1932

Abstract

Traditional foods and diets can provide health benefits beyond their nutrient composition because of the presence of bioactive compounds. In various traditional healthcare systems, diet-based approaches have always played an important role, which has often survived until today. Therefore, investigating traditional foods aimed at health promotion could render not only novel bioactive substances but also mechanistic insights. However, compared to pharmacologically focused research on natural products, investigating such nutrition-based interventions is even more complicated owing to interacting compounds, less potent and relatively subtle effects, the food matrix, and variations in composition and intake. At the same time, technical advances in ‘omics’ technologies, cheminformatics, and big data analysis create new opportunities, further strengthened by increasing insights into the biology of health and homeostatic resilience. These are to be combined with state-of-the-art ethnobotanical research, which is key to obtaining reliable and reproducible data. Unfortunately, socioeconomic developments and climate change threaten traditional use and knowledge as well as biodiversity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-092845
2022-03-25
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-052720-092845.html?itemId=/content/journals/10.1146/annurev-food-052720-092845&mimeType=html&fmt=ahah

Literature Cited

  1. Afonso NC, Catarino MD, Silva AMS, Cardoso SM. 2019. Brown macroalgae as valuable food ingredients. Antioxidants 8:365
    [Google Scholar]
  2. Aggarwal BB, Prasad S, Reuter S, Kannappan R, Yadav VR et al. 2011. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 12:1595–653
    [Google Scholar]
  3. Ahuja I, Kissen R, Bones AM 2012. Phytoalexins in defense against pathogens. Trends Plant. Sci. 17:73–90
    [Google Scholar]
  4. Alarcón R, Pardo-De-Santayana M, Priestley C, Morales R, Heinrich M. 2015. Medicinal and local food plants in the south of Alava (Basque Country, Spain). J. Ethnopharmacol. 176:207–24
    [Google Scholar]
  5. Andre CM, Hausman J-F, Guerriero G. 2016. Cannabis sativa: the plant of the thousand and one molecules. Front. Plant Sci. 7:19
    [Google Scholar]
  6. Ano Y, Yoshino Y, Kutsukake T, Ohya R, Fukuda T et al. 2019. Tryptophan-related dipeptides in fermented dairy products suppress microglial activation and prevent cognitive decline. Aging 11:2949–67
    [Google Scholar]
  7. Aslam H, Green J, Jacka FN, Collier F, Berk M et al. 2020. Fermented foods, the gut and mental health: a mechanistic overview with implications for depression and anxiety. Nutr. Neurosci. 23:659–71
    [Google Scholar]
  8. Atanasov AG, Zotchev SB, Dirsch VM, Orhan IE, Banach M et al. 2021. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov. 20:200–16
    [Google Scholar]
  9. Ayres JS. 2020. The biology of physiological health. Cell 181:250–69
    [Google Scholar]
  10. Baars J 2017. Fungi as food. Fungi: Biology and Applications K Kavanagh 147–68 Hoboken, NJ: Wiley
    [Google Scholar]
  11. Behrens M, Ziegler F. 2020. Structure-function analyses of human bitter taste receptors—Where do we stand?. Molecules 25:4423
    [Google Scholar]
  12. Bell V, Ferrão J, Pimentel L, Pintado M, Fernandes T 2018. One health, fermented foods, and gut microbiota. Foods 7:12195
    [Google Scholar]
  13. Brahmkshatriya PP, Brahmkshatriya PS 2013. Terpenes: chemistry, biological role, and therapeutic applications. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes KG Ramawat, J-M Mérillon 2665–91 Berlin: Springer
    [Google Scholar]
  14. Buenz EJ, Verpoorte R, Bauer BA. 2018. The ethnopharmacologic contribution to bioprospecting natural products. Annu. Rev. Pharmacol. Toxicol. 58:509–30
    [Google Scholar]
  15. Calabrese EJ. 2021. Hormesis mediates acquired resilience: using plant-derived chemicals to enhance health. Annu. Rev. Food Sci. Technol. 12:355–81
    [Google Scholar]
  16. Calabrese EJ, Kozumbo WJ. 2021. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol. Res. 167:105526
    [Google Scholar]
