1932

Abstract

Bovine colostrum harbors a diverse array of bioactive components suitable for the development of functional foods, nutraceuticals, and pharmaceuticals with veterinary and human health applications. Bovine colostrum has a strong safety profile with applications across all age groups for health promotion and the amelioration of a variety of disease states. Increased worldwide milk production and novel processing technologies have resulted in substantial growth of the market for colostrum-based products. This review provides a synopsis of the bioactive components in bovine colostrum, the processing techniques used to produce high-value colostrum-based products, and recent studies utilizing bovine colostrum for veterinary and human health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-060721-014650
2023-03-27
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/food/14/1/annurev-food-060721-014650.html?itemId=/content/journals/10.1146/annurev-food-060721-014650&mimeType=html&fmt=ahah

Literature Cited

  1. Ackerman TE, Barnes CW, Bright AC, Huffman DC, Kocsis SJ et al. 2019. Apparatus and method for spray drying US Patent SG11201803527VA
    [Google Scholar]
  2. Afzal I, Khan AA, Khaliq T, Hamadani H, Shafi M, Raja TA. 2017. Effect of bovine colostrum supplemented diets on performance of broiler chicken. Indian J. Poult. Sci. 52:2157
    [Google Scholar]
  3. Arslan A, Kaplan M, Duman H, Bayraktar A, Ertürk M et al. 2021. Bovine colostrum and its potential for human health and nutrition. Front. Nutr. 8:651721
    [Google Scholar]
  4. Aunsholt L, Jeppesen PB, Lund P, Sangild PT, Ifaoui IBR et al. 2014. Bovine colostrum to children with short bowel syndrome: a randomized, double-blind, crossover pilot study. J. Parenter. Enter. Nutr. 38:99–106
    [Google Scholar]
  5. Aunsholt L, Qvist N, Sangild PT, Vegge A, Stoll B et al. 2018. Minimal enteral nutrition to improve adaptation after intestinal resection in piglets and infants. J. Parenter. Enter. Nutr. 42:446–54
    [Google Scholar]
  6. Barakat SH, Meheissen MA, Omar OM, Elbana DA. 2020. Bovine colostrum in the treatment of acute diarrhea in children: a double-blinded randomized controlled trial. J. Trop. Pediatr. 66:46–55
    [Google Scholar]
  7. Berg G, Rybakova D, Fischer D, Cernava T, Vergès MC et al. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8:103
    [Google Scholar]
  8. Beynen A. 2020. Bovine colostrum for dogs. Bonny Canteen 1:95–102
    [Google Scholar]
  9. Boldogh I, Aguilera-Aguirre L, Bacsi A, Choudhury BK, Saavedra-Molina A, Kruzel M. 2008. Colostrinin decreases hypersensitivity and allergic responses to common allergens. Int. Arch. Allergy Immunol. 146:298–306
    [Google Scholar]
  10. Bondue P, Crèvecoeur S, Brose F, Daube G, Seghaye M-C et al. 2016. Cell-free spent media obtained from Bifidobacterium bifidum and Bifidobacterium crudilactis grown in media supplemented with 3′-sialyllactose modulate virulence gene expression in Escherichia coli O157:H7 and Salmonella Typhimurium. Front. Microbiol. 7:1460
    [Google Scholar]
  11. Borad SG, Singh AK 2022. Immunoglobulins. Encyclopedia of Dairy Sciences PLH McSweeney, JP McNamara 894–900. Oxford, UK: Academic. , 3rd ed..
