1932

Abstract

The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and -fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-060721-013526
2024-06-28
2025-02-11
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-060721-013526.html?itemId=/content/journals/10.1146/annurev-food-060721-013526&mimeType=html&fmt=ahah

Literature Cited

  1. Aaslyng MD, Højer R. 2021.. Introducing tempeh as a new plant-based protein food item on the Danish market. . Foods 10:(11):2865
    [Crossref] [Google Scholar]
  2. Abu-Salem FM, Abou-Arab EA. 2011.. Physico-chemical properties of tempeh produced from chickpea seeds. . J. Am. Sci. 7:(7):10718
    [Google Scholar]
  3. Achinewhu S, Ryley J. 1986.. Effect of fermentation on the thiamin, riboflavin and niacin contents of melon seed (Citrullus vulgaris) and African oil bean seed (Pentaclethra macrophylla). . Food Chem. 20:(4):24352
    [Crossref] [Google Scholar]
  4. Adebo JA, Njobeh PB, Gbashi S, Oyedeji AB, Ogundele OM, et al. 2022.. Fermentation of cereals and legumes: impact on nutritional constituents and nutrient bioavailability. . Fermentation 8:(2):63
    [Crossref] [Google Scholar]
  5. Adegbehingbe KT, Adetuyi FC, Akinyosoye FA. 2014.. Effect of fermentation on nutrient and anti-nutrient contents of ground-cooked lima bean (Phaseolus lunatus) seeds using Bacillus subtilis and Bacillus pumilus. . Br. Microbiol. Res. J. 4:(11):128598
    [Crossref] [Google Scholar]
  6. Aerts D, Hauer EE, Ohm RA, Arentshorst M, Teertstra WR, et al. 2018.. The FlbA-regulated predicted transcription factor Fum21 of Aspergillus niger is involved in fumonisin production. . Antonie Van Leeuwenhoek 111::31122
    [Crossref] [Google Scholar]
  7. Afifah DN, Sulchan M, Syah D, Suhartono MT. 2015.. The use of red oncom powder as potential production media for fibrinogenolytic protease derived from Bacillus licheniformis RO3. . Procedia Food Sci. 3::45364
    [Crossref] [Google Scholar]
  8. Ahmad R, Dalziel JE. 2020.. G protein-coupled receptors in taste physiology and pharmacology. . Front. Pharmacol. 11::587664
    [Crossref] [Google Scholar]
  9. Aliani M, Farmer LJ. 2005.. Precursors of chicken flavor. II. Identification of key flavor precursors using sensory methods. . J. Agric. Food Chem. 53:(16):645562
    [Crossref] [Google Scholar]
  10. Allagheny N, Obanu Z, Campbell-Platt G, Owens J. 1996.. Control of ammonia formation during Bacillus subtilis fermentation of legumes. . Int. J. Food Microbiol. 29:(2–3):32133
    [Crossref] [Google Scholar]
  11. Allwood JG, Wakeling LT, Bean DC. 2021.. Fermentation and the microbial community of Japanese koji and miso: a review. . J. Food Sci. 86:(6):2194207
    [Crossref] [Google Scholar]
  12. Antony U, Chandra T. 1998.. Antinutrient reduction and enhancement in protein, starch, and mineral availability in fermented flour of finger millet (Eleusine coracana). . J. Agric. Food Chem. 46:(7):257882
    [Crossref] [Google Scholar]
  13. Appels FV, Dijksterhuis J, Lukasiewicz CE, Jansen KM, Wösten HA, Krijgsheld P. 2018.. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. . Sci. Rep. 8:(1):4703
    [Crossref] [Google Scholar]
  14. Arbab Sakandar H, Chen Y, Peng C, Chen X, Imran M, Zhang H. 2021.. Impact of fermentation on antinutritional factors and protein degradation of legume seeds: a review. . Food Rev. Int. 39:(3):122749
    [Crossref] [Google Scholar]
  15. Bao J, Zhang X, Zheng J-H, Ren D-F, Lu J. 2018.. Mixed fermentation of Spirulina platensis with Lactobacillus plantarum and Bacillus subtilis by random-centroid optimization. . Food Chem. 264::6472
    [Crossref] [Google Scholar]
  16. Barzee TJ, Cao L, Pan Z, Zhang R. 2021.. Fungi for future foods. . J. Future Foods 1:(1):2537
    [Crossref] [Google Scholar]
  17. Beaumont M. 2002.. Flavouring composition prepared by fermentation with Bacillus spp. . Int. J. Food Microbiol. 75:(3):18996
    [Crossref] [Google Scholar]
  18. Benoit I, Zhou M, Vivas Duarte A, Downes DJ, Todd RB, et al. 2015.. Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. . Sci. Rep. 5::13592
    [Crossref] [Google Scholar]
  19. Boroojeni FG, Kozłowski K, Jankowski J, Senz M, Wiśniewska M, et al. 2018.. Fermentation and enzymatic treatment of pea for turkey nutrition. . Anim. Feed Sci. Technol. 237::7888
