1932

Abstract

Nanotechnology is an emerging and rapidly developing toolbox that has novel and unique applications to food science and agriculture. Fast and impressive developments in nanotechnology for food and agriculture have led to new experimental prototype technologies and products. Developing various types of nanodelivery systems, detection tools, nanoscale modifications of bulk or surface properties, fabrication of wide-range bionanosensors, and biodegradable nanoplatforms can potentially improve consumer health and safety, product shelf life and stability, bioavailability, environmental sustainability, efficiency of processing and packaging, and real-time monitoring. Some recently developed nanotechnology techniques and potential product applications of nanotechnology are summarized in this review. Exposure to nanomaterials may be harmful to the consumer and the environment and might increase the potential of risk. For this reason, evaluation of the potential risks resulting from the interaction of nanomaterials with biological systems, humans, and the environment is also reviewed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-041715-033338
2017-02-28
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/food/8/1/annurev-food-041715-033338.html?itemId=/content/journals/10.1146/annurev-food-041715-033338&mimeType=html&fmt=ahah

Literature Cited

  1. Aditya NP, Macedo AS, Doktorovova S, Souto EB, Kim S. et al. 2014. Development and evaluation of lipid nanocarriers for quercetin delivery: a comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT Food Sci. Technol. 59:1115–21 [Google Scholar]
  2. Ahmed K, Li Y, McClements DJ, Xiao H. 2012. Nanoemulsion and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem 132:2799–807 [Google Scholar]
  3. Ahmed M, AlSalhi MS, Siddiqui MKJ. 2010. Silver nanoparticle applications and human health. Clin. Chim. Acta 411:23–241841–48 [Google Scholar]
  4. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N. et al. 2013. Liposome: classification preparation and applications. Nanoscale Res. Lett. 8:11–8 [Google Scholar]
  5. Alishahi A, Mirvaghefi A, Tehrani MR, Farahmand H, Koshio S. et al. 2011. Chitosan nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr. Polym. 86:1142–46 [Google Scholar]
  6. Alivisatos AP. 1996. Semiconductor clusters, nanocrystals and quantum dots. Science 271:5251933–37 [Google Scholar]
  7. Amenta V, Aschberger K, Arena M, Bouwmeester H, Botelho Moniz F. et al. 2015. Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Toxicol. Pharmacol. 73:1463–76 [Google Scholar]
  8. Ansari S, Bozkurt F, Yazar G, Ryan V, Bhunia A, Kokini JL. 2015. Probing the distribution of gliadin proteins in dough and baked bread using conjugated quantum dots as a labeling tool. J. Cereal Sci. 63:41–48 [Google Scholar]
  9. Arroyo-Maya IJ, Hernández-Sánchez H, Jiménez-Cruz E, Camarillo-Cadena M, Hernández-Arana A. 2014. α-Lactalbumin nanoparticles prepared by desolvation and cross-linking: structure and stability of the assembled protein. Biophys. Chem. 193–94:27–34 [Google Scholar]
  10. Arroyo-Maya IJ, Rodiles-López JO, Cornejo-Mazón M, Gutiérrez-López GF, Hernández-Arana A. et al. 2012. Effect of different treatments on the ability of α-lactalbumin to form nanoparticles. J. Dairy Sci. 95:116204–14 [Google Scholar]
  11. Belhaj N, Dupuis F, Arab-Tehrany E, Denis FM, Paris C. et al. 2012. Formulation characterization and pharmacokinetic studies of coenzyme Q10 PUFA's nanoemulsions. Eur. J. Pharm. Sci. 47:2305–12 [Google Scholar]
  12. Bernhardt ES, Colman BP, Hochella MF Jr, Cardinale BJ, Nisbet RM. et al. 2010. An ecological perspective on nanomaterial impacts in the environment. J. Environ. Q. 39:61954–65 [Google Scholar]
  13. Berry V. 2013. Impermeability of graphene and its applications. Carbon 621–10 [Google Scholar]
  14. Bertrand N, Leroux JC. 2012. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J. Control. Rel. 161:2152–63 [Google Scholar]
  15. Bi L, Yang L, Narsimhan G, Bhunia AK, Yao Y. 2011. Designing carbohydrate nanoparticles for prolonged efficacy of antimicrobial peptide. J. Control. Release 150:2150–56 [Google Scholar]
  16. Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL. 2016. Applications of quantum dots in food science and biology. Trends Food Sci. Technol. 53:75–89 [Google Scholar]
  17. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS. et al. 2009. Review of health safety aspects of nanotechnologies in food production. Toxicol. Pharmacol. 53:152–62 [Google Scholar]
