1932

Abstract

Nondigestible functional oligosaccharides are of particular interest in recent years because of their unique prebiotic activities, technological characteristics, and physiological effects. Among different types of strategies for the production of nondigestible functional oligosaccharides, enzymatic methods are preferred owing to the predictability and controllability of the structure and composition of the reaction products. Nondigestible functional oligosaccharides have been proved to show excellent prebiotic effects as well as other benefits to intestinal health. They have exhibited great application potential as functional food ingredients for various food products with improved quality and physicochemical characteristics. This article reviews the research progress on the enzymatic production of several typical nondigestible functional oligosaccharides in the food industry, including galacto-oligosaccharides, xylo-oligosaccharides, manno-oligosaccharides, chito-oligosaccharides, and human milk oligosaccharides. Moreover, their physicochemical properties and prebiotic activities are discussed as well as their contributions to intestinal health and applications in foods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-052720-114503
2023-03-27
2024-05-05
Loading full text...

Full text loading...

/deliver/fulltext/food/14/1/annurev-food-052720-114503.html?itemId=/content/journals/10.1146/annurev-food-052720-114503&mimeType=html&fmt=ahah

Literature Cited

  1. Aachary AA, Gobinath D, Prapulla SG. 2011. Short chain xylooligosaccharides: a potential prebiotic used to improve batter fermentation and its effect on the quality attributes of idli, a cereal-legume-based Indian traditional food. Int. J. Food Sci. Technol. 46:1346–55
    [Google Scholar]
  2. Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VG. 2010. Production of chitooligosaccharides and their potential applications in medicine. Mar. Drugs 8:1482–517
    [Google Scholar]
  3. Albermann C, Piepersberg W, Wehmeier UF. 2001. Synthesis of the milk oligosaccharide 2′-fucosyllactose using recombinant bacterial enzymes. Carbohydr. Res. 334:97–103
    [Google Scholar]
  4. Alvaro FL, Pablo GL, Moreno FJ, Mar V, Oswaldo HH. 2019. In vitro digestibility of galactooligosaccharides: effect of the structural features on their intestinal degradation. J. Agric. Food Chem. 67:466270
    [Google Scholar]
  5. Amorim C, Silverio SC, Rodrigues LR. 2019. One-step process for producing prebiotic arabino-xylooligosaccharides from brewer's spent grain employing Trichoderma species. Food Chem. 270:86–94
    [Google Scholar]
  6. Azagra-Boronat I, Massot-Cladera M, Knipping K, van't Land B, Stahl B et al. 2018. Supplementation with 2′-FL and scGOS/lcFOS ameliorates rotavirus-induced diarrhea in suckling rats. Front. Cell. Infect. Microbiol. 8:372
    [Google Scholar]
  7. Bajagai YS, Klieve AV, Dart PJ, Bryden WL. 2016. Probiotics in animal nutrition: production, impact and regulation. FAO Anim. Prod. Health Pap. No. 179, FAO Rome:
    [Google Scholar]
  8. Beserra BTS, Fernandes R, do Rosario VA, Mocellin MC, Kuntz MGF, Trindade EBSM. 2015. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin. Nutr. 34:84558
    [Google Scholar]
  9. Bhattacharya A, Wiemann M, Stålbrand H. 2021. β-Mannanase BoMan26B from Bacteroides ovatus produces mannan-oligosaccharides with prebiotic potential from galactomannan and softwood β-mannans. LWT Food Sci. Technol. 151:112215
    [Google Scholar]
  10. Bych K, Mikš MH, Johanson T, Hederos MJ, Vigsnæs LK, Becker P. 2019. Production of HMOs using microbial hosts—from cell engineering to large scale production. Curr. Opin. Biotechnol. 56:130–37
    [Google Scholar]
  11. Cheng C, Yu M, Cheng T, Sheu D, Duan K, Tai W. 2006. Production of high-content galacto-oligosaccharide by enzyme catalysis and fermentation with Kluyveromyces marxianus. Biotechnol. Lett. 28:793–97
    [Google Scholar]
  12. Choi BK, Kim KY, Yoo YJ, Oh SJ, Choi JH, Kim CY. 2001. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents 18:553–57
    [Google Scholar]
