1932

Abstract

Cheese production is a global biotechnological practice that is reliant on robust and technologically appropriate starter and adjunct starter cultures to acidify the milk and impart particular flavor and textural properties to specific cheeses. To this end, lactic acid bacteria, including , , and and spp., are routinely employed. However, these bacteria are susceptible to infection by (bacterio)phages. Over the past decade in particular, significant advances have been achieved in defining the receptor molecules presented by lactococcal host bacteria and in the structural analysis of corresponding phage-encoded receptor-binding proteins. These lactococcal model systems are expanding toward understanding phage-host interactions of other LAB species. Ultimately, such scientific efforts will uncover the mechanistic (dis)similarities among these phages and define how these phages recognize and infect their hosts. This review presents the current status of the LAB-phage interactome, highlighting the most recent and significant developments in this active research field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-041715-033322
2016-02-28
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/food/7/1/annurev-food-041715-033322.html?itemId=/content/journals/10.1146/annurev-food-041715-033322&mimeType=html&fmt=ahah

Literature Cited

  1. Ainsworth S, Sadovskaya I, Vinogradov E, Courtin P, Guerardel Y. et al. 2014. Differences in lactococcal cell wall polysaccharide structure are major determining factors in bacteriophage sensitivity.. mBio 5:e00880–14 [Google Scholar]
  2. Almiron-Roig E, Mulholland F, Gasson MJ, Griffin AM. 2000. The complete cps gene cluster from Streptococcus thermophilus NCFB 2393 involved in the biosynthesis of a new exopolysaccharide. Microbiology 146:Pt. 112793–802 [Google Scholar]
  3. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P. et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–12 [Google Scholar]
  4. Bebeacua C, Bron P, Lai L, Vegge CS, Brondsted L. et al. 2010. Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J. Biol. Chem. 285:39079–86 [Google Scholar]
  5. Bebeacua C, Lai L, Vegge CS, Brondsted L, van Heel M. et al. 2013a. Visualizing a complete Siphoviridae member by single-particle electron microscopy: the structure of lactococcal phage TP901-1. J. Virol. 87:1061–68 [Google Scholar]
  6. Bebeacua C, Tremblay D, Farenc C, Chapot-Chartier MP, Sadovskaya I. et al. 2013b. Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J. Virol. 87:12302–12 [Google Scholar]
  7. Beresford TP, Fitzsimons NA, Brennan NL, Cogan TM. 2001. Recent advances in cheese microbiology. Int. Dairy J. 11:259–74 [Google Scholar]
  8. Binetti A, Bailo N, Reinheimer J. 2007a. Spontaneous phage-resistant mutants of Streptococcus thermophilus: isolation and technological characteristics. Int. Dairy J. 17:343–49 [Google Scholar]
  9. Binetti A, Quiberoni A, Reinheimer J. 2002. Phage adsorption to Streptococcus thermophilus. Influence of environmental factors and characterization of cell-receptors. Food Res. Int. 35:73–83 [Google Scholar]
  10. Binetti A, Suárez V, Tailliez P, Reinheimer J. 2007b. Characterization of spontaneous phage-resistant variants of Streptococcus thermophilus by randomly amplified polymorphic DNA analysis and identification of phage-resistance mechanisms. Int. Dairy J. 17:1115–22 [Google Scholar]