    [Crossref] [Google Scholar]
  20. Bredie W, Hassell G, Guy R, Mottram D. 1997.. Aroma characteristics of extruded wheat flour and wheat starch containing added cysteine and reducing sugars. . J. Cereal Sci. 25:(1):5763
    [Crossref] [Google Scholar]
  21. Bredie W, Mottram D, Hassell G, Guy R. 1998.. Sensory characterisation of the aromas generated in extruded maize and wheat flour. . J. Cereal Sci. 28:(1):97106
    [Crossref] [Google Scholar]
  22. Burdock GA, Soni MG, Carabin IG. 2001.. Evaluation of health aspects of kojic acid in food. . Regul. Toxicol. Pharmacol. 33:(1):80101
    [Crossref] [Google Scholar]
  23. Cai J, Han Y, Wu W, Wu X, Mu D, et al. 2022.. Correlation analysis of microbiota and volatile flavor compounds of caishiji soybean paste. . Fermentation 8:(5):196
    [Crossref] [Google Scholar]
  24. Cai S, Gao F, Zhang X, Wang O, Wu W, et al. 2014.. Evaluation of γ-aminobutyric acid, phytate and antioxidant activity of tempeh-like fermented oats (Avena sativa L.) prepared with different filamentous fungi. . J. Food Sci. Technol. 51:(10):254451
    [Crossref] [Google Scholar]
  25. Catalán E, Sánchez A. 2020.. Solid-state fermentation (SSF) versus submerged fermentation (SmF) for the recovery of cellulases from coffee husks: a life cycle assessment (LCA) based comparison. . Energies 13:(11):2685
    [Crossref] [Google Scholar]
  26. Chavan U, Chavan J, Kadam S. 1988.. Effect of fermentation on soluble proteins and in vitro protein digestibility of sorghum, green gram and sorghum-green gram blends. . J. Food Sci. 53:(5):157475
    [Crossref] [Google Scholar]
  27. Chen L, Madl RL, Vadlani PV. 2013.. Nutritional enhancement of soy meal via Aspergillus oryzae solid-state fermentation. . Cereal Chem. 90:(6):52934
    [Crossref] [Google Scholar]
  28. Chevance FF, Farmer LJ. 1999.. Release of volatile odor compounds from full-fat and reduced-fat frankfurters. . J. Agric. Food Chem. 47:(12):516168
    [Crossref] [Google Scholar]
  29. Chukeatirote E, Eungwanichayapant P, Kanghae A. 2017.. Determination of volatile components in fermented soybean prepared by a co-culture of Bacillus subtilis and Rhizopus oligosporus. . Food Res. 1::22533
    [Crossref] [Google Scholar]
  30. Clonan A, Roberts KE, Holdsworth M. 2016.. Socioeconomic and demographic drivers of red and processed meat consumption: implications for health and environmental sustainability. . Proc. Nutr. Soc. 75:(3):36773
    [Crossref] [Google Scholar]
  31. Contesini FJ, de Melo RR, Sato HH. 2018.. An overview of Bacillus proteases: from production to application. . Crit. Rev. Biotechnol. 38:(3):32134
    [Crossref] [Google Scholar]
  32. Couto SR, Sanromán MA. 2006.. Application of solid-state fermentation to food industry—a review. . J. Food Eng. 76:(3):291302
    [Crossref] [Google Scholar]
  33. Cuevas-Rodríguez E, MiIán-Carrillo J, Mora-Escobedo R, Cárdenas-Valenzuela O, Reyes-Moreno C. 2004.. Quality protein maize (Zea mays L.) tempeh flour through solid state fermentation process. . LWT 37:(1):5967
    [Crossref] [Google Scholar]
  34. Daba GM, Mostafa FA, Elkhateeb WA. 2021.. The ancient koji mold (Aspergillus oryzae) as a modern biotechnological tool. . Bioresour. Bioprocess. 8:(1):52
    [Crossref] [Google Scholar]
  35. Dai C, Ma H, He R, Huang L, Zhu S, et al. 2017.. Improvement of nutritional value and bioactivity of soybean meal by solid-state fermentation with Bacillus subtilis. . LWT 86::17
    [Crossref] [Google Scholar]
  36. De Smet S, Vossen E. 2016.. Meat: the balance between nutrition and health. A review. . Meat Sci. 120::14556
    [Crossref] [Google Scholar]
  37. Dekkers BL, Boom RM, van der Goot AJ. 2018.. Structuring processes for meat analogues. . Trends Food Sci. Technol. 81::2536
    [Crossref] [Google Scholar]
  38. Desobgo SC, Mishra SS, Behera SK, Panda SK. 2017.. Scaling-up and modelling applications of solid-state fermentation and demonstration in microbial enzyme production related to food industries: an overview. . In Microbial Enzyme Technology in Food Applications, ed. RC Ray, CM Rosell , pp. 45268. Boca Raton, FL:: CRC Press
    [Google Scholar]