  13. Cloetens L, Swennen K, Broekaert WF, Courtin CM, Delcour JA et al. 2008. Effect of arabinoxylo-oligosaccharides on proximal gastrointestinal motility and digestion in healthy volunteers. Clin. Nutr. ESPEN 3:E220–E25
    [Google Scholar]
  14. Coelho E, Rocha MAM, Moreira ASP, Domingues MRM, Coimbra MA. 2016. Revisiting the structural features of arabinoxylans from brewers' spent grain. Carbohydr. Polym. 139:167–76
    [Google Scholar]
  15. Collins T, Gerday C, Feller G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29:3–23
    [Google Scholar]
  16. Correia MAS, Mazumder K, Bras JLA, Firbank SJ, Zhu YP et al. 2011. Structure and function of an arabinoxylan-specific xylanase. J. Biol. Chem. 286:22510–20
    [Google Scholar]
  17. Dong X, Li N, Liu Z, Lv X, Shen Y et al. 2020. CRISPRi-guided multiplexed fine-tuning of metabolic flux for enhanced lacto-N-neotetraose production in Bacillus subtilis. J. Agric. Food Chem. 68:247784
    [Google Scholar]
  18. Faijes M, Castejon-Vilatersana M, Val-Cid C, Planas A. 2019. Enzymatic and cell factory approaches to the production of human milk oligosaccharides. Biotechnol. Adv. 37:667–97
    [Google Scholar]
  19. Falck P, Linares-Pastén JA, Karlsson EN, Adlercreutz P. 2018. Arabinoxylanase from glycoside hydrolase family 5 is a selective enzyme for production of specific arabinoxylooligosaccharides. Food Chem 242:579–84
    [Google Scholar]
  20. Farias DD, de Araujo FF, Neri-Numa IA, Pastore GM 2019. Prebiotics: trends in food, health and technological applications. Trends Food Sci. Technol. 93:23–35
    [Google Scholar]
  21. Ferenczi S, Szegi K, Winkler Z, Barna T, Kovacs KJ. 2016. Oligomannan prebiotic attenuates immunological, clinical and behavioral symptoms in mouse model of inflammatory bowel disease. Sci. Rep. 6:34132
    [Google Scholar]
  22. Ferrão LL, Ferreira MVS, Cavalcanti RN, Carvalho AFA, Pimentel TC et al. 2018. The xylooligosaccharide addition and sodium reduction in requeijao cremoso processed cheese. Food Res. Int. 107:137–47
    [Google Scholar]
  23. Finegold SM, Li Z, Summanen PH, Downes J, Thames G et al. 2014. Xylooligosaccharide increases bifidobacteria but not lactobacilli in human gut microbiota. Food Funct 5:436–45
    [Google Scholar]
  24. Fonvig CE, Amundsen ID, Vigsnas LK, Sorensen N, Frithioff-Bojsoe C et al. 2021. Human milk oligosaccharides modulate fecal microbiota and are safe for use in children with overweight: a randomized controlled trial. J. Pediatr. Gastr. Nutr. 73:408–14
    [Google Scholar]
  25. Fu X, Yan Q, Yang S, Yang X, Guo Y, Jiang Z. 2014. An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine. Biotechnol. Biofuels 7:174
    [Google Scholar]
  26. Fuhren J, Schwalbe M, Peralta-Marzal L, Rosch C, Schols HA, Kleerebezem M. 2020. Phenotypic and genetic characterization of differential galacto-oligosaccharide utilization in Lactobacillus plantarum. Sci. Rep. 10:21657
    [Google Scholar]
  27. Ganan M, Lorentzen SB, Agger JW, Heyward CA, Bakke O et al. 2019. Antifungal activity of well-defined chito-oligosaccharide preparations against medically relevant yeasts. PLOS ONE 14:e0210208
    [Google Scholar]
  28. Geier MS, Butler RN, Howarth GS. 2006. Probiotics, prebiotics and synbiotics: a role in chemoprevention for colorectal cancer?. Cancer Biol. Ther. 5:1265–69
    [Google Scholar]
  29. Geng HW, Mou ZG, Liu ZY, Li FL, Yang C 2020. Biochemical degradation of chitosan over immobilized cellulase and supported fenton catalysts. Catalysis 10:604
    [Google Scholar]
  30. Ghosh A, Verma AK, Tingirikari JR, Shukla R, Goyal A. 2015. Recovery and purification of oligosaccharides from copra meal by recombinant endo-β-mannanase and deciphering molecular mechanism involved and its role as potent therapeutic agent. Mol. Biotechnol. 57:111–27
    [Google Scholar]
  31. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA et al. 2017. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491–502
    [Google Scholar]
  32. Goh YJ, Klaenhammer TR. 2015. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes. Annu. Rev. Food Sci. Technol. 6:137–56
    [Google Scholar]
  33. Goulas TK, Goulas AK, Tzortzis G, Gibson GR. 2007. Molecular cloning and comparative analysis of four β-galactosidase genes from Bifidobacterium bifidum NCIMB41171. Appl. Microbiol. Biotechnol. 76:1365–72