    [Google Scholar]
  12. Borad SG, Singh AK, Kapila S, Behare P, Arora S, Sabikhi L. 2019. Influence of unit operations on immunoglobulins and thermal stability of colostrum fractions. Int. Dairy J. 93:85–91
    [Google Scholar]
  13. Brunse A, Worsøe P, Pors SE, Skovgaard K, Sangild PT. 2019. Oral supplementation with bovine colostrum prevents septic shock and brain barrier disruption during bloodstream infection in preterm newborn pigs. Shock 51:3337–47
    [Google Scholar]
  14. Bunyatratchata A, Weinborn V, Barile D. 2021. Bioactive oligosaccharides in colostrum and other liquid feeds for calf's early life nutrition: a qualitative and quantitative investigation. Int. Dairy J. 121:105100
    [Google Scholar]
  15. Burrin D, Sangild PT, Stoll B, Thymann T, Buddington R et al. 2020. Translational advances in pediatric nutrition and gastroenterology: new insights from pig models. Rev. Anim. Biosci. 8:321–54
    [Google Scholar]
  16. Buttar HS, Bagwe SM, Bhullar SK, Kaur G 2017. Health benefits of bovine colostrum in children and adults. Dairy in Human Health and Disease Across the Lifespan RR Watson, RJ Collier, VR Preedy 3–20. Cambridge, MA: Academic
    [Google Scholar]
  17. Cabral RG, Chapman CE, Erickson PS. 2013. REVIEW: colostrum supplements and replacers for dairy calves. Prof. Anim. Sci. 29:449–56
    [Google Scholar]
  18. Chatterton DEW, Aagaard S, Hesselballe Hansen T, Nguyen DN, De Gobba C et al. 2020. Bioactive proteins in bovine colostrum and effects of heating, drying and irradiation. Food Funct. 11:2309–27
    [Google Scholar]
  19. Chatterton DEW, Nguyen DN, Bering SB, Sangild PT. 2013. Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int. J. Biochem. Cell Biol. 45:1730–47
    [Google Scholar]
  20. Chelack BJ, Morley PS, Haines DM. 1993. Evaluation of methods for dehydration of bovine colostrum for total replacement of normal colostrum in calves. Can. Vet. J. 34:407–12
    [Google Scholar]
  21. Coffey RJ, Romano M, Goldenring J. 1995. Roles for transforming growth factor-alpha in the stomach. J. Clin. Gastroenterol. 21:Suppl. 1S36–39
    [Google Scholar]
  22. Contarini G, Povolo M, Pelizzola V, Monti L, Bruni A et al. 2014. Bovine colostrum: changes in lipid constituents in the first 5 days after parturition. J. Dairy Sci. 97:5065–72
    [Google Scholar]
  23. Cummins C, Berry DP, Murphy JP, Lorenz I, Kennedy E 2017. The effect of colostrum storage conditions on dairy heifer calf serum immunoglobulin G concentration and preweaning health and growth rate. J. Dairy Sci. 100:525–35
    [Google Scholar]
  24. Cummins C, Berry DP, Sayers R, Lorenz I, Kennedy E. 2016a. Questionnaire identifying management practices surrounding calving on spring-calving dairy farms and their associations with herd size and herd expansion. Animal 10:868–77
    [Google Scholar]
  25. Cummins C, Lorenz I, Kennedy E. 2016b. The effect of storage conditions over time on bovine colostral immunoglobulin G concentration, bacteria, and pH. J. Dairy Sci. 99:4857–63
    [Google Scholar]
  26. Cutler TD, Zimmerman JJ. 2011. Ultraviolet irradiation and the mechanisms underlying its inactivation of infectious agents. Anim. Health Res. Rev. 12:15–23
    [Google Scholar]
  27. da Cruz TMP, Moretti DB, Nordi WM, Cyrino JEP, Machado-Neto R. 2016. Intestinal epithelium of juvenile dourado Salminus brasiliensis (Cuvier, 1816) fed diet with lyophilized bovine colostrum. Aquac. Res. 47:561–69
    [Google Scholar]
  28. Davison G. 2021. The use of bovine colostrum in sport and exercise. Nutrients 13:61789
    [Google Scholar]
  29. Davison G, Jones AW, Marchbank T, Playford RJ. 2019. Oral bovine colostrum supplementation does not increase circulating insulin-like growth factor-1 concentration in healthy adults: results from short- and long-term administration studies. Eur. J. Nutr. 59:41473–79
    [Google Scholar]