  11. Binetti AG, Del Rio B, Martin MC, Alvarez MA. 2005. Detection and characterization of Streptococcus thermophilus bacteriophages by use of the antireceptor gene sequence. Appl. Environ. Microbiol. 71:6096–103 [Google Scholar]
  12. Bissonnette F, Labrie S, Deveau H, Lamoureux M, Moineau S. 2000. Characterization of mesophilic mixed starter cultures used for the manufacture of aged cheddar cheese. J. Dairy Sci. 83:620–27 [Google Scholar]
  13. Brondsted L, Ostergaard S, Pedersen M, Hammer K, Vogensen FK. 2001. Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: evolution, structure, and genome organization of lactococcal bacteriophages. Virology 283:93–109 [Google Scholar]
  14. Brussow H, Fremont M, Bruttin A, Sidoti J, Constable A, Fryder V. 1994. Detection and classification of Streptococcus thermophilus bacteriophages isolated from industrial milk fermentation. Appl. Environ. Microbiol. 60:4537–43 [Google Scholar]
  15. Burrus V, Bontemps C, Decaris B, Guedon G. 2001. Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICESt1 of Streptococcus thermophilus CNRZ368. Appl. Environ. Microbiol. 67:1522–28 [Google Scholar]
  16. Casey MG, Häni JP, Gruskovnjak J, Schaeren W, Wechsler D. 2006. Characterisation of the non-starter lactic acid bacteria (NSLAB) of Gruyère PDO cheese. Le Lait 86:407–14 [Google Scholar]
  17. Cefalo AD, Broadbent JR, Welker DL. 2011. Protein-protein interactions among the components of the biosynthetic machinery responsible for exopolysaccharide production in Streptococcus thermophilus MR-1C. J. Appl. Microbiol. 110:801–12 [Google Scholar]
  18. Chandry PS, Moore SC, Boyce JD, Davidson BE, Hillier AJ. 1997. Analysis of the DNA sequence, gene expression, origin of replication and modular structure of the Lactococcus lactis lytic bacteriophage sk1. Mol. Microbiol. 26:49–64 [Google Scholar]
  19. Chapot-Chartier MP, Vinogradov E, Sadovskaya I, Andre G, Mistou MY. et al. 2010. Cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J. Biol. Chem. 285:10464–71 [Google Scholar]
  20. Coffey A, Ross RP. 2002. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 82:303–21 [Google Scholar]
  21. Collins B, Bebeacua C, Mahony J, Blangy S, Douillard FP. et al. 2013. Structure and functional analysis of the host recognition device of lactococcal phage Tuc2009. J. Virol. 87:8429–40 [Google Scholar]
  22. Crutz-Le Coq AM, Cesselin B, Commissaire J, Anba J. 2002. Sequence analysis of the lactococcal bacteriophage bIL170: insights into structural proteins and HNH endonucleases in dairy phages. Microbiology 148:985–1001 [Google Scholar]
  23. Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C. et al. 2008. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390–400 [Google Scholar]
  24. Deveau H, Labrie SJ, Chopin MC, Moineau S. 2006. Biodiversity and classification of lactococcal phages. Appl. Environ. Microbiol. 72:4338–46 [Google Scholar]
  25. Dieterle ME, Bowman C, Batthyany C, Lanzarotti E, Turjanski A. et al. 2014. Exposing the secrets of two well-known Lactobacillus casei phages, J-1 and PL-1, by genomic and structural analysis. Appl. Environ. Microbiol. 80:7107–21 [Google Scholar]
  26. Duplessis M, Levesque CM, Moineau S. 2006. Characterization of Streptococcus thermophilus host range phage mutants. Appl. Environ. Microbiol. 72:3036–41 [Google Scholar]
  27. Duplessis M, Moineau S. 2001. Identification of a genetic determinant responsible for host specificity in Streptococcus thermophilus bacteriophages. Mol. Microbiol. 41:325–36 [Google Scholar]