    [Google Scholar]
  34. Grasten S, Liukkonen KH, Chrevatidis A, El-Nezami H, Poutanen K, Mykkanen H. 2003. Effects of wheat pentosan and inulin on the metabolic activity of fecal microbiota and on bowel function in healthy humans. Nutr. Res. 23:1503–14
    [Google Scholar]
  35. Guan GP, Wang HB, Peng HH, Li GY. 2016. Low dosage of chitosan supplementation improves intestinal permeability and impairs barrier function in mice. Biomed. Res. Int. 2016:4847296
    [Google Scholar]
  36. He YY, Liu SB, Kling DE, Leone S, Lawlor NT et al. 2016. The human milk oligosaccharide 2′-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation. Gut 65:33–46
    [Google Scholar]
  37. Hettiarachchi SA, Kwon YK, Lee Y, Jo E, Eom TY et al. 2019. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb. Cell Fact. 18:122
    [Google Scholar]
  38. Huang C, Wang X, Liang C, Jiang X, Yang G et al. 2019. A sustainable process for procuring biologically active fractions of high-purity xylooligosaccharides and water-soluble lignin from Moso bamboo prehydrolyzate. Biotechnol. Biofuels 12:189–202
    [Google Scholar]
  39. Huang R, Mendis E, Rajapakse N, Kim SK. 2006. Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78:2399–408
    [Google Scholar]
  40. Husson E, Hadad C, Huet G, Laclef S, Lesur D et al. 2017. The effect of room temperature ionic liquids on the selective biocatalytic hydrolysis of chitin via sequential or simultaneous strategies. Green Chem 19:4122–31
    [Google Scholar]
  41. Iribarren C, Tornblom H, Aziz I, Magnusson MK, Sundin J et al. 2020. Human milk oligosaccharide supplementation in irritable bowel syndrome patients: a parallel, randomized, double-blind, placebo-controlled study. Neurogastroenterol. Motil. 32:e13920
    [Google Scholar]
  42. Ishurd O, Kermagi A, Elghazoun M, Kennedy JF. 2006. Structural of a glucomannan from Lupinus varius seed. Carbohydr. Polym. 65:410–13
    [Google Scholar]
  43. Jana U, Suryawanshi R, Prajapati B, Soni H, Kango N. 2018. Production optimization and characterization of mannooligosaccharide generating β-mannanase from Aspergillus oryzae. . Bioresour. Technol. 268:308–14
    [Google Scholar]
  44. Juhasz R, Penksza P, Sipos L. 2020. Effect of xylo-oligosaccharides (XOS) addition on technological and sensory attributes of cookies. Food Sci. Nutr. 8:5452–60
    [Google Scholar]
  45. Kabel MA, Kortenoeven L, Schols HA, Voragen AGJ. 2002. In vitro fermentability of differently substituted xylo-oligosaccharides. J. Agric. Food Chem. 50:6205–10
    [Google Scholar]
  46. Kalidas NR, Saminathan M, Ismail IS, Abas F, Maity P et al. 2017. Structural characterization and evaluation of prebiotic activity of oil palm kernel cake mannanoligosaccharides. Food Chem 234:348–55
    [Google Scholar]
  47. Karlsson EN, Schmitz E, Linares-Pasten JA, Adlercreutz P. 2018. Endo-xylanases as tools for production of substituted xylooligosaccharides with prebiotic properties. Appl. Microbiol. Biotechnol. 102:9081–88
    [Google Scholar]
  48. Khangwal I, Shukla P 2019. Prospecting prebiotics, innovative evaluation methods, and their health applications: a review. 3 Biotech 9:187
    [Google Scholar]
  49. Kittur FS, Vishu Kumar AB, Varadaraj MC, Tharanathan RN 2005. Chitooligosaccharides—preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohydr. Res. 340:1239–45
    [Google Scholar]
  50. Labourel A, Crouch LI, Bras JLA, Jackson A, Rogowski A et al. 2016. The mechanism by which arabinoxylanases can recognize highly decorated xylans. J. Biol. Chem. 291:22149–59
    [Google Scholar]
  51. Leddomado LS, Silva R, Guimaraes JT, Balthazar CF, Ramos GLPA et al. 2021. Technological benefits of using inulin and xylooligosaccharide in dulce de leche. Food Hydrocoll. 110:106158
    [Google Scholar]
  52. Lee HW, Park YS, Jung JS, Shin WS. 2002. Chitosan oligosaccharides, DP 2–8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe 8:319–24
    [Google Scholar]
  53. Lezyk M, Jers C, Kjaerulff L, Gotfredsen CH, Mikkelsen MD, Mikkelsen JD. 2016. Novel α-L-fucosidases from a soil metagenome for production of fucosylated human milk oligosaccharides. PLOS ONE 11:e0147438
