1932

Abstract

Microorganisms exist along the food chain and impact the quality and safety of foods in both positive and negative ways. Identifying and understanding the behavior of these microbial communities enable the implementation of preventative or corrective measures in public health and food industry settings. Current culture-dependent microbial analyses are time-consuming and target only specific subsets of microbes. However, the greater use of culture-independent meta-omic approaches has the potential to facilitate a thorough characterization of the microbial communities along the food chain. Indeed, these methods have shown potential in contributing to outbreak investigation, ensuring food authenticity, assessing the spread ofantimicrobial resistance, tracking microbial dynamics during fermentation and processing, and uncovering the factors along the food chain that impact food quality and safety. This review examines the community-based approaches, and particularly the application of sequencing-based meta-omics strategies, for characterizing microbial communities along the food chain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-010751
2022-03-25
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-052720-010751.html?itemId=/content/journals/10.1146/annurev-food-052720-010751&mimeType=html&fmt=ahah

Literature Cited

  1. Aidoo KE, Rob Nout MJ, Sarkar PK 2006. Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6:130–39
    [Google Scholar]
  2. Allard SM, Callahan MT, Bui A, Ferelli AMC, Chopyk J et al. 2019. Creek to table: tracking fecal indicator bacteria, bacterial pathogens, and total bacterial communities from irrigation water to kale and radish crops. Sci. Total Environ. 666:461–71
    [Google Scholar]
  3. Anvarian AH, Cao Y, Srikumar S, Fanning S, Jordan K. 2016. Flow cytometric and 16S sequencing methodologies for monitoring the physiological status of the microbiome in powdered infant formula production. Front. Microbiol. 7:968
    [Google Scholar]
  4. Aw TG, Wengert S, Rose JB 2016. Metagenomic analysis of viruses associated with field-grown and retail lettuce identifies human and animal viruses. Int. J. Food Microbiol. 223:50–56
    [Google Scholar]
  5. Benson AK, David JR, Gilbreth SE, Smith G, Nietfeldt J et al. 2014. Microbial successions are associated with changes in chemical profiles of a model refrigerated fresh pork sausage during an 80-day shelf life study. Appl. Environ. Microbiol. 80:175178–94
    [Google Scholar]
  6. Bintsis T. 2017. Foodborne pathogens. AIMS Microbiol 3:3529–63
    [Google Scholar]
  7. Blackburn CW. 2006. Food Spoilage Microorganisms Cambridge, UK: Woodhead Publ.
    [Google Scholar]
  8. Bokulich NA, Bergsveinson J, Ziola B, Mills DA 2015. Mapping microbial ecosystems and spoilage-gene flow in breweries highlights patterns of contamination and resistance. eLife 4:e04634
    [Google Scholar]
  9. Bokulich NA, Ohta M, Richardson PM, Mills DA. 2013. Monitoring seasonal changes in winery-resident microbiota. PLOS ONE 8:6e66437
    [Google Scholar]
  10. Botta C, Ferrocino I, Pessione A, Cocolin L, Rantsiou K 2020. Spatiotemporal distribution of the environmental microbiota in food processing plants as impacted by cleaning and sanitizing procedures: the case of slaughterhouses and gaseous ozone. Appl. Environ. Microbiol. 86:23e01861–20
    [Google Scholar]
  11. Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D et al. 2017. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35:8725–31
    [Google Scholar]
  12. Bridier A, Le Grandois P, Moreau M-H, Prénom C, Le Roux A et al. 2019. Impact of cleaning and disinfection procedures on microbial ecology and Salmonella antimicrobial resistance in a pig slaughterhouse. Sci. Rep. 9:112947
    [Google Scholar]
  13. Buytaers FE, Saltykova A, Denayer S, Verhaegen B, Vanneste K et al. 2020. A practical method to implement strain-level metagenomics-based foodborne outbreak investigation and source tracking in routine. Microorganisms 8:81191
    [Google Scholar]
  14. Calero GC, Gómez NC, Lerma LL, Benomar N, Knapp CW, Abriouel H. 2020. In silico mapping of microbial communities and stress responses in a porcine slaughterhouse and pork products through its production chain, and the efficacy of HLE disinfectant. Food Res. Int. 136:109486
    [Google Scholar]
