agric. Food Chem. 50:4333–41 [Google Scholar]
  137. Schoos AM, Chawes BL, Følsgaard N, Samandari N, Bønnelykke K, Bisgaard H. 2015. Disagreement between skin prick test and specific IgE in young children. Allergy 70:41–48 [Google Scholar]
  138. Schulz O, Pabst O. 2013. Antigen sampling in the small intestine. Trends Immunol. 34:155–61 [Google Scholar]
  139. Scott C, Peterson P, Teyton L, Wilson I. 1998. Crystal structures of two IA d-peptide complexes reveal that high affinity can be achieved without large anchor residues. Immunity 8:319–29 [Google Scholar]
  140. Sellge G, Laffer S, Mierke C, Vrtala S, Hoffmann M. et al. 2005. Development of an in vitro system for the study of allergens and allergen-specific immunoglobulin E and immunoglobulin G: Fcε receptor I supercross-linking is a possible new mechanism of immunoglobulin G–dependent enhancement of type I allergic reactions. Clin. Exp. Allergy 35:774–81 [Google Scholar]
  141. Sharp MF, Lopata AL. 2014. Fish allergy: in review. Clin. Rev. Allergy Immunol. 46:258–71 [Google Scholar]
  142. Shreffler WG, Castro RR, Kucuk ZY, Charlop-Powers Z, Grishina G. et al. 2006. The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro. J. Immunol. 177:3677–85 [Google Scholar]
  143. Sicherer SH. 2001. Clinical implications of cross-reactive food allergens. J. Allergy Clin. Immunol. 108:881–90 [Google Scholar]
  144. Sicherer SH. 2011. Epidemiology of food allergy. J. Allergy Clin. Immunol. 127:594–602 [Google Scholar]
  145. Sicherer SH, Sampson HA. 2010. Food allergy. J. Allergy Clin. Immunol. 125:S116–25 [Google Scholar]
  146. Sicherer SH, Sampson HA. 2014. Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J. Allergy Clin. Immunol. 133:291–307.e5 [Google Scholar]
  147. Sicherer SH, Wood RA, Stablein D, Lindblad R, Burks AW. et al. 2010. Maternal consumption of peanut during pregnancy is associated with peanut sensitization in atopic infants. J. Allergy Clin. Immunol. 126:1191–97 [Google Scholar]
  148. Simon M, Mulla Z. 2008. A population-based epidemiologic analysis of deaths from anaphylaxis in Florida. Allergy 63:1077–83 [Google Scholar]
  149. Song TW, Hong JY, Lee KE, Kim MN, Kim YH. et al. 2015. IgE reactivity to carbohydrate moieties of glycoproteins in wheat allergy. Allergy Asthma Proc. 36:192–99 [Google Scholar]
  150. Song Y-S, Frías J, Martinez-Villaluenga C, Vidal-Valdeverde C, de Mejia EG. 2008. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chem. 108:571–81 [Google Scholar]
  151. Stanic-Vucinic D, Stojadinovic M, Atanaskovic-Markovic M, Ognjenovic J, Grönlund H. et al. 2012. Structural changes and allergenic properties of β-lactoglobulin upon exposure to high-intensity ultrasound. Mol. Nutr. Food Res. 56:1894–905 [Google Scholar]
  152. Strait RT, Morris SC, Finkelman FD. 2006. IgG-blocking antibodies inhibit IgE-mediated anaphylaxis in vivo through both antigen interception and FcγRIIb cross-linking. J. Clin. Investig. 116:833 [Google Scholar]
  153. Su M, Venkatachalam M, Liu C, Zhang Y, Roux KH, Sathe SK. 2013. A murine monoclonal antibody based enzyme-linked immunosorbent assay for almond (Prunus dulcis L.) detection. J. Agric. Food Chem. 61:10823–33 [Google Scholar]