    [Google Scholar]
  54. Li AL, Ni WW, Li Y, Zhang X, Yang JJ et al. 2020. Effect of 2′-fucosyllactose supplementation on intestinal flora in mice with intestinal inflammatory diseases. J. Dairy Sci. 110:104797
    [Google Scholar]
  55. Li C, Wu M, Gao X, Zhu ZL, Li Y et al. 2020. Efficient biosynthesis of 2′-fucosyllactose using an in vitro multienzyme cascade. J. Agric. Food Chem. 68:10763–71
    [Google Scholar]
  56. Li G, Sun J, Secundo F, Gao X, Xue C, Mao X. 2018. Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414. Food Chem 261:329–36
    [Google Scholar]
  57. Li H, Lane JA, Chen J, Lu Z, Wang H et al. 2022. In vitro fermentation of human milk oligosaccharides by individual Bifidobacterium longum-dominant infant fecal inocula. Carbohydr. Polym. 287:119322
    [Google Scholar]
  58. Li M, Monaco MH, Wang M, Comstock SS, Kuhlenschmidt TB et al. 2014. Human milk oligosaccharides shorten rotavirus-induced diarrhea and modulate piglet mucosal immunity and colonic microbiota. ISME J 8:1609–20
    [Google Scholar]
  59. Li T, Lu XS, Yang XB. 2013. Tachyose-enriched alpha-galacto-oligosaccharides regulate gut microbiota and relieve constipation in mice. J. Agric. Food Chem. 61:11825–31
    [Google Scholar]
  60. Li YX, Liu HJ, Shi YQ, Yan QJ, You X, Jiang ZQ. 2020. Preparation, characterization, and prebiotic activity of manno-oligosaccharides produced from cassia gum by a glycoside hydrolase family 134 β-mannanase. Food Chem 309:125709
    [Google Scholar]
  61. Liao H, Ying WJ, Li X, Zhu JJ, Xu Y, Zhang JH. 2022. Optimized production of xylooligosaccharides from poplar: a biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis. Bioresour. Technol. 347:126683
    [Google Scholar]
  62. Liaqat F, Eltem R. 2018. Chitooligosaccharides and their biological activities: a comprehensive review. Carbohydr. Polym. 184:243–59
    [Google Scholar]
  63. Lin S, Agger JW, Wilkens C, Meyer AS. 2021. Feruloylated arabinoxylan and oligosaccharides: chemistry, nutritional functions, and options for enzymatic modification. Annu. Rev. Food Sci. Technol. 12:331–54
    [Google Scholar]
  64. Linares-Pastén JA, Aronsson A, Nordberg Karlsson E 2018. Structural considerations on the use of endo-xylanases for the production of prebiotic xylooligosaccharides from biomass. Curr. Protein Pept. Sci. 19:48–67
    [Google Scholar]
  65. Liu J, Basit A, Miao T, Zheng F, Yu H et al. 2018. Secretory expression of β-mannanase in Saccharomyces cerevisiae and its high efficiency for hydrolysis of mannans to mannooligosaccharides. Appl. Microbiol. Biotechnol. 102:10027–41
    [Google Scholar]
  66. Liu RX, Li YC, Zhang B. 2016. The effects of konjac oligosaccharide on TNBS-induced colitis in rats. Int. Immunopharmacol. 40:385–91
    [Google Scholar]
  67. Liu W, Tang S, Peng J, Pan L, Wang J et al. 2022. Enhancing heterologous expression of a key enzyme for the biosynthesis of 2′-fucosyllactose. J. Sci. Food Agric. 102:125162–71
    [Google Scholar]
  68. Liu XQ, Yang SQ, Ma JW, Yu J, Yan QJ, Jiang ZQ. 2020. Efficient production of acetylated xylooligosaccharides from Hawthorn kernels by a xylanase from Paecilomyces aerugineus. . Ind. Crops Prod. 158:112962
    [Google Scholar]
  69. Liu XY, Chen S, Yan QJ, Li YX, Jiang ZQ. 2019. Effect of Konjac mannan oligosaccharides on diphenoxylate-induced constipation in mice. J. Funct. Food 57:399–407
    [Google Scholar]
  70. Liu YH, Wang L, Huang P, Jiang ZQ, Yan QJ, Yang SQ. 2020a. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem 332:127438
    [Google Scholar]
  71. Liu YH, Yan QJ, Ma JW, Yang SQ, Li T, Jiang ZQ. 2020b. Production of lacto-N-triose II and lacto-N-neotetraose from chitin by a novel β-N-acetylhexosaminidase expressed in Pichia pastoris. ACS Sustain. Chem. Eng. 8:1546674
    [Google Scholar]
  72. Lu LL, Guo LC, Wang K, Liu Y, Xiao M. 2020. β-Galactosidases: a great tool for synthesizing galactose-containing carbohydrates. Biotechnol. Adv. 39:107465
    [Google Scholar]