  28. Dupont K, Janzen T, Vogensen FK, Josephsen J, Stuer-Lauridsen B. 2004a. Identification of Lactococcus lactis genes required for bacteriophage adsorption. Appl. Environ. Microbiol. 70:5825–32 [Google Scholar]
  29. Dupont K, Vogensen FK, Neve H, Bresciani J, Josephsen J. 2004b. Identification of the receptor-binding protein in 936-species lactococcal bacteriophages. Appl. Environ. Microbiol. 70:5818–24 [Google Scholar]
  30. Dupuis ME, Villion M, Magadan AH, Moineau S. 2013. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat. Commun. 4:2087 [Google Scholar]
  31. Farenc C, Spinelli S, Vinogradov E, Tremblay D, Blangy S. et al. 2014. Molecular insights on the recognition of a Lactococcus lactis cell wall pellicle by the phage 1358 receptor binding protein. J. Virol. 88:7005–15 [Google Scholar]
  32. Forde A, Fitzgerald GF. 1999. Analysis of exopolysaccharide (EPS) production mediated by the bacteriophage adsorption blocking plasmid, pCI658, isolated from Lactococcus lactis ssp. cremoris HO2. Int. Dairy J. 9:465–72 [Google Scholar]
  33. Geller BL, Ivey RG, Trempy JE, Hettinger-Smith B. 1993. Cloning of a chromosomal gene required for phage infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 175:5510–19 [Google Scholar]
  34. Horvath P, Romero DA, Coute-Monvoisin AC, Richards M, Deveau H. et al. 2008. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus. J. Bacteriol. 190:1401–12 [Google Scholar]
  35. Hynes AP, Villion M, Moineau S. 2014. Adaptation in bacterial CRISPR-Cas immunity can be driven by defective phages. Nat. Commun. 5:4399 [Google Scholar]
  36. Ishibashi K, Takesue S, Watanabe K, Oishi K. 1982. Use of lectins to characterize the receptor sites for bacteriophage PL-1 of Lactobacillus casei. J. Gen. Microbiol. 128:2251–59 [Google Scholar]
  37. Kot W, Hammer K, Neve H, Vogensen FK. 2013. Identification of the receptor-binding protein in lytic Leuconostoc pseudomesenteroides bacteriophages. Appl. Environ. Microbiol. 79:3311–14 [Google Scholar]
  38. Le Marrec C, van Sinderen D, Walsh L, Stanley E, Vlegels E. et al. 1997. Two groups of bacteriophages infecting Streptococcus thermophilus can be distinguished on the basis of mode of packaging and genetic determinants for major structural proteins. Appl. Environ. Microbiol. 63:3246–53 [Google Scholar]
  39. Levesque C, Duplessis M, Labonte J, Labrie S, Fremaux C. et al. 2005. Genomic organization and molecular analysis of virulent bacteriophage 2972 infecting an exopolysaccharide-producing Streptococcus thermophilus strain. Appl. Environ. Microbiol. 71:4057–68 [Google Scholar]
  40. Lubbers MW, Waterfield NR, Beresford TP, Le Page RW, Jarvis AW. 1995. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes. Appl. Environ. Microbiol. 61:4348–56 [Google Scholar]
  41. Lucchini S, Sidoti J, Brussow H. 2000. Broad-range bacteriophage resistance in Streptococcus thermophilus by insertional mutagenesis. Virology 275:267–77 [Google Scholar]
  42. Mahony J, Kot W, Murphy J, Ainsworth S, Neve H. et al. 2013. Investigation of the relationship between lactococcal host cell wall polysaccharide genotype and 936 phage receptor binding protein phylogeny. Appl. Environ. Microbiol. 79:4385–92 [Google Scholar]
  43. Mahony J, Randazzo W, Neve H, Settanni L, van Sinderen D. 2015a. Lactococcal 949 group phages recognize a carbohydrate receptor on the host cell surface. Appl. Environ. Microbiol. 81:3299–305 [Google Scholar]