  17. Calissi G, Lam EWF, Link W. 2021. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov. 20:21–38
    [Google Scholar]
  18. Centeno-Betanzos LY, Reyes-Chilpa R, Pigni NB, Jankowski CK, Torras-Claveria L, Bastida J. 2021. Plants of the ‘Libellus de Medicinalibus Indorum Herbis’ from Mexico, 1552. Zephyranthes fosteri (Amaryllidaceae) alkaloids. Chem. Biodivers. 18:e2000834
    [Google Scholar]
  19. Cha WS, Oh JH, Park HJ, Ahn SW, Hong SY, Kim NI. 2007. Historical difference between traditional Korean medicine and traditional Chinese medicine. Neurol. Res. 29:S5–9
    [Google Scholar]
  20. Christensen SB. 2021. Natural products that changed society. Biomedicines 9:472
    [Google Scholar]
  21. Costa-Mattioli M, Walter P. 2020. The integrated stress response: from mechanism to disease. Science 368:eaat5314
    [Google Scholar]
  22. David B, Wolfender JL, Dias DA. 2015. The pharmaceutical industry and natural products: historical status and new trends. Phytochem. Rev. 14:299–315
    [Google Scholar]
  23. Davies J. 2013. Specialized microbial metabolites: functions and origins. J. Antibiotics 66:361–64
    [Google Scholar]
  24. Defossez E, Pitteloud C, Descombes P, Glauser G, Allard PM et al. 2021. Spatial and evolutionary predictability of phytochemical diversity. PNAS 118:3e2013344118
    [Google Scholar]
  25. Dey P. 2019. Gut microbiota in phytopharmacology: a comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacol. Res. 147:104367
    [Google Scholar]
  26. Donia MS, Fischbach MA 2015. Small molecules from the human microbiota. Science 349:62461254766
    [Google Scholar]
  27. Evans LW, Stratton MS, Ferguson BS. 2020. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat. Prod. Rep. 37:653–76
    [Google Scholar]
  28. Firn RD, Jones CG. 2009. A Darwinian view of metabolism: molecular properties determine fitness. J. Exp. Botany 60:719–26
    [Google Scholar]
  29. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA 2019. The effects of polyphenols and other bioactives on human health. Food Funct. 10:514–28
    [Google Scholar]
  30. Fujisaka S, Usui I, Nawaz A, Igarashi Y, Okabe K et al. 2020. Bofutsushosan improves gut barrier function with a bloom of Akkermansia muciniphila and improves glucose metabolism in mice with diet-induced obesity. Sci. Rep. 10:5544
    [Google Scholar]
  31. Gautam R, Jachak SM. 2009. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 29:767–820
    [Google Scholar]
  32. Gille D, Schmid A, Walther B, Vergères G 2018. Fermented food and non-communicable chronic diseases: a review. Nutrients 10:4448
    [Google Scholar]
  33. Golan-Goldhirsh A, Gopas J. 2014. Plant derived inhibitors of NF-κB. Phytochem. Rev. 13:107–21
    [Google Scholar]
  34. Gong X, Li X, Bo A, Shi R-Y, Li Q-Y et al. 2020. The interactions between gut microbiota and bioactive ingredients of traditional Chinese medicines: a review. Pharmacol. Res. 157:104824
    [Google Scholar]
  35. Grimaldi IM, van Andel TR. 2018. Food and medicine by what name? Ethnobotanical and linguistic diversity of taro in Africa. Econ. Bot. 72:217–28
    [Google Scholar]
  36. Guarrera PM, Savo V. 2016. Wild food plants used in traditional vegetable mixtures in Italy. J. Ethnopharmacol. 185:202–34
    [Google Scholar]
  37. Gutiérrez-Grijalva EP, López-Martínez LX, Contreras-Angulo LA, Elizalde-Romero CA, Heredia JB. 2020. Plant alkaloids: structures and bioactive properties. Plant-Derived Bioactives: Chemistry and Mode of Action M. Swamy 85–117 Singapore: Springer
    [Google Scholar]
  38. Halder M, Petsophonsakul P, Akbulut AC, Pavlic A, Bohan F et al. 2019. Vitamin K: double bonds beyond coagulation insights into differences between vitamin K1 and K2 in health and disease. Int. J. Mol. Sci. 20:4896
    [Google Scholar]
  39. Heinrich M 2015. Ethnopharmacology: a short history of a multidisciplinary field of research. Ethnopharmacology M Heinrich, AK Jaeger 3–9 Chichester, UK: Wiley
    [Google Scholar]
  40. Heinrich M, Barnes J, Prieto-Garcia J, Gibbons S, Williamson EM 2017. Fundamentals of Pharmacognosy and Phytotherapy. Oxford, UK: Elsevier. , 3rd ed..