  73. Lucey PM, Lean IJ, Aly SS, Golder HM, Block E et al. 2021. Effects of mannan-oligosaccharide and Bacillus subtilis supplementation to preweaning Holstein dairy heifers on body weight gain, diarrhea, and shedding of fecal pathogens. J. Dairy Sci. 104:4290–302
    [Google Scholar]
  74. Luo GC, Zhu YY, Meng JW, Wan L, Zhang WL, Mu WM. 2021. A novel β-1,4-galactosyltransferase from Histophilus somni enables efficient biosynthesis of lacto-N-neotetraose via both enzymatic and cell factory approaches. J. Agric. Food Chem. 69:568390
    [Google Scholar]
  75. Maathuis AJH, van den Heuvel EG, Schoterman MHC, Venema K. 2012. Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a (13)C-labeling technique. J. Nutr. 142:1205–12
    [Google Scholar]
  76. Macfarlane GT, Steed H, Macfarlane S. 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104:305–44
    [Google Scholar]
  77. Mano MCR, Neri-Numa IA, da Silva JB, Paulino BN, Pessoa MG, Pastore GM. 2018. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol. 102:17–37
    [Google Scholar]
  78. Martins GN, Ureta MM, Tymczyszyn EE, Castilho PC, Gomez-Zavaglia A. 2019. Technological aspects of the production of fructo and galacto-oligosaccharides. Enzymatic synthesis and hydrolysis. Front. Nutr. 6:78
    [Google Scholar]
  79. Mattaveewong T, Wongkrasant P, Chanchai S, Pichyangkura R, Chatsudthipong V, Muanprasat C. 2016. Chitosan oligosaccharide suppresses tumor progression in a mouse model of colitis-associated colorectal cancer through AMPK activation and suppression of NF-κB and mTOR signaling. Carbohydr. Polym. 145:30–36
    [Google Scholar]
  80. McArthur JB, Yu H, Chen X 2019. A bacterial β-1,3-galactosyltransferase enables multigram-scale synthesis of human milk lacto-N-tetraose (LNT) and its fucosides. ACS Catal 9:10721–26
    [Google Scholar]
  81. McKee LS, Sunner H, Anasontzis GE, Toriz G, Gatenholm P et al. 2016. A GH115 α-glucuronidase from Schizophyllum commune contributes to the synergistic enzymatic deconstruction of softwood glucuronoarabinoxylan. Biotechnol. Biofuels 9:2
    [Google Scholar]
  82. Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M et al. 2010. Cooperation of β-galactosidase and β-N-acetylhexosaminidase from Bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 20:1402–9
    [Google Scholar]
  83. Morrow AL, Ruiz-Palacios GM, Jiang X, Newburg DS. 2005. Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 135:1304–7
    [Google Scholar]
  84. Muanprasat C, Chatsudthipong V. 2017. Chitosan oligosaccharide: biological activities and potential therapeutic applications. Pharmacol. Ther. 170:80–97
    [Google Scholar]
  85. Murata T, Inukai T, Suzuki M, Yamagishi M, Usui T. 1999. Facile enzymatic conversion of lactose into lacto-N-tetraose and lacto-N-neotetraose. Glycoconj. J. 16:18995
    [Google Scholar]
  86. Nabarlatz D, Montane D, Kardosova A, Bekesova S, Hrıbalova V, Ebringerova A. 2007. Almond shell xylooligosaccharides exhibiting immunostimulatory activity. Carbohydr. Res. 342:1122–28
    [Google Scholar]
  87. Nalepa B, Siemianowska E, Skibniewska KA. 2012. Influence of Bifidobacterium bifidum on release of minerals from bread with differing bran content. J. Toxicol. Environ. Health A 75:1–5
    [Google Scholar]
  88. Natividad JM, Rytz A, Keddani S, Bergonzelli G, Garcia-Rodenas CL. 2020. Blends of human milk oligosaccharides confer intestinal epithelial barrier protection in vitro. Nutrients 12:3047
    [Google Scholar]
  89. Nie QX, Chen HH, Hu JL, Tan HZ, Nie SP, Xie MY. 2020. Effects of nondigestible oligosaccharides on obesity. Annu. Rev. Food Sci. Technol. 11:205–33
    [Google Scholar]
  90. O'Donnell MM, Forde BM, Neville B, Ross PR, O'Toole PW. 2011. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb. Cell Fact. 10:S12
    [Google Scholar]
  91. Ohbuchi T, Takahashi T, Azumi N, Sakaino M. 2009. Structual analysis of neutral and acidic xylooligosaccharides from hardwood Kraft pulp, and their utilization by intestinal bacteria in vitro. Biosci. Biotechnol. Biochem. 73:2070–76
    [Google Scholar]
  92. Okamoto Y, Yano R, Miyatake K, Tomohiro I, Shigemasa Y, Minami S. 2003. Effects of chitin and chitosan on blood coagulation. Carbohydr. Polym. 53:337–42
    [Google Scholar]