  18. Bozkurt F, Ansari S, Yau P, Yazar G, Ryan V, Kokini J. 2014. Distribution and location of ethanol soluble proteins (Osborne gliadin) as a function of mixing time in strong wheat flour dough using quantum dots as a labeling tool with confocal laser scanning microscopy. Food Res. Int. 66:279–88 [Google Scholar]
  19. Bradley EL, Castle L, Chaudhry Q. 2011. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci. Technol. 22:11604–10 [Google Scholar]
  20. Cao M, Li Z, Wang J, Ge W, Yue T. et al. 2012. Food related applications of magnetic iron oxide nanoparticles: enzyme immobilization protein purification and food analysis. Trends Food Sci. Technol. 27:147–56 [Google Scholar]
  21. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A. et al. 2008. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. Part A 25:3241–58 [Google Scholar]
  22. Chen LY, Remondetto GE, Subirade M. 2006. Food protein–based materials as nutraceutical delivery systems. Trends Food Sci. Technol. 17:5272–83 [Google Scholar]
  23. Chen X, Mao SS. 2007. Titanium dioxide nanomaterials: synthesis properties modifications and applications. Chem. Rev. 107:72891–959 [Google Scholar]
  24. Chen Z, Wang Y, Zhuo L, Chen S, Zhao L. et al. 2015. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicol. Lett. 239:2123–30 [Google Scholar]
  25. Cushen M, Kerry J, Morris M, Cruz-Romero M, Cummins E. 2012. Nanotechnologies in the food industry: recent developments, risks and regulation. Trends Food Sci. Technol. 24:130–46 [Google Scholar]
  26. Dabbousi BO, Rodriguez-Viejo J, Mikulec FV, Heine JR, Mattoussi H. et al. 1997. (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101:469463–75 [Google Scholar]
  27. De Jong WH, Borm PJA. 2008. Drug delivery and nanoparticles: applications and hazards. Int. J. Nanomed. 3:2133–49 [Google Scholar]
  28. De Kruif CG, Weinbreck F, De Vries R. 2004. Complex coacervation of proteins and anionic polysaccharides. Curr. Opin. Colloid Interface Sci. 9:5340–49 [Google Scholar]
  29. De Moura MR, Mattoso LHC, Zucolotto V. 2012. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. J. Food Eng. 109:3520–24 [Google Scholar]
  30. Dekkers S, Bouwmeester H, Bos PMJ, Peters RJB, Rietveld AG, Oomen AG. 2013. Knowledge gaps in risk assessment of nanosilica in food: evaluation of the dissolution and toxicity of different forms of silica. Nanotoxicology 7:4367–77 [Google Scholar]
  31. Delfiya DSA, Thangavel K, Natarajan N, Amirtham D. 2016. Preparation of curcumin-loaded egg albumin nanoparticles using ethanol as desolvation agent. Asian J. Chem. 28:71536–44 [Google Scholar]
  32. Dickinson E. 2003. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll 17:125–39 [Google Scholar]
  33. Duncan TV. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials antimicrobials and sensors. J. Colloid Interface Sci. 363:11–24 [Google Scholar]
  34. Duncan TV. 2012. Using nanotechnology to make foods safer: nanoparticles as sensors for small molecules, protein toxins, and foodborne pathogens. Abstr. Papers Am. Chem. Soc. 244:1 [Google Scholar]
  35. EFSA. 2011. Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: guidance for risk assessment of engineered nanomaterials. EFSA J 9:52140 [Google Scholar]
  36. El Kinawy OS, Petersen S, Ulrich J. 2012. Technological aspects of nanoemulsion formation of low-fat foods enriched with vitamin E by high-pressure homogenization. Chem. Eng. Technol. 35:5937–40 [Google Scholar]
  37. Elzoghby AO, Samy WM, Elgindy NA. 2012. Protein-based nanocarriers as promising drug and gene delivery systems. J. Control. Release 161:138–49 [Google Scholar]
  38. Etorki AM, Gao M, Sadeghi R, Maldonado-Mejia LF, Kokini JL. 2016. Effects of desolvating agent types, ratios, and temperature on size and nanostructure of nanoparticles from α-lactalbumin and ovalbumin. J. Food Sci. 81:10E2511–20 [Google Scholar]
  39. Eur. Comm. 2011. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Union. https://ec.europa.eu/research/industrial_technologies/pdf/policy/commission-recommendation-on-the-definition-of-nanomater-18102011_en.pdf [Google Scholar]
  40. Eur. Comm. 2013. Nanotechnology: The Invisible Giant Tackling Europe's Future Challenges Brussels, Belg.: Gen. Dir. Res. Innov https://ec.europa.eu/research/industrial_technologies/pdf/nanotechnology_en.pdf [Google Scholar]
  41. Fage SW, Muris J, Jakobsen SS, Thyssen JP. 2016. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermat 74:6323–45 [Google Scholar]
  42. FDA. 2013a. 2013 Nanotechnology Regulatory Science Research Plan Washington, DC: US Food Drug Admin http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm273325.htm [Google Scholar]