    [Google Scholar]
  41. Hitziger M, Heinrich M, Edwards P, Pöll E, Lopez M, Krütli P. 2016. Maya phytomedicine in Guatemala: Can cooperative research change ethnopharmacological paradigms?. J. Ethnopharmacol. 186:61–72
    [Google Scholar]
  42. Hohlman RM, Sherman DH. 2021. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Nat. Prod. Rep. 38:1567–88
    [Google Scholar]
  43. Hotamisligil GS. 2017. Inflammation, metaflammation and immunometabolic disorders. Nature 542:177
    [Google Scholar]
  44. Howitz KT, Sinclair DA. 2008. Xenohormesis: sensing the chemical cues of other species. Cell 133:387–91
    [Google Scholar]
  45. Igarashi M, Guarente L. 2016. mTORC1 and SIRT1 cooperate to foster expansion of gut adult stem cells during calorie restriction. Cell 166:436–50
    [Google Scholar]
  46. IUPHAR 2021. G protein-coupled receptors IUPHAR/BPS Guide to Pharmacology https://www.guidetopharmacology.org/GRAC/GPCRListForward?class=A
    [Google Scholar]
  47. Jager G, Witkamp RF. 2014. The endocannabinoid system and appetite: relevance for food reward. Nutr. Res. Rev. 27:172–85
    [Google Scholar]
  48. JanssenDuijghuijsen LM, Mensink M, Lenaerts K, Fiedorowicz E, Protege Study Group, et al. 2016. The effect of endurance exercise on intestinal integrity in well-trained healthy men. Physiol. Rep. 4:20e12994
    [Google Scholar]
  49. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein Z-A. 2021. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J. Nutr. Biochem. 93:108634
    [Google Scholar]
  50. Jennings HM, Merrell J, Thompson JL, Heinrich M. 2015. Food or medicine? The food–medicine interface in households in Sylhet. J. Ethnopharmacol. 167:97–104
    [Google Scholar]
  51. Jeong DY, Jeong SY, Zhang T, Wu X, Qiu JY, Park S. 2020. Chungkookjang, a soy food, fermented with Bacillus amyloliquefaciens protects gerbils against ischemic stroke injury, and post-stroke hyperglycemia. Food Res. Int. 128:108769
    [Google Scholar]
  52. Jin D, Dai K, Xie Z, Chen J. 2020. Secondary metabolites profiled in cannabis inflorescences, leaves, stem barks, and roots for medicinal purposes. Sci. Rep. 10:3309
    [Google Scholar]
  53. Kang Y, Łuczaj ŁJ, Ye S. 2012. The highly toxic Aconitum carmichaelii Debeaux as a root vegetable in the Qinling Mountains (Shaanxi, China). Genet. Resour. Crop Evol. 59:1569–75
    [Google Scholar]
  54. Kato E, Nakagomi R, Gunawan-Puteri MDPT, Kawabata J. 2013. Identification of hydroxychavicol and its dimers, the lipase inhibitors contained in the Indonesian spice, Eugenia polyantha. Food Chem 136:1239–42
    [Google Scholar]
  55. Kausar F, Yusuf Amin KM, Bashir S, Parvez A, Ahmad P 2021. Concept of ʻIhtiraqʼ in Unani medicine: a correlation with oxidative stress, and future prospects. J. Ethnopharmacol. 265:113269
    [Google Scholar]
  56. Kaushik P, Andújar I, Vilanova S, Plazas M, Gramazio P et al. 2015. Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:18464–81
    [Google Scholar]
  57. Keys A. 1995. Mediterranean diet and public health: personal reflections. Am. J. Clin. Nutr. 61:1321S–23
    [Google Scholar]