  39. EFSA BIOHAZ. 2013.. Scientific opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update). . EFSA J. 11:(11):3449
    [Google Scholar]
  40. Egounlety M, Aworh O. 2003.. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). . J. Food Eng. 56:(2–3):24954
    [Crossref] [Google Scholar]
  41. Eklund-Jonsson C, Sandberg A-S, Alminger ML. 2006.. Reduction of phytate content while preserving minerals during whole grain cereal tempe fermentation. . J. Cereal Sci. 44:(2):15460
    [Crossref] [Google Scholar]
  42. Elango D, Rajendran K, Van der Laan L, Sebastiar S, Raigne J, et al. 2022.. Raffinose family oligosaccharides: friend or foe for human and plant health?. Front. Plant Sci. 13::829118
    [Crossref] [Google Scholar]
  43. EU. 2011.. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and 2008/5/EC and Commission Regulation (EC) No 608/2004. . Off. J. Eur. Union 304::1863
    [Google Scholar]
  44. EU. 2015.. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. . Off. J. Eur. Union 327::122
    [Google Scholar]
  45. Farkouh A, Baumgärtel C. 2019.. Mini-review: medication safety of red yeast rice products. . Int. J. Gen. Med. 12::167
    [Crossref] [Google Scholar]
  46. FDA (US Food Drug Admin.). 1997.. Substances generally recognized as safe; proposed rule (21 CFR Parts 170, 184, 186, and 570) [Docket No. 97N-0103]. Fed. Regist, Vol. 62, No. 74 , US Food Drug Admin., Washington, DC:. https://www.govinfo.gov/content/pkg/FR-1997-04-17/pdf/97-9706.pdf
    [Google Scholar]
  47. Finnigan TJ, Wall BT, Wilde PJ, Stephens FB, Taylor SL, Freedman MR. 2019.. Mycoprotein: the future of nutritious nonmeat protein, a symposium review. . Curr. Dev. Nutr. 3:(6):nzz021
    [Crossref] [Google Scholar]
  48. Frias J, Song YS, Martínez-Villaluenga C, De Mejia EG, Vidal-Valverde C. 2008.. Immunoreactivity and amino acid content of fermented soybean products. . J. Agric. Food Chem. 56:(1):99105
    [Crossref] [Google Scholar]
  49. Gao Y, Wang C, Zhu Q, Qian G. 2013.. Optimization of solid-state fermentation with Lactobacillus brevis and Aspergillus oryzae for trypsin inhibitor degradation in soybean meal. . J. Integr. Agric. 12:(5):86976
    [Crossref] [Google Scholar]
  50. Gmoser R, Fristedt R, Larsson K, Undeland I, Taherzadeh MJ, Lennartsson PR. 2020.. From stale bread and brewers spent grain to a new food source using edible filamentous fungi. . Bioengineered 11:(1):58298
    [Crossref] [Google Scholar]
  51. Güntert M, Brüning J, Emberger R, Hopp R, Köpsel M, et al. 1992.. Thermally degraded thiamin: a potent source of interesting flavor compounds. . In Flavor Precursors, Vol. 490, ed. R Teranishi, GR Takeoka, M Güntert , pp. 14063. New York:: ACS Publ.
    [Google Scholar]
  52. Hajeb P, Jinap S. 2015.. Umami taste components and their sources in Asian foods. . Crit. Rev. Food Sci. Nutr. 55:(6):77891
    [Crossref] [Google Scholar]
  53. Handoyo T, Morita N. 2006.. Structural and functional properties of fermented soybean (tempeh) by using Rhizopus oligosporus. . Int. J. Food Prop. 9:(2):34755
    [Crossref] [Google Scholar]
  54. Harwood CR, Kikuchi Y. 2022.. The ins and outs of Bacillus proteases: activities, functions and commercial significance. . FEMS Microbiol. Rev. 46:(1):fuab046
    [Crossref] [Google Scholar]
  55. Henchion M, Hayes M, Mullen AM, Fenelon M, Tiwari B. 2017.. Future protein supply and demand: strategies and factors influencing a sustainable equilibrium. . Foods 6:(7):53
    [Crossref] [Google Scholar]
  56. Herman KC, Wösten HA, Fricker MD, Bleichrodt R-J. 2020.. Growth induced translocation effectively directs an amino acid analogue to developing zones in Agaricus bisporus. . Fungal Biol. 124:(12):101323
    [Crossref] [Google Scholar]
  57. Heyland S, Dac TH, Hose H, Wood RD. 1995.. Flavorant composition prepared by fermentation. US Patent 5,476,773
    [Google Scholar]
  58. Hirabayashi M, Matsui T, Yano H. 1998.. Fermentation of soybean meal with Aspergillus usamii improves zinc availability in rats. . Biol. Trace Elem. Res. 61:(2):22734
    [Crossref] [Google Scholar]
  59. Hölker U, Höfer M, Lenz J. 2004.. Biotechnological advantages of laboratory-scale solid-state fermentation with fungi. . Appl. Microbiol. Biotechnol. 64::17586
    [Crossref] [Google Scholar]