  43. FDA. 2013b. FDA's Approach to Regulation of Nanotechnology Products Washington, DC: US Food Drug Admin http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htm [Google Scholar]
  44. FDA. 2015. FDA Issues Final Guidance on the Use of Nanotechnology in Food for Animals 2015 Washington, DC: US Food Drug Admin http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm401782.htm [Google Scholar]
  45. FDA. 2014. FDA Issues Three Final Guidances Related to Nanotechnology Applications in Regulated Products Including Cosmetics and Food Substances 2014. Washington, DC: US Food Drug Admin http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301093.htm
  46. Ferin J, Oberdorster G, Penney DP. 1992. Pulmonary retention of ultrafine and fine particles in rats. Am. J. Respir. Cell Mol. Biol. 6:5535–42 [Google Scholar]
  47. Freeman R, Willner I. 2012. Optical molecular sensing with semiconductor quantum dots (QDs). Chem. Soc. Rev. 41:104067–85 [Google Scholar]
  48. Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC. et al. 2012. Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal. Chim. Acta 735:9–22 [Google Scholar]
  49. García-Hernández DA, Iglesias-Groth S, Acosta-Pulido JA, Manchado A, García-Lario P. et al. 2011. The formation of fullerenes: clues from new c60, c70, and (possible) planar c24 detections in Magellanic cloud planetary nebulae. Astrophys. J. Lett. 737:2L30 [Google Scholar]
  50. Gezer PG, Brodsky S, Hsiao A, Liu GL, Kokini JL. 2015. Modification of the hydrophilic/hydrophobic characteristic of zein film surfaces by contact with oxygen plasma treated PDMS and oleic acid content. Colloids Surf. B 135:433–440 [Google Scholar]
  51. Gezer PG, Hsiao A, Kokini JL, Liu GL. 2016a. Simultaneous transfer of noble metals and three-dimensional micro- and nanopatterns onto zein for fabrication of nanophotonic platforms. J. Mater. Sci. 51:83806–16 [Google Scholar]
  52. Gezer PG, Liu GL, Kokini JL. 2016b. Development of a biodegradable sensor platform from gold coated zein nanophotonic films to detect peanut allergen Ara h1 using surface enhanced Raman spectroscopy. Talanta 150:224–32 [Google Scholar]
  53. Gezer PG, Liu GL, Kokini JL. 2016c. Detection of acrylamide using a biodegradable zein-based sensor with surface enhanced Raman spectroscopy. Food Control 68:7–13 [Google Scholar]
  54. Ghormade V, Deshpande MV, Paknikar KM. 2011. Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol. Adv. 29:6792–803 [Google Scholar]
  55. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. 2004. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem. 15:4897–900 [Google Scholar]
  56. Gottschalk F, Nowack B. 2011. The release of engineered nanomaterials to the environment. J. Environ. Monit. 13:51145–55 [Google Scholar]
  57. Gülseren T, Fang Y, Corredig M. 2012. Whey protein nanoparticles prepared with desolvation with ethanol: characterization thermal stability and interfacial behavior. Food Hydrocoll 29:2258–64 [Google Scholar]
  58. Haghighi M, Texeira da Silva JA. 2014. The effect of carbon nanotubes on the seed germination and seedling growth of four vegetable species. J. Crop Sci. Biotechnol. 17:201–8 [Google Scholar]
  59. Hardman RA. 2006. Toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ. Health Perspect. 114:2165–72 [Google Scholar]
  60. He L, Deen BD, Pagel AH, Diez-Gonzalez F, Labuza TP. 2013. Concentration detection and discrimination of Bacillus anthracis spores in orange juice using aptamer based surface enhanced Raman spectroscopy. Analyst 138:61657–59 [Google Scholar]
  61. He L, Lamont E, Veeregowda B, Sreevatsan S, Haynes CL, Diez-Gonzalez F, Labuza TP. 2001. Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chem. Sci. 2:81579–82 [Google Scholar]
  62. He L, Lin M, Li H, Kim NJ. 2010. Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. J. Raman Spectrosc. 41:7739–44 [Google Scholar]
  63. He L, Rodda T, Haynes CL, Deschaines T, Strother T. et al. 2011. Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Anal. Chem. 83:51510–13 [Google Scholar]
  64. Hong Y, Huh YM, Yoon DS, Yang J. 2012. Nanobiosensors based on localized surface plasmon resonance for biomarker detection. J. Nanomater. 2012:111 [Google Scholar]
  65. Hosseini SMH, Emam-Djomeh Z, Razavi SH, Moosavi-Movahedi AA, Saboury AA. et al. 2013. Complex coacervation of β-lactoglobulin–κ-carrageenan aqueous mixtures as affected by polysaccharide sonication. Food Chem 141:1215–22 [Google Scholar]
  66. Hou R, Pang S, He L. 2015. In situ SERS detection of multi-class insecticides on plant surfaces. Anal. Methods 7:156325–30 [Google Scholar]