  93. Osanjo G, Dion M, Drone J, Solleux C, Tran V et al. 2007. Directed evolution of the α-L-fucosidase from Thermotoga maritima into an α-L-transfucosidase. Biochemistry 46:1022–33
    [Google Scholar]
  94. Otieno DO. 2010. Synthesis of β-galactooligosaccharides from lactose using microbial β-galactosidases. Compr. Rev. Food Sci. Food Saf. 9:471–82
    [Google Scholar]
  95. Palaniappan A, Antony U, Emmambux MN 2021. Current status of xylooligosaccharides: production, characterization, health benefits and food application. Trends Food Sci. Technol. 111:506–19
    [Google Scholar]
  96. Park HR, Eom DH, Kim JH, Shin JC, Shin MS, Shin KS. 2021. Composition analysis and oral administered effects on dextran sulfate sodium-induced colitis of galactooligosaccharides bioconverted by Bacillus circulans. Carbohydr. Polym. 270:118389
    [Google Scholar]
  97. Patel A, Falck P, Shah N, Immerzeel P, Adlercreutz P et al. 2013. Evidence for xylooligosaccharide utilization in Weissella strains isolated from Indian fermented foods and vegetables. FEMS Microbiol. Lett. 346:20–28
    [Google Scholar]
  98. Poshina DN, Raik SV, Sukhova AA, Tyshkunova IV, Romanov DP et al. 2020. Nonspecific enzymatic hydrolysis of a highly ordered chitopolysaccharide substrate. Carbohydr. Res. 498:108191
    [Google Scholar]
  99. Rahman MH, Hjeljord LG, Aam BB, Sorlie M. 2015. Antifungal effect of chito-oligosaccharides with different degrees of polymerization. Eur. J. Plant Pathol. 141:147–58
    [Google Scholar]
  100. Rao M, Chander R, Sharma A. 2008. Synergistic effect of chitooligosaccharides and lysozyme for meat preservation. Food Sci. Technol. Lebensm. Wiss. Technol. 41:1995–2001
    [Google Scholar]
  101. Renaudie L, Daniellou R, Augé C, Le Narvor C. 2004. Enzymatic supported synthesis of lacto-N-neotetraose using dendrimeric polyethylene glycol. Carbohydr. Res. 339:693–98
    [Google Scholar]
  102. Rodriguez-Colinas B, Fernandez-Arrojo L, Ballesteros AO, Plou FJ. 2014. Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem 145:388–94
    [Google Scholar]
  103. Sadeq HA, Amin I, Mohd YM, Shuhaimi M, Rokiah MY, Fouad AH. 2013. Prebiotics as functional foods: a review. J. Funct. Foods 5:1542–53
    [Google Scholar]
  104. Salli K, Hirvonen J, Siitonen J, Ahonen I, Anglenius H, Maukonen J. 2021. Selective utilization of the human milk oligosaccharides 2′-fucosyllactose, 3‑fucosyllactose, and difucosyllactose by various probiotic and pathogenic bacteria. J. Agric. Food Chem. 69:170–82
    [Google Scholar]
  105. Salli K, Soderling E, Hirvonen J, Gursoy UK, Ouwehand AC. 2020. Influence of 2′-fucosyllactose and galacto-oligosaccharides on the growth and adhesion of Streptococcus mutans. Br. J. Nutr. 124:824–31
    [Google Scholar]
  106. Sangwan V, Tomar SK, Ali B, Singh RRB, Singh AK. 2015. Production of β-galactosidase from Streptococcus thermophilus for galactooligosaccharides synthesis. J. Food Sci. Technol. 52:4206–15
    [Google Scholar]
  107. Sathitkowitchai W, Suratannon N, Keawsompong S, Weerapakorn W, Patumcharoenpol P et al. 2021. A randomized trial to evaluate the impact of copra meal hydrolysate on gastrointestinal symptoms and gut microbiome. PeerJ 9:e12158
    [Google Scholar]
  108. Sheng KL, He SM, Sun M, Zhang GH, Kong XW et al. 2020. Synbiotic supplementation containing Bifidobacterium infantis and xylooligosaccharides alleviates dextran sulfate sodium-induced ulcerative colitis. Food Funct 11:3964–74
    [Google Scholar]
  109. Shi R, Ma JW, Yang QJ, Yang SQ, Fan ZH, Jiang ZQ. 2020. Biochemical characterization of a novel α-L-fucosidase from Pedobacter sp. and its application in synthesis of 3′-fucosyllactose and 2′-fucosyllactose. Appl. Microbiol. Biotechnol. 104:5813–26
    [Google Scholar]
  110. Singh A, Benjakul S, Zhou P, Zhang B, Deng SG. 2021. Effect of squid pen chitooligosaccharide and epigallocatechin gallate on discoloration and shelf-life of yellowfin tuna slices during refrigerated storage. Food Chem 351:129296
    [Google Scholar]
  111. Srivastava PK, Panwar D, Prashanth KVH, Kapoor M. 2017. Structural characterization and in vitro fermentation of β-mannooligosaccharides produced from locust bean gum by GH-26 endo-β-1,4-mannanase (ManB-1601). J. Agric. Food Chem. 65:2827–38