  60. Hong K-J, Lee C-H, Kim SW. 2004.. Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. . J. Med. Food 7:(4):43035
    [Crossref] [Google Scholar]
  61. Huang X, Yu S, Han B, Chen J. 2018.. Bacterial community succession and metabolite changes during sufu fermentation. . LWT 97::53745
    [Crossref] [Google Scholar]
  62. Ilić J, Djekic I, Tomasevic I, Oosterlinck F, van den Berg MA. 2022.. Materials properties, oral processing, and sensory analysis of eating meat and meat analogs. . Annu. Rev. Food Sci. Technol. 13::193215
    [Crossref] [Google Scholar]
  63. Inatsu Y, Nakamura N, Yuriko Y, Fushimi T, Watanasiritum L, Kawamoto S. 2006.. Characterization of Bacillus subtilis strains in Thua nao, a traditional fermented soybean food in northern Thailand. . Lett. Appl. Microbiol. 43:(3):23742
    [Crossref] [Google Scholar]
  64. Jeyakumar E, Lawrence R. 2022.. Microbial fermentation for reduction of antinutritional factors. . In Current Developments in Biotechnology and Bioengineering, ed. AK Rai, A Pandey, SP Singh, C Larroche, CR Soccol , pp. 23960. Amsterdam:: Elsevier
    [Google Scholar]
  65. Jiang X, Cui Z, Wang L, Xu H, Zhang Y. 2020.. Production of bioactive peptides from corn gluten meal by solid-state fermentation with Bacillus subtilis MTCC5480 and evaluation of its antioxidant capacity in vivo. . LWT 131::109767
    [Crossref] [Google Scholar]
  66. Joo M-H, Hur S-H, Han Y-S, Kim J-Y. 2007.. Isolation, identification, and characterization of Bacillus strains from the traditional Korean soybean-fermented food, Chungkookjang. . J. Appl. Biol. Chem. 50:(4):20210
    [Google Scholar]
  67. Jurgenson CT, Begley TP, Ealick SE. 2009.. The structural and biochemical foundations of thiamin biosynthesis. . Annu. Rev. Biochem. 78::569603
    [Crossref] [Google Scholar]
  68. Kamada M, Hase S, Fujii K, Miyake M, Sato K, et al. 2015.. Whole-genome sequencing and comparative genome analysis of Bacillus subtilis strains isolated from non-salted fermented soybean foods. . PLOS ONE 10:(10):e0141369
    [Crossref] [Google Scholar]
  69. Ketnawa S, Ogawa Y. 2021.. In vitro protein digestibility and biochemical characteristics of soaked, boiled and fermented soybeans. . Sci. Rep. 11::14257
    [Crossref] [Google Scholar]
  70. Kim K, Choi B, Lee I, Lee H, Kwon S, et al. 2011.. Bioproduction of mushroom mycelium of Agaricus bisporus by commercial submerged fermentation for the production of meat analogue. . J. Sci. Food Agric. 91:(9):156168
    [Crossref] [Google Scholar]
  71. Ko C, Davies A, Auty M. 2023.. Putting meat to the test: imaging and mechanical testing used to understand the properties of meat alternatives and how they mimic our typical meat sensory experience. . Microsc. Today 31:(2):2125
    [Crossref] [Google Scholar]
  72. Krijgsheld P, Nitsche BM, Post H, Levin AM, Muller WH, et al. 2013.. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger. . J. Proteome Res. 12:(4):180819
    [Crossref] [Google Scholar]
  73. Kumar A, Chanderman A, Makolomakwa M, Perumal K, Singh S. 2016.. Microbial production of phytases for combating environmental phosphate pollution and other diverse applications. . Crit. Rev. Environ. Sci. Technol. 46:(6):55691
    [Crossref] [Google Scholar]
  74. Kumar M, Tomar M, Potkule J, Punia S, Dhakane-Lad J, et al. 2022.. Functional characterization of plant-based protein to determine its quality for food applications. . Food Hydrocoll. 123::106986
    [Crossref] [Google Scholar]
  75. Kumitch HM, Stone A, Nosworthy MG, Nickerson MT, House JD, et al. 2020.. Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. . Cereal Chem. 97:(1):10413
    [Crossref] [Google Scholar]
  76. Leonard W, Zhang P, Ying D, Fang Z. 2022.. Surmounting the off-flavor challenge in plant-based foods. . Crit. Rev. Food Sci. Nutr. 63:(30):10585606
    [Crossref] [Google Scholar]
  77. Li Q, Zhang L, Lametsch R. 2022.. Current progress in kokumi-active peptides, evaluation and preparation methods: a review. . Crit. Rev. Food Sci. Nutr. 62:(5):123041
    [Crossref] [Google Scholar]
  78. López-Gómez JP, Manan MA, Webb C. 2020.. Solid-state fermentation of food industry wastes. . In Food Industry Wastes, ed. MR Kosseva, C Web , pp. 13561. Oxford, UK:: Elsevier. , 2nd ed..