  15. Campos Calero G, Caballero Gómez N, Benomar N, Pérez Montoro B, Knapp CW et al. 2018. Deciphering resistome and virulome diversity in a porcine slaughterhouse and pork products through its production chain. Front. Microbiol. 9:2099
    [Google Scholar]
  16. Cao Y, Fanning S, Proos S, Jordan K, Srikumar S 2017. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 8:1829
    [Google Scholar]
  17. Carvalho DC, Palhares RM, Drummond MG, Gadanho M. 2017. Food metagenomics: next generation sequencing identifies species mixtures and mislabeling within highly processed cod products. Food Control 80:183–86
    [Google Scholar]
  18. Ceuppens S, Li D, Uyttendaele M, Renault P, Ross P et al. 2014. Molecular methods in food safety microbiology: interpretation and implications of nucleic acid detection. Compr. Rev. Food Sci. Food Saf. 13:4551–77
    [Google Scholar]
  19. Chen G, Chen C, Lei Z 2017. Meta-omics insights in the microbial community profiling and functional characterization of fermented foods. Trends Food Sci. Technol. 65:23–31
    [Google Scholar]
  20. Claesson MJ, Wang Q, O'Sullivan O, Greene-Diniz R, Cole JR et al. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38:22e200
    [Google Scholar]
  21. Cocolin L, Ercolini D. 2015. Zooming into food-associated microbial consortia: a “cultural” evolution. Curr. Opin. Food Sci. 2:43–50
    [Google Scholar]
  22. Coghlan ML, Haile J, Houston J, Murray DC, White NE et al. 2012. Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns. PLOS Genet 8:4e1002657
    [Google Scholar]
  23. Comar M, D'Accolti M, Cason C, Soffritti I, Campisciano G et al. 2019. Introduction of NGS in environmental surveillance for healthcare-associated infection control. Microorganisms 7:12708
    [Google Scholar]
  24. Coughlan LM, Cotter PD, Hill C, Alvarez-Ordóñez A. 2016. New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front. Microbiol. 7:1641
    [Google Scholar]
  25. Dass SC, Wang B, Stratton JE, Bianchini A, Ababdappa A. 2018. Food processing environment surveillance using amplicon metagenomics: assessing the change in the microbiome of a fluid milk processing facility before and after cleaning. BAOJ Food Sci. Technol. 2:112
    [Google Scholar]
  26. De Filippis F, Genovese A, Ferranti P, Gilbert JA, Ercolini D 2016. Metatranscriptomics reveals temperature-driven functional changes in microbiome impacting cheese maturation rate. Sci. Rep. 6:21871
    [Google Scholar]
  27. De Filippis F, La Storia A, Villani F, Ercolini D 2013. Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLOS ONE 8:7e70222
    [Google Scholar]
  28. De Filippis F, Parente E, Ercolini D. 2017. Metagenomics insights into food fermentations. Microb. Biotechnol. 10:191–102
    [Google Scholar]
  29. De Filippis F, Valentino V, Alvarez-Ordóñez A, Cotter PD, Ercolini D. 2020. Environmental microbiome mapping as a strategy to improve quality and safety in the food industry. Curr. Opin. Food Sci. 38:168–76
    [Google Scholar]
  30. de Koster CG, Brul S. 2016. MALDI-TOF MS identification and tracking of food spoilers and food-borne pathogens. Curr. Opin. Food Sci. 10:76–84
    [Google Scholar]
  31. den Besten HM, Amézquita A, Bover-Cid S, Dagnas S, Ellouze M et al. 2018. Next generation of microbiological risk assessment: potential of omics data for exposure assessment. Int. J. Food Microbiol. 287:18–27
    [Google Scholar]
  32. Doyle CJ, Gleeson D, O'Toole PW, Cotter PD. 2017. Impacts of seasonal housing and teat preparation on raw milk microbiota: a high-throughput sequencing study. Appl. Environ. Microbiol. 83:2e02694–16
    [Google Scholar]
  33. Doyle RM, O'Sullivan DM, Aller SD, Bruchmann S, Clark T et al. 2020. Discordant bioinformatic predictions of antimicrobial resistance from whole-genome sequencing data of bacterial isolates: an inter-laboratory study. Microbial Genom 6:2e000335
    [Google Scholar]
  34. Dugat-Bony E, Straub C, Teissandier A, Onésime D, Loux V et al. 2015. Overview of a surface-ripened cheese community functioning by meta-omics analyses. PLOS ONE 10:4e0124360
    [Google Scholar]
  35. Duru IC, Laine P, Andreevskaya M, Paulin L, Kananen S et al. 2018. Metagenomic and metatranscriptomic analysis of the microbial community in Swiss-type Maasdam cheese during ripening. Int. J. Food Microbiol. 281:10–22
    [Google Scholar]
  36. Dwivedi HP, Jaykus L-A. 2011. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37:140–63