  44. Mahony J, Tremblay DM, Labrie SJ, Moineau S, van Sinderen D. 2015b. Investigating the requirement for calcium during lactococcal phage infection. Int. J. Food Microbiol. 201:47–51 [Google Scholar]
  45. Mahony J, van Sinderen D. 2012. Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4:1410–24 [Google Scholar]
  46. McCabe O, Spinelli S, Farenc C, Labbe M, Tremblay D. et al. 2015. The targeted recognition of Lactococcus lactis phages to their polysaccharide receptors. Mol. Microbiol. 96:875–86 [Google Scholar]
  47. Mc Grath S, Neve H, Seegers JF, Eijlander R, Vegge CS. et al. 2006. Anatomy of a lactococcal phage tail. J. Bacteriol. 188:3972–82 [Google Scholar]
  48. Mende S, Mentner C, Thomas S, Rohm H, Jaros D. 2012. Exopolysaccharide production by three different strains of Streptococcus thermophilus and its effect on physical properties of acidified milk. Eng. Life Sci. 12:466–74 [Google Scholar]
  49. Milesi M, McSweeney P, Hynes E. 2008. Viability and contribution to proteolysis of an adjunct culture of Lactobacillus plantarum in two model cheese systems: cheddar cheese-type and soft-cheese type. J. Appl. Microbiol. 105:884–92 [Google Scholar]
  50. Mills S, Coffey A, McAuliffe OE, Meijer WC, Hafkamp B, Ross RP. 2007. Efficient method for generation of bacteriophage insensitive mutants of Streptococcus thermophilus yoghurt and mozzarella strains. J. Microbiol. Methods 70:159–64 [Google Scholar]
  51. Mills S, Griffin C, Coffey A, Meijer WC, Hafkamp B, Ross RP. 2010. CRISPR analysis of bacteriophage-insensitive mutants (BIMs) of industrial Streptococcus thermophilus–implications for starter design. J. Appl. Microbiol. 108:945–55 [Google Scholar]
  52. Mills S, Griffin C, O'Sullivan O, Coffey A, McAuliffe O. et al. 2011. A new phage on the “Mozzarella” block: Bacteriophage 5093 shares a low level of homology with other Streptococcus thermophilus phages. Int. Dairy J. 21:963–69 [Google Scholar]
  53. Monteville MR, Ardestani B, Geller BL. 1994. Lactococcal bacteriophages require a host cell wall carbohydrate and a plasma membrane protein for adsorption and ejection of DNA. Appl. Environ. Microbiol. 60:3204–11 [Google Scholar]
  54. Mooney DT, Jann M, Geller BL. 2006. Subcellular location of phage infection protein (PIP) in Lactococcus lactis. Can. J. Microbiol. 52:664–72 [Google Scholar]
  55. Mozzi F, Vaningelgem F, Hebert EM, Van der Meulen R, Foulquie Moreno MR. et al. 2006. Diversity of heteropolysaccharide-producing lactic acid bacterium strains and their biopolymers. Appl. Environ. Microbiol. 72:4431–35 [Google Scholar]
  56. Munsch-Alatossava P, Alatossava T. 2013. The extracellular phage-host interactions involved in the bacteriophage LL-H infection of Lactobacillus delbrueckii ssp. lactis ATCC 15808. Front. Microbiol. 4:408 [Google Scholar]
  57. Pluvinet A, Charron-Bourgoin F, Morel C, Decaris B. 2004. Polymorphism of eps loci in Streptococcus thermophilus: sequence replacement by putative horizontal transfer in S. thermophilus IP6757. Int. Dairy J. 14:627–34 [Google Scholar]
  58. Quiberoni A, Guglielmotti D, Binetti A, Reinheimer J. 2004. Characterization of three Lactobacillus delbrueckii subsp. bulgaricus phages and the physicochemical analysis of phage adsorption. J. Appl. Microbiol. 96:340–51 [Google Scholar]
  59. Quiberoni A, Stiefel JI, Reinheimer JA. 2000. Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J. Appl. Microbiol. 89:1059–65 [Google Scholar]