    [Google Scholar]
  79. López-Moreno M, Garcés-Rimón M, Miguel M. 2022.. Antinutrients: lectins, goitrogens, phytates and oxalates, friends or foe?. J. Funct. Foods 89::104938
    [Crossref] [Google Scholar]
  80. Lund MN, Ray CA. 2017.. Control of Maillard reactions in foods: strategies and chemical mechanisms. . J. Agric. Food Chem. 65:(23):453752
    [Crossref] [Google Scholar]
  81. Madruga MS, Mottram DS. 1995.. The effect of pH on the formation of Maillard-derived aroma volatiles using a cooked meat system. . J. Sci. Food Agric. 68:(3):30510
    [Crossref] [Google Scholar]
  82. Maestri E, Marmiroli M, Marmiroli N. 2016.. Bioactive peptides in plant-derived foodstuffs. . J. Proteom. 147::14055
    [Crossref] [Google Scholar]
  83. Meerak J, Iida H, Watanabe Y, Miyashita M, Sato H, et al. 2007.. Phylogeny of γ-polyglutamic acid-producing Bacillus strains isolated from fermented soybean foods manufactured in Asian countries. . J. Gen. Appl. Microbiol. 53:(6):31523
    [Crossref] [Google Scholar]
  84. M'hir S, Rizzello C, Di Cagno R, Cassone A, Hamdi M. 2009.. Use of selected enterococci and Rhizopus oryzae proteases to hydrolyse wheat proteins responsible for celiac disease. . J. Appl. Microbiol. 106:(2):42131
    [Crossref] [Google Scholar]
  85. Mottram DS. 1998.. Flavour formation in meat and meat products: a review. . Food Chem. 62:(4):41524
    [Crossref] [Google Scholar]
  86. Moukha SM, Wösten HA, Asther M, Wessels JG. 1993.. In situ localization of the secretion of lignin peroxidases in colonies of Phanerochaete chrysosporium using a sandwiched mode of culture. . Microbiology 139:(5):96978
    [Google Scholar]
  87. Nissar J, Ahad T, Naik HR, Hussain SZ. 2017.. A review phytic acid: as antinutrient or nutraceutical. . J. Pharmacogn. Phytochem. 6:(6):155460
    [Google Scholar]
  88. Noordraven LE, Petersen MA, Van Loey AM, Bredie WL. 2021.. Flavour stability of sterilised chickpeas stored in pouches. . Curr. Res. Food Sci. 4::77383
    [Crossref] [Google Scholar]
  89. Nout RM. 2007.. The colonizing fungus as a food provider. . In Food Mycology, ed. J Dijksterhuis, RA Samson , pp. 34966. Boca Raton, FL:: CRC Press
    [Google Scholar]
  90. Ojinnaka M-TC, Ojimelukwe PC. 2013.. Study of the volatile compounds and amino acid profile in Bacillus fermented castor oil bean condiment. . J. Food Res. 2:(1):191
    [Crossref] [Google Scholar]
  91. Ojokoh AO, Yimin W. 2011.. Effect of fermentation on chemical composition and nutritional quality of extruded and fermented soya products. . Int. J. Food Eng. 7:(4). https://doi.org/10.2202/1556-3758.1857
    [Crossref] [Google Scholar]
  92. Olukomaiya OO, Adiamo OQ, Fernando WC, Mereddy R, Li X, Sultanbawa Y. 2020a.. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. . Food Chem. 315::126238
    [Crossref] [Google Scholar]
  93. Olukomaiya OO, Fernando WC, Mereddy R, Li X, Sultanbawa Y. 2020b.. Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: effects on physicochemical, microbiological and functional properties. . LWT 127::109362
    [Crossref] [Google Scholar]
  94. Owusu-Kwarteng J, Parkouda C, Adewumi GA, Ouoba LII, Jespersen L. 2022.. Technologically relevant Bacillus species and microbial safety of West African traditional alkaline fermented seed condiments. . Crit. Rev. Food Sci. Nutr. 62:(4):87188
    [Crossref] [Google Scholar]
  95. Padhi S, Chourasia R, Kumari M, Singh SP, Rai AK. 2022.. Production and characterization of bioactive peptides from rice beans using Bacillus subtilis. . Bioresour. Technol. 351::126932
    [Crossref] [Google Scholar]
  96. Paredes-Lopez O, Harry G. 1989.. Changes in selected chemical and antinutritional components during tempeh preparation using fresh and hardened common beans. . J. Food Sci. 54:(4):96870
    [Crossref] [Google Scholar]
  97. Parkouda C, Nielsen DS, Azokpota P, Ivette Iréne Ouoba L, Amoa-Awua WK, et al. 2009.. The microbiology of alkaline-fermentation of indigenous seeds used as food condiments in Africa and Asia. . Crit. Rev. Microbiol. 35:(2):13956