  30. Derakhshani H, Plaizier JC, De Buck J, Barkema HW, Khafipour E. 2018. Composition of the teat canal and intramammary microbiota of dairy cows subjected to antimicrobial dry cow therapy and internal teat sealant. J. Dairy Sci. 101:10191–205
    [Google Scholar]
  31. Dequenne M, Robaye V, Dotreppe O, Neizer C, Delhalle L et al. 2014. A supplement of bovine colostrum and probiotics increased protein digestibility in dogs but did not influence microbiome. Proceedings 18th Congress European Society of Veterinary and Comparative Nutrition Land, Austria: ESVCN
    [Google Scholar]
  32. Drikic M, Windeyer C, Olsen S, Fu Y, Doepel L, De Buck J. 2018. Determining the IgG concentrations in bovine colostrum and calf sera with a novel enzymatic assay. J Anim. Sci. Biotechnol. 9:69
    [Google Scholar]
  33. Elsohaby I, McClure JT, Dow N, Keefe GP. 2018. Effect of heat-treatment on accuracy of infrared spectroscopy and digital and optical brix refractometers for measuring immunoglobulin G concentration in bovine colostrum. J. Vet. Intern. Med. 32:491–96
    [Google Scholar]
  34. Falahatkar B, Eslamloo K, Yokoyama S. 2014. Suppression of stress responses in Siberian sturgeon, Acipenser baeri, juveniles by the dietary administration of bovine lactoferrin. J. World Aquac. Soc. 45:699–708
    [Google Scholar]
  35. Fasse S, Alarinta J, Frahm B, Wirtanen G 2021. Bovine colostrum for human consumption—improving microbial quality and maintaining bioactive characteristics through processing. Dairy 2:556–75
    [Google Scholar]
  36. Fenger C, Tobin T, Casey P, Langemeier J, Haines D. 2014a. Bovine colostrum supplementation does not influence serum insulin-like growth factor-1 in horses in race training. J. Equine Vet. Sci. 34:1025–27
    [Google Scholar]
  37. Fenger CK, Tobin T, Casey PJ, Roualdes EA, Langemeier JL et al. 2016. Enhanced bovine colostrum supplementation shortens the duration of respiratory disease in thoroughbred yearlings. J. Equine Vet. Sci. 42:77–81
    [Google Scholar]
  38. Fenger CK, Tobin T, Casey PJ, Roualdes EA, Langemeier JL, Haines DM. 2014b. Bovine colostrum supplementation optimises earnings, performance and recovery in racing thoroughbreds. Comp. Exerc. Physiol. 10:233–38
    [Google Scholar]
  39. Filipescu IE, Leonardi L, Menchetti L, Guelfi G, Traina G et al. 2018. Preventive effects of bovine colostrum supplementation in TNBS-induced colitis in mice. PLOS ONE 13:e0202929
    [Google Scholar]
  40. Fischer AJ, Song Y, He Z, Haines DM, Guan LL, Steele MA. 2018. Effect of delaying colostrum feeding on passive transfer and intestinal bacterial colonization in neonatal male Holstein calves. J. Dairy Sci. 101:3099–109
    [Google Scholar]
  41. Fong B, Ma K, McJarrow P. 2011. Quantification of bovine milk oligosaccharides using liquid chromatography–selected reaction monitoring–mass spectrometry. J. Agric. Food Chem. 59:9788–95
    [Google Scholar]
  42. Foster DM, Poulsen KP, Sylvester HJ, Jacob ME, Casulli KE, Farkas BE. 2016. Effect of high-pressure processing of bovine colostrum on immunoglobulin G concentration, pathogens, viscosity, and transfer of passive immunity to calves. J. Dairy Sci. 99:8575–88
    [Google Scholar]
  43. Gao X, Li Y, Olin AB, Nguyen DN. 2021. Fortification with bovine colostrum enhances antibacterial activity of human milk. J. Parenter. Enter. Nutr. 45:1417–24
    [Google Scholar]
  44. Gauthier SF, Pouliot Y, Maubois J-L. 2006. Growth factors from bovine milk and colostrum: composition, extraction and biological activities. Le Lait 86:99–125
    [Google Scholar]
  45. Ghosh S, Iacucci M. 2021. Diverse immune effects of bovine colostrum and benefits in human health and disease. Nutrients 13:3798
    [Google Scholar]
  46. Giffard CJ, Seino MM, Markwell PJ, Bektash RM. 2004. Benefits of bovine colostrum on fecal quality in recently weaned puppies. J. Nutr. 134:2126S
    [Google Scholar]
  47. Godden SM, Lombard JE, Woolums AR. 2019. Colostrum management for dairy calves. Vet. Clin. North Am. Food Anim. Pract. 35:535–56
    [Google Scholar]