    [Google Scholar]
  37. Dzieciol M, Schornsteiner E, Muhterem-Uyar M, Stessl B, Wagner M, Schmitz-Esser S. 2016. Bacterial diversity of floor drain biofilms and drain waters in a Listeria monocytogenes contaminated food processing environment. Int. J. Food Microbiol. 223:33–40
    [Google Scholar]
  38. EFSA (Eur. Food Saf. Auth.), ECDC (Eur. Cent. Dis. Prev. Control) 2019. The European Union One Health 2018 zoonoses report. EFSA J 17:12e05926
    [Google Scholar]
  39. EFSA Panel Biol. Hazards Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D et al. 2019. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 17:12e05898
    [Google Scholar]
  40. Einson JE, Rani A, You X, Rodriguez AA, Randell CL et al. 2018. A vegetable fermentation facility hosts distinct microbiomes reflecting the production environment. Appl. Environ. Microbiol. 84:22e01680–18
    [Google Scholar]
  41. Erkus O, de Jager VC, Geene RT, van Alen-Boerrigter I, Hazelwood L et al. 2016. Use of propidium monoazide for selective profiling of viable microbial cells during Gouda cheese ripening. Int. J. Food Microbiol. 228:1–9
    [Google Scholar]
  42. Falardeau J, Keeney K, Trmčić A, Kitts D, Wang S 2019. Farm-to-fork profiling of bacterial communities associated with an artisan cheese production facility. Food Microbiol 83:48–58
    [Google Scholar]
  43. Feng P 2007. Rapid methods for the detection of foodborne pathogens: current and next-generation technologies. Food Microbiology: Fundamentals and Frontiers MP Doyle, LE Beuchat 911–34 Washington, DC: ASM Press. , 3rd ed..
    [Google Scholar]
  44. Fernandez-Cassi X, Timoneda N, Gonzales-Gustavson E, Abril J, Bofill-Mas S, Girones R. 2017. A metagenomic assessment of viral contamination on fresh parsley plants irrigated with fecally tainted river water. Int. J. Food Microbiol. 257:80–90
    [Google Scholar]
  45. Fleet GH. 1999. Microorganisms in food ecosystems. Int. J. Food Microbiol. 50:1–1101–17
    [Google Scholar]
  46. Fleet GH 2011. Yeast spoilage of foods and beverages. The Yeasts: A Taxonomic Study CP Kurtzman, JW Fell, T Boekhout 53–63 Amsterdam: Elsevier. , 5th ed..
    [Google Scholar]
  47. Fox EM, Solomon K, Moore JE, Wall PG, Fanning S. 2014. Phylogenetic profiles of in-house microflora in drains at a food production facility: comparison and biocontrol implications of Listeria-positive and -negative bacterial populations. Appl. Environ. Microbiol. 80:113369–74
    [Google Scholar]
  48. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G et al. 2015. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol. 13:6360–72
    [Google Scholar]
  49. Galazzo G, van Best N, Benedikter B, Janssen K, Bervoets L et al. 2020. How to count our microbes? The effect of different quantitative microbiome profiling approaches. Front. Cell. Infect. Microbiol. 10:403
    [Google Scholar]
  50. Galvez A, López RL, Abriouel H, Valdivia E, Omar NB 2008. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 28:2125–52
    [Google Scholar]
  51. Grützke J, Malorny B, Hammerl JA, Busch A, Tausch SH et al. 2019. Fishing in the soup: pathogen detection in food safety using metabarcoding and metagenomic sequencing. Front. Microbiol. 10:1805
    [Google Scholar]
  52. Gweon HS, Shaw LP, Swann J, De Maio N, AbuOun M et al. 2019. The impact of sequencing depth on the inferred taxonomic composition and AMR gene content of metagenomic samples. Environ. Microbiome 14:17
    [Google Scholar]
  53. Haiminen N, Edlund S, Chambliss D, Kunitomi M, Weimer BC et al. 2019. Food authentication from shotgun sequencing reads with an application on high protein powders. NPJ Sci. Food 3:124
    [Google Scholar]
  54. Handelsman J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68:4669–85
    [Google Scholar]
  55. Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE 2018. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol. Lett. 365:20fny213
    [Google Scholar]
  56. He L-Y, He L-K, Liu Y-S, Zhang M, Zhao J-L et al. 2019. Microbial diversity and antibiotic resistome in swine farm environments. Sci. Total Environ. 685:197–207
    [Google Scholar]
  57. Hendriksen RS, Munk P, Njage P, Van Bunnik B, McNally L et al. 2019. Global monitoring of antimicrobial resistance based on metagenomics analyses of urban sewage. Nat. Commun. 10:11124
    [Google Scholar]