    [Crossref] [Google Scholar]
  98. Patel S, Gupta RS. 2020.. A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. . Int. J. Syst. Evol. Microbiol. 70:(1):40638
    [Crossref] [Google Scholar]
  99. Pi X, Fu G, Dong B, Yang Y, Wan Y, Xie M. 2021.. Effects of fermentation with Bacillus natto on the allergenicity of peanut. . LWT 141::110862
    [Crossref] [Google Scholar]
  100. Pinckaers PJ, Trommelen J, Snijders T, van Loon LJ. 2021.. The anabolic response to plant-based protein ingestion. . Sports Med. 51:(Suppl. 1):5974
    [Crossref] [Google Scholar]
  101. Prativi MBN, Astuti DI, Putri SP, Laviña WA, Fukusaki E, Aditiawati P. 2023.. Metabolite changes in Indonesian tempe production from raw soybeans to over-fermented tempe. . Metabolites 13:(2):300
    [Crossref] [Google Scholar]
  102. Qi L, Gao X, Pan D, Sun Y, Cai Z, et al. 2022.. Research progress in the screening and evaluation of umami peptides. . Compr. Rev. Food Sci. Food Saf. 21:(2):146290
    [Crossref] [Google Scholar]
  103. Radita R, Suwanto A, Kurosawa N, Wahyudi A, Rusmana I. 2018.. Firmicutes is the predominant bacteria in tempeh. . Int. Food Res. J. 25:(6):231320
    [Google Scholar]
  104. Rai AK, Sanjukta S, Chourasia R, Bhat I, Bhardwaj PK, Sahoo D. 2017.. Production of bioactive hydrolysate using protease, β-glucosidase and α-amylase of Bacillus spp. isolated from kinema. . Bioresour. Technol. 235::35865
    [Crossref] [Google Scholar]
  105. Ranjan A, Sahu NP, Deo AD, Kumar S. 2019.. Solid state fermentation of de-oiled rice bran: effect on in vitro protein digestibility, fatty acid profile and anti-nutritional factors. . Food Res. Int. 119::15
    [Crossref] [Google Scholar]
  106. Rizal S, Murhadi M, Kustyawati ME, Hasanudin U. 2020.. Growth optimization of Saccharomyces cerevisiae and Rhizopus oligosporus during fermentation to produce tempeh with high?-glucan content. . Biodiversitas 21:(6). https://doi.org/10.13057/biodiv/d210639
    [Crossref] [Google Scholar]
  107. Romulo A, Surya R. 2021.. Tempe: a traditional fermented food of Indonesia and its health benefits. . Int. J. Food Sci. 26::100413
    [Google Scholar]
  108. Rop O, Mlcek J, Jurikova T. 2009.. Beta-glucans in higher fungi and their health effects. . Nutr. Rev. 67:(11):62431
    [Crossref] [Google Scholar]
  109. AGA, Moreno YMF, Carciofi BAM. 2020.. Food processing for the improvement of plant proteins digestibility. . Crit. Rev. Food Sci. Nutr. 60:(20):336786
    [Crossref] [Google Scholar]
  110. Sanjukta S, Rai AK, Muhammed A, Jeyaram K, Talukdar NC. 2015.. Enhancement of antioxidant properties of two soybean varieties of Sikkim Himalayan region by proteolytic Bacillus subtilis fermentation. . J. Funct. Foods 14::65058
    [Crossref] [Google Scholar]
  111. Sarkar PK, Morrison E, Tinggi U, Somerset SM, Craven GS. 1998.. B-group vitamin and mineral contents of soybeans during kinema production. . J. Sci. Food Agric. 78:(4):498502
    [Crossref] [Google Scholar]
  112. Sarmadi BH, Ismail A. 2010.. Antioxidative peptides from food proteins: a review. . Peptides 31:(10):194956
    [Crossref] [Google Scholar]
  113. Sasanam S, Rungsardthong V, Thumthanaruk B, Wijuntamook S, Rattananupap V, et al. 2022.. Production of process flavorings from methionine, thiamine with d-xylose or dextrose by direct extrusion: physical properties and volatile profiles. . J. Food Sci. 87:(3):895910
    [Crossref] [Google Scholar]
  114. Schmidt CV, Olsen K, Mouritsen OG. 2020.. Umami synergy as the scientific principle behind taste-pairing champagne and oysters. . Sci. Rep. 10:(1):20077
    [Crossref] [Google Scholar]
  115. Seo S-H, Cho S-J. 2016.. Changes in allergenic and antinutritional protein profiles of soybean meal during solid-state fermentation with Bacillus subtilis. . LWT 70::20812
    [Crossref] [Google Scholar]