  154. Su M, Venkatachalam M, Teuber SS, Roux KH, Sathe SK. 2004. Impact of γ-irradiation and thermal processing on the antigenicity of almond, cashew nut and walnut proteins. J. Sci. Food Agric. 84:1119–25 [Google Scholar]
  155. Sutton B, Gould H. 1993. The human IgE network. Nature 366:421–28 [Google Scholar]
  156. Taheri-Kafrani A, Gaudin J-C, Rabesona H, Nioi C, Agarwal D. et al. 2009. Effects of heating and glycation of β-lactoglobulin on its recognition by IgE of sera from cow milk allergy patients. J. Agric. Food Chem. 57:4974–82 [Google Scholar]
  157. Tiwari RS, Venkatachalam M, Sharma GM, Su M, Roux KH, Sathe SK. 2010. Effect of food matrix on amandin, almond (Prunus dulcis L.) major protein, immunorecognition and recovery. LWT Food Sci. Technol. 43:675–83 [Google Scholar]
  158. Treudler R, Simon JC. 2013. Overview of component resolved diagnostics. Curr. Allergy Asthma Rep. 13:110–17 [Google Scholar]
  159. Untersmayr E, Jensen-Jarolim E. 2008. The role of protein digestibility and antacids on food allergy outcomes. J. Allergy Clin. Immunol. 121:1301–8 [Google Scholar]
  160. Untersmayr E, Schöll I, Swoboda I, Beil WJ, Förster-Waldl E. et al. 2003. Antacid medication inhibits digestion of dietary proteins and causes food allergy: a fish allergy model in BALB/c mice. J. Allergy Clin. Immunol. 112:616–23 [Google Scholar]
  161. van de Wal Y, Kooy Y, van Veelen P, Peña S, Mearin L. et al. 1998. Cutting edge: selective deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. J. Immunol. 161:1585–88 [Google Scholar]
  162. van Gasse A, Mangodt E, Faber M, Sabato V, Bridts C, Ebo D. 2015a. Molecular allergy diagnosis: status anno 2015. Clin. Chim. Acta 444:54–61 [Google Scholar]
  163. van Gasse AL, Hagendorens MM, Sabato V, Bridts CH, De Clerck LS, Ebo DG. 2015b. IgE to poppy seed and morphine are not useful tools to diagnose opiate allergy. J. Allergy Clin. Immunol. Pract. 3:396–99 [Google Scholar]
  164. van Hengel AJ. 2007. Food allergen detection methods and the challenge to protect food-allergic consumers. Anal. Bioanal. Chem. 389:111–18 [Google Scholar]
  165. van Ree R. 2002. Carbohydrate epitopes and their relevance for the diagnosis and treatment of allergic diseases. Int. Arch. Allergy Immunol. 129:189–97 [Google Scholar]
  166. Venkatachalam M, Monaghan EK, Kshirsagar HH, Robotham JM, O'Donnell SE. et al. 2008. Effects of processing on immunoreactivity of cashew nut (Anacardium occidentale L.) seed flour proteins. J. Agric. Food Chem. 56:8998–9005 [Google Scholar]
  167. Venkatachalam M, Teuber S, Roux K, Sathe S. 2002. Effects of roasting, blanching, autoclaving, and microwave heating on antigenicity of almond (Prunus dulcis L.) proteins. J. Agric. Food Chem. 50:3544–48 [Google Scholar]
  168. Venkatachalam M, Teuber SS, Peterson WR, Roux KH, Sathe SK. 2006. Antigenic stability of pecan [Carya illinoinensis (Wangenh.) K. Koch] proteins: effects of thermal treatments and in vitro digestion. J. Agric. Food Chem. 54:1449–58 [Google Scholar]
  169. Wang Y, Deng R, Zhang G, Li Q, Yang J. et al. 2015. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test. J. Agric. Food Chem. 63:2172–78 [Google Scholar]