  48. Gore AM, Satyaraj E, Labuda J, Engler R, Sun P et al. 2021. Supplementation of diets with bovine colostrum influences immune and gut function in kittens. Front. Vet. Sci. 8:675712
    [Google Scholar]
  49. Griffiths CEM, Cumberbatch M, Tucker SC, Dearman RJ, Andrew S et al. 2001. Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous inflammation in humans. Br. J. Dermatol. 144:715–25
    [Google Scholar]
  50. Guiné R. 2018. The drying of foods and its effect on the physical-chemical, sensorial and nutritional properties. Int. J. Food Eng. 2:93–100
    [Google Scholar]
  51. Halavach T, Tarun E, Dudchik NV, Zhygankov V, Romanovich R, Asafov V. 2022. Functional value of fermented bovine colostrum. AIP Conf. Proc. 2390:030031
    [Google Scholar]
  52. Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H et al. 2022. Immunomodulatory properties of human breast milk: microRNA contents and potential epigenetic effects. Biomedicines 10:1219
    [Google Scholar]
  53. Hayes MM, Hughes TA, Greene AK. 2012. Bacterial diversity in dried colostrum and whey sold as nutraceutical products. J. Food Sci. 77:M359–63
    [Google Scholar]
  54. Hesami S, Shahraki A-DF, Zakian A, Ghalamkari G. 2020. The effect of various heat-treatment methods on colostrum quality, health and performance of dairy calves. Acta Sci. Anim. Sci. 43:e49844
    [Google Scholar]
  55. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ et al. 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–14
    [Google Scholar]
  56. Holmes MA, Lunn DP. 1991. A study of bovine and equine immunoglobulin levels in pony foals fed bovine colostrum. Equine Vet. J. 23:116–18
    [Google Scholar]
  57. Hong JP, Park SW. 2014. The combined effect of recombinant human epidermal growth factor and erythropoietin on full-thickness wound healing in diabetic rat model. Int. Wound J. 11:373–78
    [Google Scholar]
  58. Indyk HE, Williams JW, Patel HA. 2008. Analysis of denaturation of bovine IgG by heat and high pressure using an optical biosensor. Int. Dairy J. 18:359–66
    [Google Scholar]
  59. Ismail RIH, Awad HA, Imam SS, Gad GI, Aboushady NM et al. 2021. Gut priming with bovine colostrum and T regulatory cells in preterm neonates: a randomized controlled trial. Pediatr. Res. 90:650–56
    [Google Scholar]
  60. Jay JM 1998. High-temperature food preservation and characteristics of thermophilic microorganisms. Modern Food Microbiology JM Jay, MJ Loessner, DA Golden 347–69. New York: Springer
    [Google Scholar]
  61. Jiang PP, Muk T, Krych L, Nielsen DS, Khakimov B et al. 2022. Gut colonization in preterm infants supplemented with bovine colostrum in the first week of life: an explorative pilot study. J. Parenter. Enter. Nutr. 46:592–99
    [Google Scholar]
  62. Jones AW, March DS, Curtis F, Bridle C 2016. Bovine colostrum supplementation and upper respiratory symptoms during exercise training: a systematic review and meta-analysis of randomised controlled trials. BMC Sports Sci. Med. Rehabil. 8:21
    [Google Scholar]
  63. Jones AW, March DS, Thatcher R, Diment B, Walsh NP, Davison G. 2019. The effects of bovine colostrum supplementation on in vivo immunity following prolonged exercise: a randomised controlled trial. Eur. J. Nutr. 58:335–44
    [Google Scholar]
  64. Juhl SM, Ye X, Zhou P, Li Y, Iyore EO et al. 2018. Bovine colostrum for preterm infants in the first days of life: a randomized controlled pilot trial. J. Pediatr. Gastroenterol. Nutr. 66:471–78
    [Google Scholar]
  65. Kaducu FO, Okia SA, Upenytho G, Elfstrand L, Florén CH. 2011. Effect of bovine colostrum-based food supplement in the treatment of HIV-associated diarrhea in Northern Uganda: a randomized controlled trial. Indian J. Gastroenterol. 30:270–76
    [Google Scholar]
  66. Kandasamy S, Naveen R. 2022. A review on the encapsulation of bioactive components using spray-drying and freeze-drying techniques. J. Food Process Eng. 45:8e14059
    [Google Scholar]