  67. Jahanshahi M, Babaei Z. 2008. Protein nanoparticle: a unique system as drug delivery vehicles. Afr. J. Biotechnol. 7:254926–34 [Google Scholar]
  68. Janes KA, Calvo P, Alonso MJ. 2001. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv. Drug Deliv. Rev. 47:183–97 [Google Scholar]
  69. JECFA. 2001. Gold (Metallic). Summary of Evaluations Performed by the Joint FAO/WHO Expert Committee on Food Additives. Rome: FAO http://www.inchem.org/documents/jecfa/jeceval/jec_937.htm [Google Scholar]
  70. Jiang X, Zhu M, Narain R. 2014. Quantum dots bioconjugates. Chemistry of Bioconjugates: Synthesis, Characterization, and Biomedical Applications R Narain 315–26 Hoboken, NJ: Wiley & Sons [Google Scholar]
  71. Jin T, Sun D, Su JY, Zhang H, Sue HJ. 2009. Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J. Food Sci. 74:1M46–52 [Google Scholar]
  72. Jo Y, Kwon Y. 2014. Characterization of β-carotene nanoemulsions prepared by microfluidization technique. Food Sci. Biotechnol. 23:1107–13 [Google Scholar]
  73. Junghanns JUA, Müller RH. 2008. Nanocrystal technology drug delivery and clinical applications. Int. J. Nanomed. 3:3295 [Google Scholar]
  74. Karimi M, Chaudhury I, Jianjun C, Safari M, Sadeghi R. et al. 2014. Immobilization of endo-inulinase on non-porous amino functionalized silica nanoparticles. J. Mol. Catal. B 104:48–55 [Google Scholar]
  75. Kedmi R, Ben-Arie N, Peer D. 2010. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials 31:266867–75 [Google Scholar]
  76. Kim H, Abdala AA, MacOsko CW. 2010. Graphene/polymer nanocomposites. Macromolecules 43:166515–30 [Google Scholar]
  77. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB. et al. 2009. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J. Microbiol. Biotechnol. 19:8760–64 [Google Scholar]
  78. Kim S, Sessa DJ, Lawton JW. 2004. Characterization of zein modified with a mild cross-linking agent. Ind. Crops Prod. 20:3291–300 [Google Scholar]
  79. Kim T-H, Kim M, Park HS, Shin US, Gong MS, Kim HW. 2012. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. Part A 100A:41033–43 [Google Scholar]
  80. Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD. et al. 2008. Nanomaterials in the environment: behavior fate bioavailability and effects. Environ. Toxicol. Chem. 27:91825–51 [Google Scholar]
  81. Kolluru LP, Rizvi SAA, D'Souza M, D'Souza MJ. 2013. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J. Drug Target. 21:177–86 [Google Scholar]
  82. Kuempel ED, Geraci CL, Schulte PA. 2012. Risk assessment and risk management of nanomaterials in the workplace: translating research to practice. Ann. Occup. Hyg. 56:5491–505 [Google Scholar]
  83. Lai H, Padua GW. 1997. Properties and microstructure of plasticized zein films. Cereal Chem 74:6771–75 [Google Scholar]
  84. Lane KE, Li W, Smith C, Derbyshire E. 2014. The bioavailability of an omega-3-rich algal oil is improved by nanoemulsion technology using yogurt as a food vehicle. J. Food Sci. Technol. 49:51264–71 [Google Scholar]
  85. Le Corre D, Bras J, Dufresne A. 2010. Starch nanoparticles: a review. Biomacromolecules 11:51139–53 [Google Scholar]
  86. Lecoanet HF, Bottero JY, Wiesner MR. 2004. Laboratory assessment of the mobility of nanomaterials in porous media. Environ. Sci. Technol. 38:195164–69 [Google Scholar]
  87. LeCorre D, Hohenthal C, Dufresne A, Bras J. 2013. Comparative sustainability assessment of starch nanocrystals. J. Polym. Environ. 21:171–80 [Google Scholar]
  88. Lee C, Wei X, Kysar JW, Hone J. 2008. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:5887385–88 [Google Scholar]
  89. Li Y, Liu X, Lin Z. 2012. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs. Food Chem 132:31549–54 [Google Scholar]
  90. Li Y, Zhao Q, Huang Q. 2014. Understanding complex coacervation in serum albumin and pectin mixtures using a combination of the Boltzmann equation and Monte Carlo simulation. Carbohydr. Polym. 101:1544–53 [Google Scholar]
  91. Liga MV, Bryant EL, Colvin VL, Li Q. 2011. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Res 45:2535–44 [Google Scholar]
  92. Lin M, He L, Awika J, Yang L, Ledoux DR. et al. 2008. Detection of melamine in gluten chicken feed and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci. 73:8T129–34 [Google Scholar]
  93. Liu N, Park HJ. 2010. Factors effect on the loading efficiency of vitamin C loaded chitosan-coated nanoliposomes. Colloids Surf. B 76:116–19 [Google Scholar]
  94. Liu Y, He L, Mustapha A, Li H, Hu ZQ, Lin M. 2009. Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157:H7. J. Appl. Microbiol. 107:41193–201 [Google Scholar]