  170. Willison LN, Tripathi P, Sharma G, Teuber SS, Sathe SK, Roux KH. 2011. Cloning, expression and patient IgE reactivity of recombinant Pru du 6, an 11S globulin from almond. Int. Arch. Allergy Immunol. 156:267–81 [Google Scholar]
  171. Willison LN, Zhang Q, Su M, Teuber SS, Sathe SK, Roux KH. 2013. Conformational epitope mapping of Pru du 6, a major allergen from almond nut. Mol. Immunol. 55:253–63 [Google Scholar]
  172. Worm M, Hompes S, Fiedler EM, Illner AK, Zuberbier T, Vieths S. 2009. Impact of native, heat-processed and encapsulated hazelnuts on the allergic response in hazelnut-allergic patients. Clin. Exp. Allergy 39:159–66 [Google Scholar]
  173. Xia L, Willison LN, Porter L, Robotham JM, Teuber SS. et al. 2010. Mapping of a conformational epitope on the cashew allergen Ana o 2: a discontinuous large subunit epitope dependent upon homologous or heterologous small subunit association. Mol. Immunol. 47:1808–16 [Google Scholar]
  174. Xu YS, Kastner M, Harada L, Xu A, Salter J, Waserman S. 2014. Anaphylaxis-related deaths in Ontario: a retrospective review of cases from 1986 to 2011. Allergy Asthma Clin. Immunol. 10:38 [Google Scholar]
  175. Yamanishi R, Tsuji H, Bando N, Yoshimoto I, Ogawa T. 1997. Micro-assay method for evaluating the allergenicity of the major soybean allergen, Gly m Bd 30K, with mouse antiserum and RBL-2H3 cells. Biosci. Biotechnol. Biochem. 61:19–23 [Google Scholar]
  176. Yang ZH, Li C, Li YY, Wang ZH. 2013. Effects of Maillard reaction on allergenicity of buckwheat allergen Fag t 3 during thermal processing. J. Sci. Food Agric. 93:1510–15 [Google Scholar]
  177. Yao M, Xu Q, Luo Y, Shi J, Li Z. 2015. Study on reducing antigenic response and IgE-binding inhibitions of four milk proteins of Lactobacillus casei 1134. J. Sci. Food Agric. 95:1303–12 [Google Scholar]
  178. Yu H-L, Cao M-J, Cai Q-F, Weng W-Y, Su W-J, Liu G-M. 2011. Effects of different processing methods on digestibility of Scylla paramamosain allergen (tropomyosin). Food Chem. Toxicol. 49:791–98 [Google Scholar]
  179. Yu J, Hernandez M, Li H, Goktepe I, Robinette C. et al. 2015. Allergenicity of roasted peanuts treated with a non-human digestive protease. Food Res. Int. 69:341–47 [Google Scholar]
  180. Yunginger JW, Sweeney KG, Sturner WQ, Giannandrea LA, Teigland JD. et al. 1988. Fatal food-induced anaphylaxis. JAMA 260:1450–52 [Google Scholar]
  181. Zeece M, Huppertz T, Kelly A. 2008. Effect of high-pressure treatment on in-vitro digestibility of β-lactoglobulin. Innov. Food Sci. Emerg. Technol. 9:62–69 [Google Scholar]
  182. Zhang Q, Willison LN, Tripathi P, Sathe SK, Roux KH. et al. 2011. Epitope mapping of a 95 kDa antigen in complex with antibody by solution-phase amide backbone hydrogen/deuterium exchange monitored by Fourier transform ion cyclotron resonance mass spectrometry. Anal. Chem. 83:7129–36 [Google Scholar]
  183. Zhang W-J, Cai Q, Guan X, Chen Q. 2015. Detection of peanut (Arachis hypogaea) allergen by real-time PCR method with internal amplification control. Food Chem. 174:547–52 [Google Scholar]
  184. Zheng C, Wang X, Lu Y, Liu Y. 2012. Rapid detection of fish major allergen parvalbumin using superparamagnetic nanoparticle-based lateral flow immunoassay. Food Control 26:446–52 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error