  67. Kangro K, Kurashin M, Gildemann K, Sankovski E, Zusinaite E et al. 2021. Bovine colostrum derived antibodies against SARS-CoV-2 show great potential to serve as a prophylactic agent. medRxiv. https://doi.org/10.1101/2021.06.08.21258069
  68. Kaplan M, Arslan A, Duman H, Karyelioğlu M, Baydemir B et al. 2021. Production of bovine colostrum for human consumption to improve health. Front. Pharmacol. 12:796824
    [Google Scholar]
  69. Keck PJ, Hauser SD, Krivi G, Sanzo K, Warren T et al. 1989. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246:1309–12
    [Google Scholar]
  70. Khan Z, Macdonald C, Wicks AC, Holt MP, Floyd D et al. 2002. Use of the ‘nutriceutical’, bovine colostrum, for the treatment of distal colitis: results from an initial study. Aliment. Pharmacol. Ther. 16:1917–22
    [Google Scholar]
  71. Kim JW, Jeon WK, Kim EJ. 2005. Combined effects of bovine colostrum and glutamine in diclofenac-induced bacterial translocation in rat. Clin. Nutr. 24:785–93
    [Google Scholar]
  72. Kirkden RD, Broom DM, Andersen IL. 2013. Invited review: piglet mortality: management solutions. J. Anim. Sci. 91:3361–89
    [Google Scholar]
  73. Kotsis Y, Mikellidi A, Aresti C, Persia E, Sotiropoulos A et al. 2018. A low-dose, 6-week bovine colostrum supplementation maintains performance and attenuates inflammatory indices following a Loughborough Intermittent Shuttle Test in soccer players. Eur. J. Nutr. 57:1181–95
    [Google Scholar]
  74. Kovacs D, Maresca V, Flori E, Mastrofrancesco A, Picardo M, Cardinali G 2020. Bovine colostrum induces the differentiation of human primary keratinocytes. FASEB J. 34:6302–21
    [Google Scholar]
  75. Kraus RB, dos Santos PR, Krummenauer A, Palhares KE, de Lima HG et al. 2021. Bovine colostrum silage: physicochemical and microbiological characteristics at different fermentation times. Front. Microbiol. 12:708189
    [Google Scholar]
  76. Kruzel ML, Janusz M, Lisowski J, Fischleigh RV, Georgiades JA. 2001. Towards an understanding of biological role of colostrinin peptides. J. Mol. Neurosci. 17:379–89
    [Google Scholar]
  77. Lago A, Socha M, Geiger A, Cook D, Silva-del-Río N et al. 2018. Efficacy of colostrum replacer versus maternal colostrum on immunological status, health, and growth of preweaned dairy calves. J. Dairy Sci. 101:1344–54
    [Google Scholar]
  78. Le Maux S, Bouhallab S, Giblin L, Brodkorb A, Croguennec T 2014. Bovine β-lactoglobulin/fatty acid complexes: binding, structural, and biological properties. Dairy Sci. Technol. 94:409–26
    [Google Scholar]
  79. Li J, Xu YW, Jiang JJ, Song QK. 2019. Bovine colostrum and product intervention associated with relief of childhood infectious diarrhea. Sci. Rep. 9:3093
    [Google Scholar]
  80. Li S-Q, Zhang HQ, Balasubramaniam VM, Lee Y-Z, Bomser JA et al. 2006. Comparison of effects of high-pressure processing and heat treatment on immunoactivity of bovine milk immunoglobulin G in enriched soymilk under equivalent microbial inactivation levels. J. Agric. Food Chem. 54:739–46
    [Google Scholar]
  81. Li Y, Juhl SM, Ye X, Shen RL, Iyore EO et al. 2017. A stepwise, pilot study of bovine colostrum to supplement the first enteral feeding in preterm infants (precolos): study protocol and initial results. Front. Pediatr. 5:42
    [Google Scholar]
  82. Lopez AJ, Heinrichs AJ. 2022. Invited review: the importance of colostrum in the newborn dairy calf. J. Dairy Sci. 105:2733–49
    [Google Scholar]
  83. Machado-Neto R, Moretti DB, Nordi WM, da Cruz TMP, Cyrino JEP. 2016. Growth performance of juvenile pacu (Piaractus mesopotamicus) and dourado (Salminus brasiliensis) fed with lyophilized bovine colostrum. Aquac. Res. 47:3551–57
    [Google Scholar]
  84. Machado-Neto R, Pontin MCF, Nordi WM, Lima AL, Moretti DB. 2013. Goblet cell mucin distribution in the small intestine of newborn goat kids fed lyophilized bovine colostrum. Livest. Sci. 157:125–31
    [Google Scholar]