  58. Höll L, Hilgarth M, Geissler AJ, Behr J, Vogel RF. 2020. Metatranscriptomic analysis of modified atmosphere packaged poultry meat enables prediction of Brochothrix thermosphacta and Carnobacterium divergens in situ metabolism. Arch. Microbiol. 202:1945–55
    [Google Scholar]
  59. Hultman J, Rahkila R, Ali J, Rousu J, Björkroth KJ 2015. Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Appl. Environ. Microbiol. 81:207088–97
    [Google Scholar]
  60. Hwang BK, Choi H, Choi SH, Kim B-S. 2020. Analysis of microbiota structure and potential functions influencing spoilage of fresh beef meat. Front. Microbiol. 11:1657
    [Google Scholar]
  61. Illeghems K, Weckx S, De Vuyst L. 2015. Applying meta-pathway analyses through metagenomics to identify the functional properties of the major bacterial communities of a single spontaneous cocoa bean fermentation process sample. Food Microbiol 50:54–63
    [Google Scholar]
  62. in't Veld JHH 1996. Microbial and biochemical spoilage of foods: an overview. Int. J. Food Microbiol. 33:11–18
    [Google Scholar]
  63. Jääskeläinen E, Jakobsen LM, Hultman J, Eggers N, Bertram HC, Björkroth J. 2019. Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage. Int. J. Food Microbiol. 293:44–52
    [Google Scholar]
  64. Jenkins C, Dallman TJ, Grant KA. 2019. Impact of whole genome sequencing on the investigation of food-borne outbreaks of Shiga toxin-producing Escherichia coli serogroup O157:H7, England, 2013 to 2017. EuroSurveillance 24:41800346
    [Google Scholar]
  65. Jordan K, Dalmasso M, Zentek J, Mader A, Bruggeman G et al. 2014. Microbes versus microbes: control of pathogens in the food chain. J. Sci. Food Agric. 94:153079–89
    [Google Scholar]
  66. Jung JY, Lee SH, Jin HM, Hahn Y, Madsen EL, Jeon CO. 2013. Metatranscriptomic analysis of lactic acid bacterial gene expression during kimchi fermentation. Int. J. Food Microbiol. 163:2–3171–79
    [Google Scholar]
  67. Kable ME, Srisengfa Y, Laird M, Zaragoza J, McLeod J et al. 2016. The core and seasonal microbiota of raw bovine milk in tanker trucks and the impact of transfer to a milk processing facility. mBio 7:4e00836–16
    [Google Scholar]
  68. Kable ME, Srisengfa Y, Xue Z, Coates LC, Marco ML. 2019. Viable and total bacterial populations undergo equipment- and time-dependent shifts during milk processing. Appl. Environ. Microbiol. 85:13e00270–19
    [Google Scholar]
  69. Kamilari E, Anagnostopoulos DA, Papademas P, Kamilaris A, Tsaltas D. 2020. Characterizing halloumi cheese's bacterial communities through metagenomic analysis. LWT 126:109298
    [Google Scholar]
  70. Kamilari E, Tomazou M, Antoniades A, Tsaltas D 2019. High throughput sequencing technologies as a new toolbox for deep analysis, characterization and potentially authentication of protection designation of origin cheeses?. Int. J. Food Sci. 2019:5837301
    [Google Scholar]
  71. Khansaritoreh E, Salmaki Y, Ramezani E, Azirani TA, Keller A et al. 2020. Employing DNA metabarcoding to determine the geographical origin of honey. Heliyon 6:11e05596
    [Google Scholar]
  72. Kim KH, Chun BH, Kim J, Jeon CO 2020. Identification of biogenic amine-producing microbes during fermentation of ganjang, a Korean traditional soy sauce, through metagenomic and metatranscriptomic analyses. Food Control 121:107681
    [Google Scholar]
  73. Kim S, Kim J, Yun EJ, Kim KH 2016. Food metabolomics: from farm to human. Curr. Opin. Biotechnol. 37:16–23
    [Google Scholar]
  74. King P, Pham LK, Waltz S, Sphar D, Yamamoto RT et al. 2016. Longitudinal metagenomic analysis of hospital air identifies clinically relevant microbes. PLOS ONE 11:12e0169376
    [Google Scholar]
  75. Kleiner M. 2019. Metaproteomics: much more than measuring gene expression in microbial communities. mSystems 4:3e00115–19
    [Google Scholar]
  76. Langsrud S, Moen B, Møretrø T, Løype M, Heir E 2016. Microbial dynamics in mixed culture biofilms of bacteria surviving sanitation of conveyor belts in salmon-processing plants. J. Appl. Microbiol. 120:2366–78
    [Google Scholar]
  77. Leonard SR, Mammel MK, Lacher DW, Elkins CA. 2015. Application of metagenomic sequencing to food safety: detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl. Environ. Microbiol. 81:238183–91
    [Google Scholar]
  78. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15:267–78
    [Google Scholar]