  60. Quiberoni A, Tremblay D, Ackermann HW, Moineau S, Reinheimer JA. 2006. Diversity of Streptococcus thermophilus phages in a large-production cheese factory in Argentina. J. Dairy Sci. 89:3791–99 [Google Scholar]
  61. Räisänen L, Draing C, Pfitzenmaier M, Schubert K, Jaakonsaari T. et al. 2007. Molecular interaction between lipoteichoic acids and Lactobacillus delbrueckii phages depends on d-alanyl and α-glucose substitution of poly (glycerophosphate) backbones. J. Bacteriol. 189:4135–40 [Google Scholar]
  62. Räisänen L, Schubert K, Jaakonsaari T, Alatossava T. 2004. Characterization of lipoteichoic acids as Lactobacillus delbrueckii phage receptor components. J. Bacteriol. 186:5529–32 [Google Scholar]
  63. Raiski A, Belyasova N. 2009. Biodiversity of Lactococcus lactis bacteriophages in the Republic of Belarus. Int. J. Food Microbiol. 130:1–5 [Google Scholar]
  64. Ravin V, Räisänen L, Alatossava T. 2002. A conserved C-terminal region in Gp71 of the small isometric-head phage LL-H and ORF474 of the prolate-head phage JCL1032 is implicated in specificity of adsorption of phage to its host, Lactobacillus delbrueckii. J. Bacteriol. 184:2455–59 [Google Scholar]
  65. Ricagno S, Campanacci V, Blangy S, Spinelli S, Tremblay D. et al. 2006. Crystal structure of the receptor-binding protein head domain from Lactococcus lactis phage bIL170. J. Virol. 80:9331–35 [Google Scholar]
  66. Rodriguez C, Van der Meulen R, Vaningelgem F, Font de Valdez G, Raya R. et al. 2008. Sensitivity of capsular-producing Streptococcus thermophilus strains to bacteriophage adsorption. Lett. Appl. Microbiol. 46:462–68 [Google Scholar]
  67. Schouler C, Ehrlich SD, Chopin MC. 1994. Sequence and organization of the lactococcal prolate-headed bIL67 phage genome. Microbiology 140:Pt. 113061–69 [Google Scholar]
  68. Sciara G, Bebeacua C, Bron P, Tremblay D, Ortiz-Lombardia M. et al. 2010. Structure of lactococcal phage p2 baseplate and its mechanism of activation. PNAS 107:6852–57 [Google Scholar]
  69. Sciara G, Blangy S, Siponen M, Mc Grath S, van Sinderen D. et al. 2008. A topological model of the baseplate of lactococcal phage Tuc2009. J. Biol. Chem. 283:2716–23 [Google Scholar]
  70. Seegers JF, Mc Grath S, O'Connell-Motherway M, Arendt EK, van de Guchte M. et al. 2004. Molecular and transcriptional analysis of the temperate lactococcal bacteriophage Tuc2009. Virology 329:40–52 [Google Scholar]
  71. Siponen M, Spinelli S, Blangy S, Moineau S, Cambillau C, Campanacci V. 2009. Crystal structure of a chimeric receptor binding protein constructed from two lactococcal phages. J. Bacteriol. 191:3220–25 [Google Scholar]
  72. Solow BT, Somkuti GA. 2001. Molecular properties of Streptococcus thermophilus plasmid pER35 encoding a restriction modification system. Curr. Microbiol. 42:122–28 [Google Scholar]
  73. Spinelli S, Bebeacua C, Orlov I, Tremblay D, Klaholz BP. et al. 2014. Cryo-electron microscopy structure of lactococcal siphophage 1358 virion. J. Virol. 88:8900–10 [Google Scholar]
  74. Spinelli S, Campanacci V, Blangy S, Moineau S, Tegoni M, Cambillau C. 2006a. Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J. Biol. Chem. 281:14256–62 [Google Scholar]
  75. Spinelli S, Desmyter A, Verrips CT, de Haard HJ, Moineau S, Cambillau C. 2006b. Lactococcal bacteriophage p2 receptor-binding protein structure suggests a common ancestor gene with bacterial and mammalian viruses. Nat. Struct. Mol. Biol. 13:85–89 [Google Scholar]
  76. Stingele F, Neeser JR, Mollet B. 1996. Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178:1680–90 [Google Scholar]