  58. Kim S, Woo M, Kim M, Noh JS, Song YO. 2018. Neuroprotective effects of the methanol extract of kimchi, a Korean fermented vegetable food, mediated via suppression of endoplasmic reticulum stress and caspase cascade pathways in high-cholesterol diet-fed mice. J. Med. Food 21:489–95
    [Google Scholar]
  59. Kimondo J, Miaron J, Mutai P, Njogu P. 2015. Ethnobotanical survey of food and medicinal plants of the Ilkisonko Maasai community in Kenya. J. Ethnopharmacol. 175:463–69
    [Google Scholar]
  60. Ko JW, Chung YS, Kwak CS, Kwon YH. 2019. Doenjang, a Korean traditional fermented soybean paste, ameliorates neuroinflammation and neurodegeneration in mice fed a high-fat diet. Nutrients 11:81702
    [Google Scholar]
  61. Kok BP, Galmozzi A, Littlejohn NK, Albert V, Godio C et al. 2018. Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits. Mol. Metab. 16:76–87
    [Google Scholar]
  62. Kuang Y, Li B, Wang Z, Qiao X, Ye M 2021. Terpenoids from the medicinal mushroom Antrodia camphorata: chemistry and medicinal potential. Nat. Prod. Rep. 38:83–102
    [Google Scholar]
  63. Leonti M, Ramirez RF, Sticher O, Heinrich M. 2003. Medicinal flora of the Popoluca, Mexico: a botanical systematical perspective. Econ. Bot. 57:218–30
    [Google Scholar]
  64. Li X, Yang T, Sun Z 2019. Hormesis in health and chronic diseases. Trends Endocrinol. Metab. 30:944–58
    [Google Scholar]
  65. Liu L, Heinrich M, Myers S, Dworjanyn SA. 2012. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in traditional Chinese medicine: a phytochemical and pharmacological review. J. Ethnopharmacol. 142:591–619
    [Google Scholar]
  66. López-Otín C, Kroemer G. 2021. Hallmarks of health. Cell 184:33–63
    [Google Scholar]
  67. Lupinacci E, Meijerink J, Vincken JP, Gabriele B, Gruppen H, Witkamp RF 2009. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J. Agric. Food Chem. 57:7274–81
    [Google Scholar]
  68. Marsh AJ, Hill C, Ross RP, Cotter PD 2014. Fermented beverages with health-promoting potential: past and future perspectives. Trends Food Sci. Technol. 38:113–24
    [Google Scholar]
  69. Marx W, Veronese N, Kelly JT, Smith L, Hockey M et al. 2021. The dietary inflammatory index and human health: an umbrella review of meta-analyses of observational studies. Adv. Nutr. 12:51681–90
    [Google Scholar]
  70. Masondo NA, Finnie JF, Van Staden J. 2016. Nutritional and pharmacological potential of the genus Ceratotheca—an underutilized leafy vegetable of Africa. J. Ethnopharmacol. 178:209–21
    [Google Scholar]
  71. Moerings BGJ, de Graaff P, Furber M, Witkamp RF, Debets R et al. 2021. Continuous exposure to non-soluble β-glucans induces trained immunity in M-CSF-differentiated macrophages. Front. Immunol. 12:672796
    [Google Scholar]
  72. Morita H, Abe I, Noguchi H 2010. Plant type III PKS. Comprehensive Natural Products II H-W Liu, L Mander 171–225 Oxford: Elsevier
    [Google Scholar]
  73. Mozaffarian D, Rosenberg I, Uauy R. 2018. History of modern nutrition science: implications for current research, dietary guidelines, and food policy. BMJ 361:k2392
    [Google Scholar]
  74. Mühlroth A, Li K, Røkke G, Winge P, Olsen Y et al. 2013. Pathways of lipid metabolism in marine algae, co-expression network, bottlenecks and candidate genes for enhanced production of EPA and DHA in species of Chromista. Mar. Drugs 11:4662–97