    [Google Scholar]
  112. Su HP, Sun JA, Chu WQ, Yuan B, Mao XZ. 2022. Biochemical characterization and cleavage pattern analysis of a novel chitosanase with cellulase activity. Appl. Microbiol. Biotechnol. 106:1979–90
    [Google Scholar]
  113. Terrone CC, Montesino de Freitas Nascimento J, Fanchini Terrasan CR, Brienzo M, Carmona EC 2020. Salt-tolerant α-arabinofuranosidase from a new specie Aspergillus hortai CRM1919: production in acid conditions, purification, characterization and application on xylan hydrolysis. Biocatal. Agric. Biotechnol. 23:101460
    [Google Scholar]
  114. Thurl S, Munzert M, Boehm G, Matthews C, Stahl B. 2017. Systematic review of the concentrations of oligosaccharides in human milk. Nutr. Rev. 75:920–33
    [Google Scholar]
  115. Tokoro A, Tatewaki N, Suzuki K. 1988. Growth inhibitory effect of hexa-N-acetylchitohexaose and chitohexaose against Meth-A solid tumor. Chem. Pharm. Bull. 36:784–90
    [Google Scholar]
  116. Vacilotto MM, Pellegrini VOA, Sepulchro AGV, Capetti CCD, Curvelo AAS et al. 2022. Paludibacter propionicigenes GH10 xylanase as a tool for enzymatic xylooligosaccharides production from heteroxylans. Carbohydr. Polym. 275:118684
    [Google Scholar]
  117. Van den Abbeele P, Duysburgh C, Vazquez E, Chow J, Marzorati M. 2019. 2′-Fucosyllactose alters the composition and activity of gut microbiota from formula-fed infants receiving complementary feeding in a validated intestinal model. J. Funct. Foods 61:103484
    [Google Scholar]
  118. Van den Abbeele P, Sprenger N, Ghyselinck J, Marsaux B, Marzorati M, Rochat F. 2021. A comparison of the in vitro effects of 2′-fucosyllactose and lactose on the composition and activity of gut microbiota from infants and toddlers. Nutrients 13:726
    [Google Scholar]
  119. van Trijp MPH, Rosch C, An R, Keshtkar S, Logtenberg MJ et al. 2020. Fermentation kinetics of selected dietary fibers by human small intestinal microbiota depend on the type of fiber and subject. Mol. Nutr. Food Res. 64:e2000455
    [Google Scholar]
  120. Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagstrom H et al. 2018. Human milk oligosaccharides: 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 10:1161
    [Google Scholar]
  121. Vandenplas Y, Zakharova I, Dmitrieva Y. 2015. Oligosaccharides in infant formula: more evidence to validate the role of prebiotics. Brit. J. Nutr. 113:1339–44
    [Google Scholar]
  122. Vera C, Guerrero C, Conejeros R, Illanes A. 2012. Synthesis of galacto-oligosaccharides by β-galactosidase from Aspergillus oryzae using partially dissolved and supersaturated solution of lactose. Enzym. Microb. Technol. 50:188–94
    [Google Scholar]
  123. Viens P, Lacombe-Harvey , Brzezinski R 2015. Chitosanases from family 46 of glycoside hydrolases: from proteins to phenotypes. Mar. Drugs 13:6566–87
    [Google Scholar]
  124. Vigsnaes LK, Ghyselinck J, Van den Abbeele P, McConnell B, Moens F et al. 2021. 2′-FL and LNnT exert antipathogenic effects against C. difficile ATCC 9689 in vitro, coinciding with increased levels of Bifidobacteriaceae and/or secondary bile acids. Pathogens 10:927
    [Google Scholar]
  125. Walton GE, van den Heuvel EGHM, Kosters MHW, Rastall RA, Tuohy KM, Gibson GR. 2012. A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Brit. J. Nutr. 107:1466–75
    [Google Scholar]
  126. Wang G, Rasko DA, Sherburne R, Taylor DE. 1999. Molecular genetic basis for the variable expression of Lewis Y antigen in Helicobacter pylori: analysis of the α(1,2)fucosyltransferase gene. Mol. Microbiol. 31:1265–74
    [Google Scholar]
  127. Wang NN, Liu J, Li YX, Ma JW, Yan QJ, Jiang ZQ. 2021. High-level expression of a glycoside hydrolase family 26 β-mannanase from Aspergillus niger in Pichia pastoris for production of partially hydrolysed fenugreek gum. Process Biochem 100:90–97
    [Google Scholar]
  128. Wang YJ, Wen R, Liu DD, Zhang C, Wang ZA, Du YG. 2021. Exploring effects of chitosan oligosaccharides on the DSS-induced intestinal barrier impairment in vitro and in vivo. Molecules 26:2199
    [Google Scholar]