  116. Sha SP, Jani K, Sharma A, Anupma A, Pradhan P, et al. 2017.. Analysis of bacterial and fungal communities in Marcha and Thiat, traditionally prepared amylolytic starters of India. . Sci. Rep. 7:(1):10967
    [Crossref] [Google Scholar]
  117. Shahzad R, Shehzad A, Bilal S, Lee I-J. 2020.. Bacillus amyloliquefaciens RWL-1 as a new potential strain for augmenting biochemical and nutritional composition of fermented soybean. . Molecules 25:(10):2346
    [Crossref] [Google Scholar]
  118. Sharma S, Padhi S, Kumari M, Rai AK, Sahoo D. 2021.. Bioactive compounds in fermented foods. . In Bioactive Compounds in Fermented Foods: Health Aspects, ed. AK Rai, KA Anu Appaiah , pp. 4869. Boca Raton, FL:: CRC Press
    [Google Scholar]
  119. Shepon A, Eshel G, Noor E, Milo R. 2016.. Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes. . Environ. Res. Lett. 11:(10):105002
    [Crossref] [Google Scholar]
  120. Shieh C-J, Thi L-AP, Shih L. 2009.. Milk-clotting enzymes produced by culture of Bacillus subtilis natto. . Biochem. Eng. J. 43:(1):8591
    [Crossref] [Google Scholar]
  121. Shu L, Si X, Yang X, Ma W, Sun J, et al. 2020.. Enhancement of acid protease activity of Aspergillus oryzae using atmospheric and room temperature plasma. . Front. Microbiol. 11::1418
    [Crossref] [Google Scholar]
  122. Singh AK, Rehal J, Kaur A, Jyot G. 2015.. Enhancement of attributes of cereals by germination and fermentation: a review. . Crit. Rev. Food Sci. Nutr. 55:(11):157589
    [Crossref] [Google Scholar]
  123. Strong PJ, Self R, Allikian K, Szewczyk E, Speight R, et al. 2022.. Filamentous fungi for future functional food and feed. . Curr. Opin. Biotechnol. 76::102729
    [Crossref] [Google Scholar]
  124. Suparmo, Markakis P. 1987.. Tempeh prepared from germinated soybeans. . J. Food Sci. 52::173637
    [Crossref] [Google Scholar]
  125. Suprayogi WPS, Ratriyanto A, Akhirini N, Hadi RF, Setyono W, Irawan A. 2022.. Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. . Bioresour. Technol. Rep. 17::100925
    [Crossref] [Google Scholar]
  126. Tanasković SJ, Šekuljica N, Jovanović J, Gazikalović I, Grbavčić S, et al. 2021.. Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: a way to valorize wheat bran for nutrition. . J. Cereal Sci. 99::103159
    [Crossref] [Google Scholar]
  127. Tangyu M, Fritz M, Aragao-Börner R, Ye L, Bogicevic B, et al. 2021.. Genome-based selection and application of food-grade microbes for chickpea milk fermentation towards increased l-lysine content, elimination of indigestible sugars, and improved flavour. . Microb. Cell Fact. 20::109
    [Crossref] [Google Scholar]
  128. Tanimoto H, Fox T, Eagles J, Satoh H, Nozawa H, et al. 2007.. Acute effect of poly-γ-glutamic acid on calcium absorption in post-menopausal women. . J. Am. Coll. Nutr. 26:(6):64549
    [Crossref] [Google Scholar]
  129. Tegelaar M, Bleichrodt R, Nitsche B, Ram AF, Wösten HA. 2020.. Subpopulations of hyphae secrete proteins or resist heat stress in Aspergillus oryzae colonies. . Environ. Microbiol. 22:(1):44755
    [Crossref] [Google Scholar]
  130. Teng D, Gao M, Yang Y, Liu B, Tian Z, Wang J. 2012.. Bio-modification of soybean meal with Bacillus subtilis or Aspergillus oryzae. . Biocatal. Agric. Biotechnol. 1:(1):3238
    [Crossref] [Google Scholar]
  131. Vagadia BH, Vanga SK, Raghavan V. 2017.. Inactivation methods of soybean trypsin inhibitor: a review. . Trends Food Sci. Technol. 64::11525
    [Crossref] [Google Scholar]
  132. Van Ba H, Hwang I, Jeong D, Touseef A. 2012.. Principle of meat aroma flavors and future prospect. . In Latest Research into Quality Control, ed. I Akyar , pp. 14576. Rijeka, Croat:.: InTech
    [Google Scholar]
  133. Villacrés E, Rosell CM. 2021.. Kinetics of solid-state fermentation of lupin with Rhizophus oligosporus based on nitrogen compounds balance. . Food Biosci. 42::101118
    [Crossref] [Google Scholar]
  134. Vos AM, Bleichrodt R, Herman KC, Ohm RA, Scholtmeijer K, et al. 2021.. Cycling in degradation of organic polymers and uptake of nutrients by a litter-degrading fungus. . Environ. Microbiol. 23:(1):22438