  79. Lewis E, Hudson J, Cook N, Barnes J, Haynes E. 2020. Next-generation sequencing as a screening tool for foodborne pathogens in fresh produce. J. Microbiol. Methods 171:105840
    [Google Scholar]
  80. Li R, Wang C, Zhou G, Li C, Ye K 2021. The effects of thermal treatment on the bacterial community and quality characteristics of meatballs during storage. Food Sci. Nutr. 9:1564–73
    [Google Scholar]
  81. Li S, Mann DA, Zhang S, Qi Y, Meinersmann RJ, Deng X. 2020. Microbiome-informed food safety and quality: longitudinal consistency and cross-sectional distinctiveness of retail chicken breast microbiomes. mSystems 5:5e00589–20
    [Google Scholar]
  82. Liu N, Zou D, Dong D, Yang Z, Ao D et al. 2017. Development of a multiplex loop-mediated isothermal amplification method for the simultaneous detection of Salmonella spp. and Vibrio parahaemolyticus. Sci. Rep. 7:145601
    [Google Scholar]
  83. Liu X, Teixeira JS, Ner S, Ma KV, Petronella N et al. 2020. Exploring the potential of the microbiome as a marker of the geographic origin of fresh seafood. Front. Microbiol. 11:696
    [Google Scholar]
  84. Liu X-F, Liu C-J, Zeng X-Q, Zhang H-Y, Luo Y-Y, Li X-R. 2020. Metagenomic and metatranscriptomic analysis of the microbial community structure and metabolic potential of fermented soybean in Yunnan Province. Food Sci. Technol. 40:118–25
    [Google Scholar]
  85. Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ-M et al. 2013. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of Shiga-toxigenic Escherichia coli O104:H4. JAMA 309:141502–10
    [Google Scholar]
  86. Luiken RE, Van Gompel L, Bossers A, Munk P, Joosten P et al. 2020. Farm dust resistomes and bacterial microbiomes in European poultry and pig farms. Environ. Int. 143:105971
    [Google Scholar]
  87. Mandal PK, Biswas AK, Choi K, Pal UK. 2011. Methods for rapid detection of foodborne pathogens: an overview. Am. J. Food Technol. 6:87–102
    [Google Scholar]
  88. Marine R, McCarren C, Vorrasane V, Nasko D, Crowgey E et al. 2014. Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome. Microbiome 2:13
    [Google Scholar]
  89. Marotz CA, Sanders JG, Zuniga C, Zaramela LS, Knight R, Zengler K 2018. Improving saliva shotgun metagenomics by chemical host DNA depletion. Microbiome 6:142
    [Google Scholar]
  90. McHugh AJ, Feehily C, Fenelon MA, Gleeson D, Hill C, Cotter PD 2020. Tracking the dairy microbiota from farm bulk tank to skimmed milk powder. mSystems 5:2e00226–20
    [Google Scholar]
  91. McHugh AJ, Feehily C, Tobin JT, Fenelon MA, Hill C, Cotter PD 2018. Mesophilic sporeformers identified in whey powder by using shotgun metagenomic sequencing. Appl. Environ. Microbiol. 84:20e01305–18
    [Google Scholar]
  92. McHugh AJ, Yap M, Crispie F, Feehily C, Hill C, Cotter PD 2021. Microbiome-based environmental monitoring of a dairy processing facility highlights the challenges associated with low microbial-load samples. NPJ Sci. Food 5:4
    [Google Scholar]
  93. Mencía-Ares O, Cabrera-Rubio R, Cobo-Díaz JF, Álvarez-Ordóñez A, Gómez-García M et al. 2020. Antimicrobial use and production system shape the fecal, environmental, and slurry resistomes of pig farms. Microbiome 8:1164
    [Google Scholar]
  94. Mira Miralles M, Maestre-Carballa L, Lluesma-Gomez M, Martinez-Garcia M 2019. High-throughput 16S rRNA sequencing to assess potentially active bacteria and foodborne pathogens: a case example in ready-to-eat food. Foods 8:10480
    [Google Scholar]
  95. Munk P, Andersen VD, de Knegt L, Jensen MS, Knudsen BE et al. 2017. A sampling and metagenomic sequencing-based methodology for monitoring antimicrobial resistance in swine herds. J. Antimicrob. Chemother. 72:2385–92
    [Google Scholar]
  96. Nocker A, Cheung C-Y, Camper AK. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67:2310–20
    [Google Scholar]
  97. Nogarol C, Acutis P, Bianchi D, Maurella C, Peletto S et al. 2013. Molecular characterization of Pseudomonas fluorescens isolates involved in the Italian “blue mozzarella” event. J. Food Prot. 76:3500–4
    [Google Scholar]
  98. Noyes NR, Yang X, Linke LM, Magnuson RJ, Dettenwanger A et al. 2016. Resistome diversity in cattle and the environment decreases during beef production. eLife 5:e13195
    [Google Scholar]
  99. Nychas GE, Panagou E 2011. Microbiological spoilage of foods and beverages. Food and Beverage Stability and Shelf Life D Kilcast, P Subarmaniam 3–28 Cambridge, UK: Woodhead Publ.