  95. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. 2008. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev. 60:151650–62 [Google Scholar]
  96. Livney YD. 2015. Nanostructured delivery systems in food: Latest developments and potential future directions. Curr. Opin. Food Sci. 3:125–35 [Google Scholar]
  97. Long TC, Tajuba J, Sama P, Saleh N, Swartz C. et al. 2007. Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environ. Health Perspect. 115:111631–37 [Google Scholar]
  98. Luecha J, Sozer N, Kokini JL. 2010. Synthesis and properties of corn zein/montmorillonite nanocomposite films. J. Mater. Sci. 45:133529–37 [Google Scholar]
  99. Maisanaba S, Pichardo S, Jordá-Beneyto M, Aucejo S, Cameán AM, Jos A. 2014. Cytotoxicity and mutagenicity studies on migration extracts from nanocomposites with potential use in food packaging. Food Chem. Toxicol. 66:366–72 [Google Scholar]
  100. Maynard AD. 2011. Don't define nanomaterials. Nature 475:735431–31 [Google Scholar]
  101. McClements DJ. 2011. Edible nanoemulsions: fabrication properties and functional performance. Soft Matter 7:62297–316 [Google Scholar]
  102. McClements DJ. 2013. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals. Ther. Deliv. 4:7841–57 [Google Scholar]
  103. McClements DJ, Rao J. 2011. Food-grade nanoemulsions: formulation fabrication properties performance biological fate and potential toxicity. Crit. Rev. Food Sci. Nutr. 51:4285–330 [Google Scholar]
  104. McShane H, Sarrazin M, Whalen JK, Hendershot WH, Sunahara GI. 2012. Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil. Environ. Toxicol. Chem. 31:1184–93 [Google Scholar]
  105. Mehnert W, Mäder K. 2001. Solid lipid nanoparticles: production characterization and applications. Adv. Drug Deliv. Rev. 47:2–3165–96 [Google Scholar]
  106. Miralles P, Church TL, Harris AT. 2012. Toxicity uptake and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46:179224–39 [Google Scholar]
  107. Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. 2011. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int. J. Pharm. 420:1141–46 [Google Scholar]
  108. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. 2011. Cellulose nanomaterials review: structure properties and nanocomposites. Chem. Soc. Rev. 40:73941–94 [Google Scholar]
  109. Moraru CI, Panchapakesan CP, Huang Q, Takhistov P, Liu S, Kokini JL. 2003. Nanotechnology: a new frontier in food science. Food Technol 57:1224–29 [Google Scholar]
  110. Morris GA, Kök MS, Harding SE, Adams GG. 2010. Polysaccharide drug delivery systems based on pectin and chitosan. Biotechnol. Genet. Eng. Rev. 27:257–83 [Google Scholar]
  111. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC. 2016. Carbon nanomaterials in agriculture: a critical review. Front. Plant Sci. 7:172 [Google Scholar]
  112. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM. et al. 2008. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc. Chem. Res. 41:121721–30 [Google Scholar]
  113. Nagpal K, Singh SK, Mishra DN. 2010. Chitosan nanoparticles: a promising system in novel drug delivery. Chem. Pharm. Bull. 58:111423–30 [Google Scholar]
  114. Neethirajan S, Jayas DS. 2011. Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4:139–47 [Google Scholar]
  115. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H. et al. 2006. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control. Release 114:3343–47 [Google Scholar]
  116. Nirmal M, Brus L. 1999. Luminescence photophysics in semiconductor nanocrystals. Acc. Chem. Res. 32:5407–14 [Google Scholar]
  117. NNI. 2011. Environmental, Health, and Safety Research Strategy Washington, DC: NNI. https://www.nano.gov/sites/default/files/pub_resource/nni_2011_ehs_research_strategy.pdf [Google Scholar]
  118. OECD. 2013. Regulatory Frameworks for Nanotechnology in Foods and Medical Products. Summary Results of a Survey Activity. Paris: OECD http://search.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=DSTI/STP/NANO(2012)22/FINAL&docLanguage=En [Google Scholar]
  119. Oleyaei SA, Zahedi Y, Ghanbarzadeh B, Moayedi AA. 2016. Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. Int. J. Biol. Macromol. 89:256–64 [Google Scholar]
  120. Oppenheim RC, Stewart NF. 1979. The manufacture and tumour cell uptake of nanoparticles labelled with fluorescein isothiocyanate. Drug Dev. Ind. Pharm. 5:6563–71 [Google Scholar]
  121. Oppenheim RC, Marty JJ, Speiser P. 1978. Injectable compositions, nanoparticles useful therein, and process of manufacturing same. US Patent No. 4107288