    [Crossref] [Google Scholar]
  135. Wang J, Fung DY. 1996.. Alkaline-fermented foods: a review with emphasis on pidan fermentation. . Crit. Rev. Microbiol. 22:(2):10138
    [Crossref] [Google Scholar]
  136. Wang R, Guo S. 2021.. Phytic acid and its interactions: contributions to protein functionality, food processing, and safety. . Compr. Rev. Food Sci. Food Saf. 20:(2):2081105
    [Crossref] [Google Scholar]
  137. Wei Q, Wang H, Chen Z, Lv Z, Xie Y, Lu F. 2013.. Profiling of dynamic changes in the microbial community during the soy sauce fermentation process. . Appl. Microbiol. Biotechnol. 97::911119
    [Crossref] [Google Scholar]
  138. Weng K, Huo W, Li Y, Zhang Y, Zhang Y, et al. 2022.. Fiber characteristics and meat quality of different muscular tissues from slow- and fast-growing broilers. . Poult. Sci. 101:(1):101537
    [Crossref] [Google Scholar]
  139. Wiebe MG, Robson GD, Oliver SG, Trinci AP. 1996.. pH oscillations and constant low pH delay the appearance of highly branched (colonial) mutants in chemostat cultures of the Quorn® myco-protein fungus, Fusarium graminearum A3/5. . Biotechnol. Bioeng. 51:(1):6168
    [Crossref] [Google Scholar]
  140. Willett W, Rockström J, Loken B, Springmann M, Lang T, et al. 2019.. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. . Lancet 393:(10170):44792
    [Crossref] [Google Scholar]
  141. Wösten HA. 2019.. Filamentous fungi for the production of enzymes, chemicals and materials. . Curr. Opin. Biotechnol. 59::6570
    [Crossref] [Google Scholar]
  142. Wösten HA, Moukha SM, Sietsma JH, Wessels JG. 1991.. Localization of growth and secretion of proteins in Aspergillus niger. . Microbiology 137:(8):201723
    [Google Scholar]
  143. Wösten HA, van Veluw GJ, de Bekker C, Krijgsheld P. 2013.. Heterogeneity in the mycelium: implications for the use of fungi as cell factories. . Biotechnol. Lett. 35::115564
    [Crossref] [Google Scholar]
  144. Wu Y, Tao Y, Jin J, Tong S, Li S, Zhang L. 2022.. Multi-omics analyses of the mechanism for the formation of soy sauce-like and soybean flavor in Bacillus subtilis BJ3–2. . BMC Microbiol. 22::142
    [Crossref] [Google Scholar]
  145. Yagoub AEA, Mohamed BE, Ahmed AHR, El Tinay AH. 2004.. Study on furundu, a traditional Sudanese fermented roselle (Hibiscus sabdariffa L.) seed: effect on in vitro protein digestibility, chemical composition, and functional properties of the total proteins. . J. Agric. Food Chem. 52:(20):614350
    [Crossref] [Google Scholar]
  146. Yang H, Qu Y, Li J, Liu X, Wu R, Wu J. 2020.. Improvement of the protein quality and degradation of allergens in soybean meal by combination fermentation and enzymatic hydrolysis. . LWT 128::109442
    [Crossref] [Google Scholar]
  147. Yang J, Sun-Waterhouse D, Cui C, Dong K, Wang W. 2017.. Synthesis and sensory characteristics of kokumi γ-[Glu] n-Phe in the presence of glutamine and phenylalanine: glutaminase from Bacillus amyloliquefaciens or Aspergillus oryzae as the catalyst. . J. Agric. Food Chem. 65:(39):8696703
    [Crossref] [Google Scholar]
  148. Zhang J, Sun-Waterhouse D, Su G, Zhao M. 2019.. New insight into umami receptor, umami/umami-enhancing peptides and their derivatives: a review. . Trends Food Sci. Technol. 88::42938
    [Crossref] [Google Scholar]
  149. Zheng L, Li D, Li Z-L, Kang L-N, Jiang Y-Y, et al. 2017.. Effects of Bacillus fermentation on the protein microstructure and anti-nutritional factors of soybean meal. . Lett. Appl. Microbiol. 65:(6):52026
    [Crossref] [Google Scholar]
  150. Zwinkels J, Wolkers-Rooijackers J, Smid EJ. 2023.. Solid-state fungal fermentation transforms low-quality plant-based foods into products with improved protein quality. . LWT 184::114979
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-060721-013526
Loading
/content/journals/10.1146/annurev-food-060721-013526
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error