  77. Stockdale SR, Collins B, Spinelli S, Douillard FP, Mahony J. et al. 2015. Structure and assembly of TP901-1 virion unveiled by mutagenesis. PLOS ONE 10:e0131676 [Google Scholar]
  78. Sun CL, Barrangou R, Thomas BC, Horvath P, Fremaux C, Banfield JF. 2013. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 15:463–70 [Google Scholar]
  79. Szczepanska AK, Hejnowicz MS, Kolakowski P, Bardowski J. 2007. Biodiversity of Lactococcus lactis bacteriophages in Polish dairy environment. Acta Biochim. Pol. 54:151–58 [Google Scholar]
  80. Tremblay DM, Moineau S. 1999. Complete genomic sequence of the lytic bacteriophage DT1 of Streptococcus thermophilus. Virology 255:63–76 [Google Scholar]
  81. Tremblay DM, Tegoni M, Spinelli S, Campanacci V, Blangy S. et al. 2006. Receptor-binding protein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J. Bacteriol. 188:2400–10 [Google Scholar]
  82. Valyasevi R, Sandine WE, Geller BL. 1991. A membrane protein is required for bacteriophage c2 infection of Lactococcus lactis subsp. lactis C2. J. Bacteriol. 173:6095–100 [Google Scholar]
  83. Veesler D, Dreier B, Blangy S, Lichiere J, Tremblay D. et al. 2009. Crystal structure and function of a DARPin neutralizing inhibitor of lactococcal phage TP901-1: comparison of DARPin and camelid VHH binding mode. J. Biol. Chem. 284:30718–26 [Google Scholar]
  84. Veesler D, Spinelli S, Mahony J, Lichiere J, Blangy S. et al. 2012. Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. PNAS 109:8954–58 [Google Scholar]
  85. Vegge CS, Vogensen FK, Mc Grath S, Neve H, van Sinderen D, Brondsted L. 2006. Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. J. Bacteriol. 188:55–63 [Google Scholar]
  86. Ventura M, Callegari M, Morelli L. 1999. Surface layer variations affecting phage adsorption on seven Lactobacillus helveticus strains. Ann. Microbiol. Enzimol. 49:45–54 [Google Scholar]
  87. Viscardi M, Capparelli R, Di Matteo R, Carminati D, Giraffa G, Iannelli D. 2003a. Selection of bacteriophage-resistant mutants of Streptococcus thermophilus. J. Microbiol. Methods 55:109–19 [Google Scholar]
  88. Viscardi M, Capparelli R, Iannelli D. 2003b. Rapid selection of phage-resistant mutants in Streptococcus thermophilus by immunoselection and cell sorting. Int. J. Food Microbiol. 89:223–31 [Google Scholar]
  89. Wang H, Cui L, Chen W, Zhang H. 2011. An application in Gouda cheese manufacture for a strain of Lactobacillus helveticus ND01. Int. J. Dairy Technol. 64:386–93 [Google Scholar]
  90. Wolin M, Douglas LJ. 1971. Cell wall polymers and phage lysis of Lactobacillus plantarum. Biochemistry 10:1551–55 [Google Scholar]
  91. Yokokura T. 1971. Phage receptor material in Lactobacillus casei cell wall. Jpn. J. Microbiol. 15:457–63 [Google Scholar]
  92. Zago M, Suarez V, Reinheimer J, Carminati D, Giraffa G. 2007. Spread and variability of the integrase gene in Lactobacillus delbrueckii ssp. lactis strains and phages isolated from whey starter cultures. J. Appl. Microbiol. 102:344–51 [Google Scholar]
  93. Zinno P, Janzen T, Bennedsen M, Ercolini D, Mauriello G. 2010. Characterization of Streptococcus thermophilus lytic bacteriophages from mozzarella cheese plants. Int. J. Food Microbiol. 138:137–44 [Google Scholar]
/content/journals/10.1146/annurev-food-041715-033322
Loading
/content/journals/10.1146/annurev-food-041715-033322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error