  129. Wei XY, Fu XD, Xiao MS, Liu ZM, Zhang LW, Mou HJ. 2020. Dietary galactosyl and mannosyl carbohydrates: in-vitro assessment of prebiotic effects. Food Chem 329:127179
    [Google Scholar]
  130. Xavier-Santos D, Bedani R, Perego P, Converti A, Saad SMI. 2019. L. acidophilus La-5, fructo-oligosaccharides and inulin may improve sensory acceptance and texture profile of a synbiotic diet mousse. Food Sci. Technol. Lebensm. Wiss. Technol. 105:329–35
    [Google Scholar]
  131. Yamabhai M, Sak-Ubol S, Srila W, Haltrich D. 2016. Mannan biotechnology: from biofuels to health. Crit. Rev. Biotechnol. 36:32–42
    [Google Scholar]
  132. Yazbeck R, Lindsay RJ, Geier MS, Butler RN, Howarth GS. 2019. Prebiotics fructo-, galacto-, and mannan-oligosaccharide do not protect against 5-fluorouracil-induced intestinal mucositis in rats. J. Nutr. 149:2164–73
    [Google Scholar]
  133. Yin DT, Zhao XH. 2017. Impact of exogenous strains on in vitro fermentation and anti-colon cancer activities of maize resistant starch and xylo-oligosaccharides. Starch 69:11–121700064
    [Google Scholar]
  134. Yousef M, Pichyangkura R, Soodvilai S, Chatsudthipong V, Muanprasat C. 2012. Chitosan oligosaccharide as potential therapy of inflammatory bowel disease: therapeutic efficacy and possible mechanisms of action. Pharmacol. Res. 66:66–79
    [Google Scholar]
  135. Zeuner B, Meyer AS. 2020. Enzymatic transfucosylation for synthesis of human milk oligosaccharides. Carbohydr. Res. 493:108029
    [Google Scholar]
  136. Zeuner B, Muschiol J, Holck J, Lezyk M, Gedde MR et al. 2018. Substrate specificity and transfucosylation activity of GH29 α-L-fucosidases for enzymatic production of human milk oligosaccharides. New Biotechnol. 41:34–45
    [Google Scholar]
  137. Zeuner B, Nyffenegger C, Mikkelsen JD, Meyer AS. 2016. Thermostable β-galactosidases for the synthesis of human milk oligosaccharides. New Biotechnol 33:355–60
    [Google Scholar]
  138. Zhang A, He Y, Wei G, Zhou J, Dong W et al. 2018. Molecular characterization of a novel chitinase CmChi1 from Chitinolyticbacter meiyuanensis SYBC-H1 and its use in N-acetyl-d-glucosamine production. Biotechnol. Biofuels 11:179
    [Google Scholar]
  139. Zhang HS, Yang JG, Zhao Y, Hong SZ, Jinggan Y, Yan Z 2002. The glucomannan from ramie. Carbohydr. Polym. 47:83–86
    [Google Scholar]
  140. Zhang XY, Yang HB, Zheng JP, Jiang N, Sun GJ et al. 2021. Chitosan oligosaccharides attenuate loperamide-induced constipation through regulation of gut microbiota in mice. Carbohydr. Polym. 253:117218
    [Google Scholar]
  141. Zhang Y, Guan FF, Xu GS, Liu XQ, Zhang YH et al. 2022. A novel thermophilic chitinase directly mined from the marine metagenome using the deep learning tool Preoptem. Bioresour. Bioprocess. 9:54
    [Google Scholar]
  142. Zhao JC, Mu YL, Gu XY, Xu XN, Guo TT, Kong J. 2022. Site-directed mutation of β-galactosidase from Streptococcus thermophilus for galactooligosaccharide-enriched yogurt making. J. Dairy Sci. 105:940–49
    [Google Scholar]
  143. Zhao X, Yu Z, Wang T, Guo X, Luan J et al. 2016. The use of chitooligosaccharide in beer brewing for protection against beer-spoilage bacteria and its influence on beer performance. Biotechnol. Lett. 38:629–35
    [Google Scholar]
  144. Zhou WT, Jiang H, Wang LL, Liang XX, Mao XZ. 2021. Biotechnological production of 2′-fucosyllactose: a prevalent fucosylated human milk oligosaccharide. ACS Synth. Biol. 10:447–58
    [Google Scholar]
  145. Zhu D, Yan Q, Liu J, Wu X, Jiang Z. 2019. Can functional oligosaccharides reduce the risk of diabetes mellitus?. FASEB J 33:11655–67
    [Google Scholar]
  146. Zhu Y, Luo G, Li Z, Zhang P, Zhang W, Mu W. 2022. Efficient biosynthesis of lacto-N-neotetraose by a novel β-1,4-galactosyltransferase from Aggregatibacter actinomycetemcomitans NUM4039. Enzyme Microb. Technol. 153:109912
    [Google Scholar]
  147. Zou P, Yang X, Wang J, Li YF, Yu HL et al. 2016. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem 190:1174–81
    [Google Scholar]
/content/journals/10.1146/annurev-food-052720-114503
Loading
/content/journals/10.1146/annurev-food-052720-114503
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error