  122. Paliwal R, Palakurthi S. 2014. Zein in controlled drug delivery and tissue engineering. J. Control. Release 189:108–22 [Google Scholar]
  123. Pan Y, Neuss S, Leifert A, Fischler M, Wen F. et al. 2007. Size-dependent cytotoxicity of gold nanoparticles. Small 3:111941–49 [Google Scholar]
  124. Park HJ, Kim SH, Kim HJ, Choi SH. 2006. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol. J. 22:3295–302 [Google Scholar]
  125. Peñalva R, Esparza I, González-Navarro CJ, Quincoces G, Peñuelas I, Irache JM. 2015. Zein nanoparticles for oral folic acid delivery. J. Drug Deliv. Sci. Technol. 30:450–57 [Google Scholar]
  126. Periasamy VS, Athinarayanan J, Al-Hadi AM, Juhaimi FA, Alshatwi AA. 2015. Effects of titanium dioxide nanoparticles isolated from confectionery products on the metabolic stress pathway in human lung fibroblast cells. Arch. Environ. Contam. Toxicol. 68:3521–33 [Google Scholar]
  127. Peters R, Brandhoff P, Weigel S, Marvin H, Bouwmeester H. et al. 2014. External scientific report: inventory of nanotechnology applications in the agricultural, feed and food sector. EFSA Support. Publ. 11:7621E [Google Scholar]
  128. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH. et al. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3:7423–28 [Google Scholar]
  129. Qu X, Komatsu T. 2010. Molecular capture in protein nanotubes. ACS Nano 4:1563–73 [Google Scholar]
  130. Rai MK, Deshmukh SD, Ingle AP, Gade AK. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 112:5841–52 [Google Scholar]
  131. Rajendra R, Balakumar C, Ahammed HAM, Jayakumar S, Vaideki K, Rajesh E. 2010. Use of zinc oxide nanoparticles for production of antimicrobial textiles. Int. J. Eng. Sci. Technol. 2:1202–8 [Google Scholar]
  132. Ramalingam P, Yoo SW, Ko YT. 2016. Nanodelivery systems based on mucoadhesive polymer coated solid lipid nanoparticles to improve the oral intake of food curcumin. Food Res. Int. 84:113–19 [Google Scholar]
  133. Rao J, McClements DJ. 2013. Optimization of lipid nanoparticle formation for beverage applications: influence of oil type cosolvents and cosurfactants on nanoemulsion properties. J. Food Eng. 118:2198–204 [Google Scholar]
  134. Ravanfar R, Tamaddon AM, Niakousari M, Moein MR. 2016. Preservation of anthocyanins in solid lipid nanoparticles: optimization of a microemulsion dilution method using the Placket-Burman and Box-Behnken designs. Food Chem 199:573–80 [Google Scholar]
  135. Ray SS, Bousmina M. 2005. Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50:8962–1079 [Google Scholar]
  136. Rhim JW, Wang LF, Hong SI. 2013. Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll 33:2327–35 [Google Scholar]
  137. Roco MC. 2011. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years. J. Nanopart. Res. 13:2427–45 [Google Scholar]
  138. Roduner E. 2006. Size matters: why nanomaterials are different. Chem. Soc. Rev. 35:7583–92 [Google Scholar]
  139. Sadeghi R, Kalbasi A, Emam-jomeh Z, Razavi SH, Kokini JL, Moosavi-Movahedi AA. 2013. Biocompatible nanotubes as potential carrier for curcumin as a model bioactive compound. J. Nanopart. Res. 15:111931 [Google Scholar]
  140. Sadeghi R, Moosavi-Movahedi AA, Emam-jomeh Z, Kalbasi A, Razavi SH. et al. 2014. The effect of different desolvating agents on BSA nanoparticle properties and encapsulation of curcumin. J. Nanopart. Res. 16:92565 [Google Scholar]
  141. Savolainen K, Alenius H, Norppa H, Pylkkänen L, Tuomi T, Kasper G. 2010. Risk assessment of engineered nanomaterials and nanotechnologies: a review. Toxicology 269:2–392–104 [Google Scholar]
  142. Sayes CM, Wahi R, Kurian PA, Liu Y, West JL. et al. 2006. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol. Sci. 92:1174–85 [Google Scholar]
  143. Sci. Comm. Emerg. New. Identif. Health Risks (SCENIHR). 2007. Opinion on the Appropriateness of the Risk Assessment Methodology in Accordance with the Technical Guidance Documents for New and Existing Substances for Assessing the Risks of Nanomaterials Brussels: Health Food Saf. [Google Scholar]
  144. Schmitt C, Sanchez C, Thomas F, Hardy J. 1999. Complex coacervation between β-lactoglobulin and acacia gum in aqueous medium. Food Hydrocoll 13:6483–96 [Google Scholar]
  145. Sharma AK, Schmidt B, Frandsen H, Jacobsen NR, Larsen EH, Binderup ML. 2010. Genotoxicity of unmodified and organo-modified montmorillonite. Toxicol. Environ. Mutagen. 700:1–218–25 [Google Scholar]
  146. Sharma V, Anderson D, Dhawan A. 2012b. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:8852–70 [Google Scholar]