    [Google Scholar]
  75. Mukherjee PK, Banerjee S, Kar A, Chanda J 2019. Drugs from our ancestors: tradition to innovation. Herbal Medicine in India: Indigenous Knowledge, Practice, Innovation and its Value S. Sen, R. Chakraborty 263–80 Singapore: Springer Nature
    [Google Scholar]
  76. Mukherjee PK, Harwansh RK, Bahadur S, Banerjee S, Kar A et al. 2017. Development of Ayurveda: tradition to trend. J. Ethnopharmacol. 197:10–24
    [Google Scholar]
  77. Muller J, Almedom AM. 2008. What is “famine food”? Distinguishing between traditional vegetables and special foods for times of hunger/scarcity (Boumba, Niger). Hum. Ecol. 36:599–607
    [Google Scholar]
  78. Murugaiyah V, Mattson MP. 2015. Neurohormetic phytochemicals: an evolutionary-bioenergetic perspective. Neurochem. Int. 89:271–80
    [Google Scholar]
  79. Natividad JM, Agus A, Planchais J, Lamas B, Jarry AC et al. 2018. Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metab 28:737–49.e4
    [Google Scholar]
  80. Okpako DT. 1999. Traditional African medicine: theory and pharmacology explored. Trends Pharmacol. Sci. 20:482–85
    [Google Scholar]
  81. Omokhua-Uyi AG, Van Staden J. 2020. Phytomedicinal relevance of South African Cucurbitaceae species and their safety assessment: a review. J. Ethnopharmacol. 259:112967
    [Google Scholar]
  82. Pan M-H, Chiou Y-S, Tsai M-L, Ho C-T. 2011. Anti-inflammatory activity of traditional Chinese medicinal herbs. J. Tradit. Complement. Med. 1:8–24
    [Google Scholar]
  83. Panche AN, Diwan AD, Chandra SR. 2016. Flavonoids: an overview. J. Nutr. Sci. 5:e47
    [Google Scholar]
  84. Panossian AG, Efferth T, Shikov AN, Pozharitskaya ON, Kuchta K et al. 2021. Evolution of the adaptogenic concept from traditional use to medical systems: pharmacology of stress- and aging-related diseases. Med. Res. Rev. 41:630–703
    [Google Scholar]
  85. Pina-Pérez MC, Brück WM, Brück T, Beyrer M. 2019. Microalgae as healthy ingredients for functional foods. The Role of Alternative and Innovative Food Ingredients and Products in Consumer Wellness CM Galanakis 103–37 Oxford, UK: Acad. Press
    [Google Scholar]
  86. Plat J, Baumgartner S, Vanmierlo T, Lütjohann D, Calkins KL et al. 2019. Plant-based sterols and stanols in health & disease: “consequences of human development in a plant-based environment?. Prog. Lipid Res. 74:87–102
    [Google Scholar]
  87. Ramawat KG, Mérillon J-M. 2013. Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes Berlin: Springer-Verlag
    [Google Scholar]
  88. Rokas A, Mead ME, Steenwyk JL, Raja HA, Oberlies NH. 2020. Biosynthetic gene clusters and the evolution of fungal chemodiversity. Nat. Prod. Rep. 37:868–78
    [Google Scholar]
  89. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE et al. 2016. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 22:586–97
    [Google Scholar]
  90. Roulette CJ, Njau E-FA, Quinlan MB, Quinlan RJ, Call DR 2018. Medicinal foods and beverages among Maasai agro-pastoralists in northern Tanzania. J. Ethnopharmacol. 216:191–202
    [Google Scholar]
  91. Rudolf JD, Alsup TA, Xu B, Li Z. 2021. Bacterial terpenome. Nat. Prod. Rep. 38:905–80