    [Google Scholar]
  100. Ogier J-C, Pages S, Galan M, Barret M, Gaudriault S 2019. rpoB, a promising marker for analyzing the diversity of bacterial communities by amplicon sequencing. BMC Microbiol 19:1171
    [Google Scholar]
  101. O'Hara NB, Reed HJ, Afshinnekoo E, Harvin D, Caplan N et al. 2017. Metagenomic characterization of ambulances across the USA. Microbiome 5:1125
    [Google Scholar]
  102. O'Sullivan L, Bolton D, McAuliffe O, Coffey A. 2019. Bacteriophages in food applications: from foe to friend. Annu. Rev. Food Sci. Technol. 10:151–72
    [Google Scholar]
  103. Ouali FA, Al Kassaa I, Cudennec B, Abdallah M, Bendali F et al. 2014. Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int. J. Food Microbiol. 191:116–24
    [Google Scholar]
  104. Pasolli E, De Filippis F, Mauriello IE, Cumbo F, Walsh AM et al. 2020. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 11:12610
    [Google Scholar]
  105. Peirson MD, Guan TY, Holley RA. 2003. Thermal resistances and lactate and diacetate sensitivities of bacteria causing bologna discolouration. Int. J. Food Microbiol. 86:3223–30
    [Google Scholar]
  106. Petersen TN, Rasmussen S, Hasman H, Carøe C, Bælum J et al. 2015. Meta-genomic analysis of toilet waste from long distance flights; a step towards global surveillance of infectious diseases and antimicrobial resistance. Sci. Rep. 5:11444
    [Google Scholar]
  107. Petruzzi L, Corbo MR, Sinigaglia M, Bevilacqua A 2017. Microbial spoilage of foods: fundamentals. The Microbiological Quality of Food A Bevilacqua, MR Corbo, M Sinigaglia 1–21 Amsterdam: Elsevier
    [Google Scholar]
  108. Pham N-P, Landaud S, Lieben P, Bonnarme P, Monnet C. 2019. Transcription profiling reveals cooperative metabolic interactions in a microbial cheese-ripening community composed of Debaryomyces hansenii, Brevibacterium aurantiacum, and Hafnia alvei. Front. Microbiol. 10:1901
    [Google Scholar]
  109. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S et al. 2019. Systems biology and multi-omics integration: viewpoints from the metabolomics research community. Metabolites 9:476
    [Google Scholar]
  110. Pitta DW, Dou Z, Kumar S, Indugu N, Toth JD et al. 2016. Metagenomic evidence of the prevalence and distribution patterns of antimicrobial resistance genes in dairy agroecosystems. Foodborne Pathog. Dis. 13:6296–302
    [Google Scholar]
  111. Poirier S, Rue O, Peguilhan R, Coeuret G, Zagorec M et al. 2018. Deciphering intra-species bacterial diversity of meat and seafood spoilage microbiota using gyrB amplicon sequencing: a comparative analysis with 16S rDNA V3-V4 amplicon sequencing. PLOS ONE 13:9e0204629
    [Google Scholar]
  112. Pothakos V, Stellato G, Ercolini D, Devlieghere F 2015. Processing environment and ingredients are both sources of Leuconostoc gelidum, which emerges as a major spoiler in ready-to-eat meals. Appl. Environ. Microbiol. 81:103529–41
    [Google Scholar]
  113. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35:9833–44
    [Google Scholar]
  114. Rampelotto PH, Sereia AF, de Oliveira LFV, Margis R. 2019. Exploring the hospital microbiome by high-resolution 16S rRNA profiling. Int. J. Mol. Sci. 20:123099
    [Google Scholar]
  115. Rantsiou K, Kathariou S, Winkler A, Skandamis P, Saint-Cyr MJ et al. 2018. Next generation microbiological risk assessment: opportunities of whole genome sequencing (WGS) for foodborne pathogen surveillance, source tracking and risk assessment. Int. J. Food Microbiol. 287:3–9
    [Google Scholar]
  116. Reis J, Paula A, Casarotti S, Penna A. 2012. Lactic acid bacteria antimicrobial compounds: characteristics and applications. Food Eng. Rev. 4:2124–40
    [Google Scholar]