  147. Sharma V, Singh P, Pandey AK, Dhawan A. 2012a. Induction of oxidative stress DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Toxicol. Environ. Mutagen. 745:1–284–91 [Google Scholar]
  148. Shegokar R, Müller RH. 2010. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm. 399:1–2129–39 [Google Scholar]
  149. Shi LE, Li ZH, Zheng W, Zhao YF, Jin YF, Tang ZX. 2014. Synthesis, antibacterial activity, antibacterial mechanism and food applications of ZnO nanoparticles: a review. Food Addit. Contam. Part A 31:2173–86 [Google Scholar]
  150. Shin SW, Song IH, Um SH. 2015. Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5:31351–65 [Google Scholar]
  151. Shvedova AA, Kagan VE, Fadeel B. 2010. Close encounters of the small kind: adverse effects of man-made materials interfacing with the nano-cosmos of biological systems. Annu. Rev. Pharmacol. Toxicol. 50:63–88 [Google Scholar]
  152. Siegrist M, Wiek A, Helland A, Kastenholz H. 2007. Risks and nanotechnology: the public is more concerned than experts and industry. Nat. Nanotechnol. 2:267 [Google Scholar]
  153. Sozer N, Kokini JL. 2009. Nanotechnology and its applications in the food sector. Trends Biotechnol 27:282–89 [Google Scholar]
  154. Sozer N, Kokini JL. 2014. Use of quantum nanodot crystals as imaging probes for cereal proteins. Food Res. Int. 57:142–51 [Google Scholar]
  155. Syama S, Mohanan PV. 2016. Safety and biocompatibility of graphene: a new generation nanomaterial for biomedical application. Int. J. Biol. Macromol. 86:546–55 [Google Scholar]
  156. Tan C, Xia S, Xue J, Xie J, Feng B, Zhang X. 2013. Liposomes as vehicles for lutein: preparation stability liposomal membrane dynamics and structure. J. Agric. Food Chem. 61:348175–84 [Google Scholar]
  157. Tang L, Cheng J. 2013. Nonporous silica nanoparticles for nanomedicine application. Nano Today 8:3290–312 [Google Scholar]
  158. Tankhiwale R, Bajpai SK. 2012. Preparation characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloids Surf. B 90:116–20 [Google Scholar]
  159. Teng Z, Luo Y, Wang Q. 2012. Nanoparticles synthesized from soy protein: preparation characterization and application for nutraceutical encapsulation. J. Agric. Food Chem. 60:102712–20 [Google Scholar]
  160. Triplett MD II, Rathman JF. 2009. Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. J. Nanopart. Res. 11:3601–14 [Google Scholar]
  161. Tully E, Hearty S, Leonard P, O'Kennedy R. 2006. The development of rapid fluorescence-based immunoassays using quantum dot–labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int. J. Biol. Macromol. 39:1–3127–34 [Google Scholar]
  162. Turgeon SL, Schmitt C, Sanchez C. 2007. Protein-polysaccharide complexes and coacervates. Curr. Opin. Colloid Interface Sci. 12:4–5166–78 [Google Scholar]
  163. Tzoumaki MV, Karefyllakis D, Moschakis T, Biliaderis CG, Scholten E. 2015. Aqueous foams stabilized by chitin nanocrystals. Soft Matter 11:316245–53 [Google Scholar]
  164. Tzoumaki MV, Moschakis T, Kiosseoglou V, Biliaderis CG. 2011. Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocoll 25:61521–29 [Google Scholar]
  165. Vinayaka AC, Thakur MS. 2010. Focus on quantum dots as potential fluorescent probes for monitoring food toxicants and foodborne pathogens. Anal. Bioanal. Chem. 397:41445–55 [Google Scholar]
  166. Votaw JG. 2013. Nanotechnology regulation: EPA developing rule to regulate all new uses of engineered nanoscale materials. Environmental Leader News July 25. http://www.environmentalleader.com/2013/07/25/nanotechnology-regulation-epa-developing-rule-to-regulate-all-new-uses-of-engineered-nanoscale-materials/ [Google Scholar]
  167. Wang F, Gao F, Lan M, Yuan H, Huang Y, Liu J. 2009. Oxidative stress contributes to silica nanoparticle-induced cytotoxicity in human embryonic kidney cells. Toxicol. Vitro 23:5808–15 [Google Scholar]
  168. Wang X, Lee J, Wang YW, Huang Q. 2007. Composition and rheological properties of β-lactoglobulin/pectin coacervates: effects of salt concentration and initial protein/polysaccharide ratio. Biomacromolecules 8:3992–97 [Google Scholar]
  169. Wang ZL. 2008. Splendid one-dimensional nanostructures of zinc oxide: a new nanomaterial family for nanotechnology. ACS Nano 2:101987–92 [Google Scholar]
  170. Warheit DB, Sayes CM, Reed KL, Swain KA. 2008. Health effects related to nanoparticle exposures: environmental health and safety considerations for assessing hazards and risks. Pharmacol. Ther. 120:135–42 [Google Scholar]
  171. Warheit DB. 2010. Debunking some misconceptions about nanotoxicology. Nano Lett 10:124777–82 [Google Scholar]