    [Google Scholar]
  92. Russell G, Lightman S. 2019. The human stress response. Nat. Rev. Endocrinol. 15:525–34
    [Google Scholar]
  93. Şanlier N, Gökcen BB, Sezgin AC. 2019. Health benefits of fermented foods. Crit. Rev. Food Sci. Nutr 59:506–27
    [Google Scholar]
  94. Santiago FH, Moreno JP, Cázares BX, Suárez JJA, Trejo EO et al. 2016. Traditional knowledge and use of wild mushrooms by Mixtecs or Ñuu savi, the people of the rain, from southeastern Mexico. J. Ethnobiol. Ethnomed. 12:35–35
    [Google Scholar]
  95. Saxton RA, Sabatini DM. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168:960–76
    [Google Scholar]
  96. Scalbert A, Manach C, Morand C, Rémésy C, Jiménez L 2005. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. Nutr. 45:287–306
    [Google Scholar]
  97. Schauss AG 2010. Emerging knowledge of the bioactivity of foods in the diets of indigenous North Americans. Bioactive Foods in Promoting Health RR Watson, VR Preedy 71–84 San Diego: Academic
    [Google Scholar]
  98. Serrano-Marín J, Reyes-Resina I, Martínez-Pinilla E, Navarro G, Franco R. 2020. Natural compounds as guides for the discovery of drugs targeting G-protein-coupled receptors. Molecules 25:5060
    [Google Scholar]
  99. Shao A, Drewnowski A, Willcox DC, Kramer L, Lausted C et al. 2017. Optimal nutrition and the ever-changing dietary landscape: a conference report. Eur. J. Nutr. 56:Suppl. 11–21
    [Google Scholar]
  100. Shen Y, Liang W-J, Shi Y-N, Kennelly EJ, Zhao D-K. 2020. Structural diversity, bioactivities, and biosynthesis of natural diterpenoid alkaloids. Nat. Prod. Rep. 37:763–96
    [Google Scholar]
  101. Shikov AN, Tsitsilin AN, Pozharitskaya ON, Makarov VG, Heinrich M. 2017. Traditional and current food use of wild plants listed in the Russian pharmacopoeia. Front. Pharmacol. 8:841
    [Google Scholar]
  102. Shinde R, McGaha TL. 2018. The aryl hydrocarbon receptor: connecting immunity to the microenvironment. Trends Immunol 39:1005–20
    [Google Scholar]
  103. Shondelmyer K, Knight R, Sanivarapu A, Ogino S, Vanamala JKP. 2018. Ancient thali diet: gut microbiota, immunity, and health. Yale J. Biol. Med. 91:177–84
    [Google Scholar]
  104. Stermitz FR, Lorenz P, Tawara JN, Zenewicz LA, Lewis K. 2000. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. PNAS 97:1433–37
    [Google Scholar]
  105. Stockinger B, Shah K, Wincent E. 2021. AHR in the intestinal microenvironment: safeguarding barrier function. Nat. Rev. Gastroenterol. Hepatol. 18:559–70
    [Google Scholar]
  106. Sun J, Xiong Y, Li Y, Yang Q, Chen Y et al. 2020. Medicinal dietary plants of the Yi in Mile, Yunnan, China. J. Ethnobiol. Ethnomed. 16:48
    [Google Scholar]
  107. Tan F, Chen Y, Tan X, Ma Y, Peng Y 2017. Chinese materia medica used in medicinal diets. J. Ethnopharmacol. 206:40–54
    [Google Scholar]
  108. Tan M-J, Ye J-M, Turner N, Hohnen-Behrens C, Ke C-Q et al. 2008. Antidiabetic activities of triterpenoids isolated from bitter melon associated with activation of the AMPK pathway. Chem. Biol. 15:263–73
    [Google Scholar]
  109. Temba GS, Kullaya V, Pecht T, Mmbaga BT, Aschenbrenner AC et al. 2021. Urban living in healthy Tanzanians is associated with an inflammatory status driven by dietary and metabolic changes. Nat. Immunol. 22:287–300