  117. Rodríguez-López P, Rodríguez-Herrera JJ, Cabo ML. 2020. Tracking bacteriome variation over time in Listeria monocytogenes–positive foci in food industry. Int. J. Food Microbiol. 315:108439
    [Google Scholar]
  118. Rubiola S, Chiesa F, Dalmasso A, Di Ciccio P, Civera T. 2020. Detection of antimicrobial resistance genes in the milk production environment: impact of host DNA and sequencing depth. Front. Microbiol. 11:1983
    [Google Scholar]
  119. Sahu M, Bala S. 2017. Food processing, food spoilage and their prevention: an overview. Int. J. Life. Sci. Sci. Res. 3:1753–59
    [Google Scholar]
  120. Schallmey M, Singh A, Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:11–17
    [Google Scholar]
  121. Schwan RF, Ramos CL. 2014. Role of microbes and their diversity in fermented foods. Beneficial Microbes in Fermented and Functional Foods V Ravishankar Rai, JA Bai 524–47 Boca Raton, FL: CRC Press
    [Google Scholar]
  122. Shakya M, Lo C-C, Chain PS. 2019. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10:904
    [Google Scholar]
  123. Slizovskiy IB, Mukherjee K, Dean CJ, Boucher C, Noyes NR. 2020. Mobilization of antibiotic resistance: Are current approaches for colocalizing resistomes and mobilomes useful?. Front. Microbiol. 11:1376
    [Google Scholar]
  124. Soggiu A, Piras C, Mortera SL, Alloggio I, Urbani A et al. 2016. Unravelling the effect of clostridia spores and lysozyme on microbiota dynamics in Grana Padano cheese: a metaproteomics approach. J. Proteom. 147:21–27
    [Google Scholar]
  125. Sohier D, Pavan S, Riou A, Combrisson J, Postollec F 2014. Evolution of microbiological analytical methods for dairy industry needs. Front. Microbiol. 5:16
    [Google Scholar]
  126. Sørensen JS, Bøknæs N, Mejlholm O, Dalgaard P. 2020. Superchilling in combination with modified atmosphere packaging resulted in long shelf-life and limited microbial growth in Atlantic cod (Gadus morhua L.) from capture-based-aquaculture in Greenland. Food Microbiol 88:103405
    [Google Scholar]
  127. Stellato G, La Storia A, De Filippis F, Borriello G, Villani F, Ercolini D 2016. Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Appl. Environ. Microbiol. 82:134045–54
    [Google Scholar]
  128. Stohr V, Joffraud J-J, Cardinal M, Leroi F 2001. Spoilage potential and sensory profile associated with bacteria isolated from cold-smoked salmon. Food Res. Int. 34:9797–806
    [Google Scholar]
  129. Tao J, Liu W, Ding W, Han R, Shen Q et al. 2020. A multiplex PCR assay with a common primer for the detection of eleven foodborne pathogens. J. Food Sci. 85:3744–54
    [Google Scholar]
  130. Tsironi T, Anjos L, Pinto PI, Dimopoulos G, Santos S et al. 2019. High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. J. Food Eng. 262:83–91
    [Google Scholar]
  131. Van Gompel L, Luiken RE, Sarrazin S, Munk P, Knudsen BE et al. 2019. The antimicrobial resistome in relation to antimicrobial use and biosecurity in pig farming, a metagenome-wide association study in nine European countries. J. Antimicrob. Chemother. 74:4865–76
    [Google Scholar]
  132. Vikram A, Woolston J, Sulakvelidze A. 2020. Phage biocontrol applications in food production and processing. Curr. Issues Mol. Biol. 40:267–302
    [Google Scholar]
  133. Walsh AM, Crispie F, O'Sullivan O, Finnegan L, Claesson MJ, Cotter PD 2018. Species classifier choice is a key consideration when analysing low-complexity food microbiome data. Microbiome 6:150
    [Google Scholar]
  134. Wang H, Zhang X, Wang G, Jia K, Xu X, Zhou G. 2017. Bacterial community and spoilage profiles shift in response to packaging in yellow-feather broiler, a highly popular meat in Asia. Front. Microbiol. 8:2588
    [Google Scholar]