  172. Weber C, Kreuter J, Langer K. 2000. Desolvation process and surface characteristics of HSA-nanoparticles. Int. J. Pharm. 196:2197–200 [Google Scholar]
  173. Weidemaier K, Carruthers E, Curry A, Kuroda M, Fallows E. et al. 2015. Real-time pathogen monitoring during enrichment: a novel nanotechnology-based approach to food safety testing. Int. J. Food Microbiol. 198:19–27 [Google Scholar]
  174. Weinbreck F, Rollema HS, Tromp RH, De Kruif CG. 2004. Diffusivity of whey protein and gum arabic in their coacervates. Langmuir 20:156389–95 [Google Scholar]
  175. Weir A, Westerhoff P, Fabricius L, Hristovski K, Von Goetz N. 2012. Titanium dioxide nanoparticles in food and personal care products. Environ. Sci. Technol. 46:42242–50 [Google Scholar]
  176. Weiss J, Decker EA, McClements DJ, Kristbergsson K, Helgason T, Awad T. 2008. Solid lipid nanoparticles as delivery systems for bioactive food components. Food Biophys 3:2146–54 [Google Scholar]
  177. Whitney C. 2011. Honeycomb Carbon Crystals Possibly Detected in Space Washington, DC: NASA/JPL https://www.nasa.gov/mission_pages/spitzer/news/spitzer20110815.html [Google Scholar]
  178. Wijaya W, Pang S, Labuza TP, He L. 2014. Rapid detection of acetamiprid in foods using surface-enhanced Raman spectroscopy (SERS). J. Food Sci. 79:4T743–47 [Google Scholar]
  179. Wijnhoven SWP, Peijnenburg WJGM, Herberts CA, Hagens WI, Oomen AG. et al. 2009. Nano-silver: a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:2109–38 [Google Scholar]
  180. Xie Y, He Y, Irwin PL, Jin T, Shi X. 2011. Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77:72325–31 [Google Scholar]
  181. Yang F, Liu C, Gao F, Su M, Wu X. et al. 2007. The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol. Trace Element Res. 119:177–88 [Google Scholar]
  182. Yang J, Han S, Zheng H, Dong H, Liu J. 2015. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr. Polym. 123:53–66 [Google Scholar]
  183. Yang L, Li Y. 2006. Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131:394–401 [Google Scholar]
  184. Yang M, Lai SK, Wang YY, Zhong W, Happe C. et al. 2011. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus. Angew. Chem. Int. Ed. 50:112597–600 [Google Scholar]
  185. Yang S, Liu C, Liu W, Yu H, Zheng H. et al. 2013. Preparation and characterization of nanoliposomes entrapping medium-chain fatty acids and vitamin C by lyophilization. Int. J. Mol. Sci. 14:1019763–73 [Google Scholar]
  186. Yang S, Liu W, Liu C, Liu W, Tong G. et al. 2012. Characterization and bioavailability of vitamin C nanoliposomes prepared by film evaporation–dynamic high pressure microfluidization. J. Dispers. Sci. Technol. 33:111608–14 [Google Scholar]
  187. Yanik F, Vardar F. 2015. Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air Soil Pollut 226:9296 [Google Scholar]
  188. Yaragalla S, Meera AP, Kalarikkal N, Thomas S. 2015. Chemistry associated with natural rubber-graphene nanocomposites and its effect on physical and structural properties. Ind. Crops Prod. 74:792–802 [Google Scholar]
  189. Zhang D, Dougherty SA, Liang J. 2011. Fabrication of bovine serum albumin nanotubes through template-assisted layer by layer assembly. J. Nanopart. Res. 13:41563–71 [Google Scholar]
  190. Zhang XQ, Xu X, Bertrand N, Pridgen E, Swami A, Farokhzad OC. 2012. Interactions of nanomaterials and biological systems: implications to personalized nanomedicine. Adv. Drug Deliv. Rev. 64:131363–84 [Google Scholar]
  191. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. 2011. Cellular uptake intracellular trafficking and cytotoxicity of nanomaterials. Small 7:101322–37 [Google Scholar]
  192. Zhao Y, Ye M, Chao Q, Jia N, Ge Y, Shen H. 2009. Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J. Agric. Food Chem. 57:2517–24 [Google Scholar]
  193. Zhong Q, Jin M. 2009. Zein nanoparticles produced by liquid-liquid dispersion. Food Hydrocoll 23:82380–87 [Google Scholar]
  194. Zhou J, Xu NS, Wang ZL. 2006. Dissolving behavior and stability of ZnO wires in biofluids: a study on biodegradability and biocompatibility of ZnO nanostructures. Adv. Mater. 18:182432–35 [Google Scholar]
  195. Zhou JJ, Wang SY, Gunasekaran S. 2009. Preparation and characterization of whey protein film incorporated with TiO2 nanoparticles. J. Food Sci. 74:7N50–56 [Google Scholar]
  196. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. 2010. Graphene and graphene oxide: synthesis properties and applications. Adv. Mater. 22:353906–24 [Google Scholar]
/content/journals/10.1146/annurev-food-041715-033338
Loading
/content/journals/10.1146/annurev-food-041715-033338
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error