    [Google Scholar]
  110. Tilg H, Zmora N, Adolph TE, Elinav E. 2020. The intestinal microbiota fuelling metabolic inflammation. Nat. Rev. Immunol. 20:40–54
    [Google Scholar]
  111. Tiwari BK, Brunton NP, Brennan C, eds. 2013. Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction. Hoboken, NJ: Wiley & Sons
    [Google Scholar]
  112. Tobias NJ, Bode HB. 2019. Heterogeneity in bacterial specialized metabolism. J. Mol. Biol. 431:4589–98
    [Google Scholar]
  113. Towns AM, van Andel T. 2016. Wild plants, pregnancy, and the food-medicine continuum in the southern regions of Ghana and Benin. J. Ethnopharmacol. 179:375–82
    [Google Scholar]
  114. Valverde JL. 2010. Evaluation of Latin American Materia Medica and Its Influence on Therapeutics Thessaloniki, Greece: Int. Acad. Hist. Pharm.
    [Google Scholar]
  115. van den Brink W, van Bilsen J, Salic K, Hoevenaars FPM, Verschuren L et al. 2019. Current and future nutritional strategies to modulate inflammatory dynamics in metabolic disorders. Front. Nutr. 6:129
    [Google Scholar]
  116. van Steenwijk HP, Bast A, de Boer A. 2021. Immunomodulating effects of fungal beta-glucans: from traditional use to medicine. Nutrients 13:41333
    [Google Scholar]
  117. Vandebroek I, Moerman DE. 2015. The anthropology of ethnopharmacology. Ethnopharmacology M Heinrich, AK Jaeger 17–28 Chichester, UK: Wiley
    [Google Scholar]
  118. Wang DD, Nguyen LH, Li Y, Yan Y, Ma W et al. 2021. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 27:333–43
    [Google Scholar]
  119. Wang M, Lamers RJ, Korthout HA, van Nesselrooij JH, Witkamp RF et al. 2005. Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother. Res. 19:173–82
    [Google Scholar]
  120. Watanabe F. 2007. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 232:1266–74
    [Google Scholar]
  121. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS et al. 2017. Algae as nutritional and functional food sources: revisiting our understanding. J. Appl. Phycol. 29:949–82
    [Google Scholar]
  122. Widyowati R, Agil M. 2018. Chemical constituents and bioactivities of several Indonesian plants typically used in Jamu. Chem. Pharm. Bull. 66:506–18
    [Google Scholar]
  123. Wijaya SH, Batubara I, Nishioka T, Altaf-Ul-Amin M, Kanaya S. 2017. Metabolomic studies of Indonesian Jamu medicines: prediction of Jamu efficacy and identification of important metabolites. Mol. Inform. 36:1700050
    [Google Scholar]
  124. Wilkins J. 2015. Good food and bad: nutritional and pleasurable eating in ancient Greece. J. Ethnopharmacol. 167:7–10
    [Google Scholar]
  125. Williamson G, Kay CD, Crozier A. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Comp. Rev. Food Sci. Food Saf. 17:1054–112
    [Google Scholar]
  126. Wisnuwardani RW, De Henauw S, Ferrari M, Forsner M, Gottrand F et al. 2020. Total polyphenol intake is inversely associated with a pro/anti-inflammatory biomarker ratio in European adolescents of the HELENA study. J. Nutr. 150:1610–18
    [Google Scholar]
  127. Witkamp R. 2016. Fatty acids, endocannabinoids and inflammation. Eur. J. Pharmacol. 785:96–107