  135. Wang X, Du H, Zhang Y, Xu Y. 2018. Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation. Appl. Environ. Microbiol. 84:4e02369–17
    [Google Scholar]
  136. Wang Y, Hu Y, Liu F, Cao J, Lv N et al. 2020. Integrated metagenomic and metatranscriptomic profiling reveals differentially expressed resistomes in human, chicken, and pig gut microbiomes. Environ. Int. 138:105649
    [Google Scholar]
  137. Wang Y, Salazar JK. 2016. Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Compr. Rev. Food Sci. Food Saf. 15:1183–205
    [Google Scholar]
  138. Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK et al. 2021. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome 9:117
    [Google Scholar]
  139. World Health Organ. (WHO) 2017. The burden of foodborne diseases in the WHO European Region. Rep., WHO Reg. Off. Eur. Copenhagen, Den: https://www.euro.who.int/__data/assets/pdf_file/0005/402989/50607-WHO-Food-Safety-publicationV4_Web.pdf
    [Google Scholar]
  140. Wu H, Nguyen QD, Tran TT, Tang MT, Tsuruta T, Nishino N. 2019. Rumen fluid, feces, milk, water, feed, airborne dust, and bedding microbiota in dairy farms managed by automatic milking systems. Anim. Sci. J. 90:3445–52
    [Google Scholar]
  141. Wu L, Li G, Xu X, Zhu L, Huang R, Chen X. 2019. Application of nano-ELISA in food analysis: recent advances and challenges. Trends Anal. Chem. 113:140–56
    [Google Scholar]
  142. Xiao Y, Huang T, Xu Y, Peng Z, Liu Z et al. 2020. Metatranscriptomics reveals the gene functions and metabolic properties of the major microbial community during Chinese Sichuan Paocai fermentation. Food Microbiol 98:103573
    [Google Scholar]
  143. Xie M, Wu J, An F, Yue X, Tao D et al. 2019. An integrated metagenomic/metaproteomic investigation of microbiota in dajiang-meju, a traditional fermented soybean product in northeast China. Food Res. Int. 115:414–24
    [Google Scholar]
  144. Yang M, Cousineau A, Liu X, Luo Y, Sun D et al. 2020. Direct metatranscriptome RNA-seq and multiplex RT-PCR amplicon sequencing on Nanopore MinION: promising strategies for multiplex identification of viable pathogens in food. Front. Microbiol. 11:514
    [Google Scholar]
  145. Yang X, Noyes NR, Doster E, Martin JN, Linke LM et al. 2016. Use of metagenomic shotgun sequencing technology to detect foodborne pathogens within the microbiome of the beef production chain. Appl. Environ. Microbiol. 82:82433–43
    [Google Scholar]
  146. Yap M, Feehily C, Walsh CJ, Fenelon M, Murphy EF et al. 2020. Evaluation of methods for the reduction of contaminating host reads when performing shotgun metagenomic sequencing of the milk microbiome. Sci. Rep. 10:121665
    [Google Scholar]
  147. Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G 2020. Mixed-species biofilms in the food industry: current knowledge and novel control strategies. Crit. Rev. Food Sci. Nutr. 60:132277–93
    [Google Scholar]
  148. Zhang Y, Kitajima M, Whittle AJ, Liu W-T. 2017. Benefits of genomic insights and CRISPR-Cas signatures to monitor potential pathogens across drinking water production and distribution systems. Front. Microbiol. 8:2036
    [Google Scholar]
  149. Zotta T, Parente E, Ianniello RG, De Filippis F, Ricciardi A. 2019. Dynamics of bacterial communities and interaction networks in thawed fish fillets during chilled storage in air. Int. J. Food Microbiol. 293:102–13
    [Google Scholar]
  150. Zwirzitz B, Wetzels SU, Dixon ED, Stessl B, Zaiser A et al. 2020. The sources and transmission routes of microbial populations throughout a meat processing facility. NPJ Biofilms Microbiomes 6:126
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-010751
Loading
/content/journals/10.1146/annurev-food-052720-010751
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error