    [Google Scholar]
  128. Witkamp RF 2010. Biologically active compounds in food products and their effects on obesity and diabetes. Comprehensive Natural Products II H-W Liu, L Mander 509–45 Oxford: Elsevier
    [Google Scholar]
  129. Witkamp RF 2014. The endocannabinoid system: a dynamic signalling system at the crossroads between metabolism and disease. Pharma-Nutrition G Folkerts, J Garssen 155–87 Dordrecht, Neth: Springer
    [Google Scholar]
  130. Witkamp RF. 2018. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol. Aspects Med. 64:45–67
    [Google Scholar]
  131. Witkamp RF. 2021. Nutrition to optimise human health—how to obtain physiological substantiation?. Nutrients 13:72155
    [Google Scholar]
  132. Witkamp RF, van Norren K. 2018. Let thy food be thy medicine.…when possible. Eur. J. Pharmacol. 836:102–14
    [Google Scholar]
  133. Wu Q, Liang X. 2018. Food therapy and medical diet therapy of traditional Chinese medicine. Clin. Nutr. Exp. 18:1–5
    [Google Scholar]
  134. Yakubo S, Ito M, Ueda Y, Okamoto H, Kimura Y et al. 2014. Pattern classification in Kampo medicine. Evid.-Based Complement. Alternat. Med. 2014:535146
    [Google Scholar]
  135. Yan J, Chen B, Lu J, Xie W 2015. Deciphering the roles of the constitutive androstane receptor in energy metabolism. Acta Pharmacol. Sin. 36:62–70
    [Google Scholar]
  136. Yu F, Takahashi T, Moriya J, Kawaura K, Yamakawa J et al. 2006. Traditional Chinese medicine and Kampo: a review from the distant past for the future. J. Int. Med. Res. 34:231–39
    [Google Scholar]
  137. Zhang J, Wang Z. 2014. Plant bioactives in Chinese dietary herbs. Bioactive Molecules in Plant Foods FO Uruakpa 1–48 New York: Nova Sci. Publ.
    [Google Scholar]
  138. Zhang Y, Li J-W, San MM, Whitney CW, San TT et al. 2020. The secret of health in daily cuisine: typical healthy vegetables in local markets in central Myanmar. J. Ethnobiol. Ethnomed. 16:73
    [Google Scholar]
  139. Zhao X, Tan X, Shi H, Xia D. 2021. Nutrition and traditional Chinese medicine (TCM): a system's theoretical perspective. Eur. J. Clin. Nutr. 75:267–73
    [Google Scholar]
  140. Zhou S, Allard P-M, Wolfrum C, Ke C, Tang C et al. 2019. Identification of chemotypes in bitter melon by metabolomics: a plant with potential benefit for management of diabetes in traditional Chinese medicine. Metabolomics 15:104
    [Google Scholar]
  141. Zielińska-Błajet M, Feder-Kubis J. 2020. Monoterpenes and their derivatives—recent development in biological and medical applications. Int. J. Mol. Sci. 21:7078
    [Google Scholar]
  142. Zisman S, Goldberg DL, Veniegas M. 2003. Nutritional theory in Ayurveda. Altern. Complement. Ther. 9:191–97
    [Google Scholar]
  143. Zmora N, Suez J, Elinav E. 2019. You are what you eat: diet, health and the gut microbiota. Nat. Rev. Gastroenterol. Hepatol. 16:35–56
    [Google Scholar]
  144. Zou P. 2016. Traditional Chinese medicine, food therapy, and hypertension control: a narrative review of Chinese literature. Am. J. Chin. Med. 44:1579–94
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-092845
Loading
/content/journals/10.1146/annurev-food-052720-092845
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error