  85. Malmuthuge N, Chen Y, Liang G, Goonewardene LA. 2015. Heat-treated colostrum feeding promotes beneficial bacteria colonization in the small intestine of neonatal calves. J. Dairy Sci. 98:8044–53
    [Google Scholar]
  86. Mann S, Curone G, Chandler TL, Sipka A, Cha J et al. 2020. Heat treatment of bovine colostrum: II. Effects on calf serum immunoglobulin, insulin, and IGF-I concentrations, and the serum proteome. J. Dairy Sci. 103:9384–406
    [Google Scholar]
  87. March DS, Jones AW, Thatcher R, Davison G. 2019. The effect of bovine colostrum supplementation on intestinal injury and circulating intestinal bacterial DNA following exercise in the heat. Eur. J. Nutr. 58:1441–51
    [Google Scholar]
  88. March DS, Marchbank T, Playford RJ, Jones AW, Thatcher R, Davison G. 2017. Intestinal fatty acid-binding protein and gut permeability responses to exercise. Eur. J. Appl. Physiol. 117:931–41
    [Google Scholar]
  89. McGrath BA, Fox PF, McSweeney PLH, Kelly AL. 2016. Composition and properties of bovine colostrum: a review. Dairy Sci. Technol. 96:133–58
    [Google Scholar]
  90. McKenna Z, Berkemeier Q, Naylor A, Kleint A, Gorini F et al. 2017. Bovine colostrum supplementation does not affect plasma I-FABP concentrations following exercise in a hot and humid environment. Eur. J. Appl. Physiol. 117:2561–67
    [Google Scholar]
  91. Mehra R, Garhwal R, Sangwan K, Guiné RPF, Lemos ET et al. 2022. Insights into the research trends on bovine colostrum: beneficial health perspectives with special reference to manufacturing of functional foods and feed supplements. Nutrients 14:3659
    [Google Scholar]
  92. Mehra R, Singh R, Nayan V, Buttar HS, Kumar N et al. 2021. Nutritional attributes of bovine colostrum components in human health and disease: a comprehensive review. Food Biosci. 40:100907
    [Google Scholar]
  93. Menchetti L, Curone G, Filipescu IE, Barbato O, Leonardi L et al. 2020. The prophylactic use of bovine colostrum in a murine model of TNBS-induced colitis. Animals 10:492
    [Google Scholar]
  94. Miles EA, Calder PC. 2017. The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutr. Res. 44:1–8
    [Google Scholar]
  95. Mir R, Singh N, Vikram G, Kumar RP, Sinha M et al. 2009. The structural basis for the prevention of nonsteroidal antiinflammatory drug-induced gastrointestinal tract damage by the C-lobe of bovine colostrum lactoferrin. Biophys. J. 97:3178–86
    [Google Scholar]
  96. Moretti DB, Nordi WM, Machado-Neto R. 2019. Redox balance and tissue development of juvenile Piaractus mesopotamicus subjected to high stocking density and fed dry diets containing nutraceutical food. Lat. Am. J. Aquat. Res. 47:423–32
    [Google Scholar]
  97. Morrin ST, Lane JA, Marotta M, Bode L, Carrington SD et al. 2019. Bovine colostrum-driven modulation of intestinal epithelial cells for increased commensal colonisation. Appl. Microbiol. Biotechnol. 103:2745–58
    [Google Scholar]
  98. Morrin ST, McCarthy G, Kennedy D, Marotta M, Irwin JA, Hickey RM 2020. Immunoglobulin G from bovine milk primes intestinal epithelial cells for increased colonization of bifidobacteria. AMB Express 10:114
    [Google Scholar]
  99. Morrison SA, Cheung SS, Cotter JD. 2014. Bovine colostrum, training status, and gastrointestinal permeability during exercise in the heat: a placebo-controlled double-blind study. Appl. Physiol. Nutr. Metab. 39:1070–82
    [Google Scholar]
  100. Nederend M, van Stigt AH, Jansen JHM, Jacobino SR, Brugman S et al. 2020. Bovine IgG prevents experimental infection with RSV and facilitates human T cell responses to RSV. Front. Immunol. 11:1701
    [Google Scholar]
  101. Nordi WM, Moretti DB, da Cruz TMP, Cyrino JEP, Machado-Neto R. 2016. Enteric, hepatic and muscle tissue development of juvenile dourado Salminus brasiliensis fed with lyophilized bovine colostrum. Fish. Sci. 82:321–26
    [Google Scholar]
  102. Nordi WM, Moretti DB, Lima AL, Pauletti P, Susin I, Machado-Neto R. 2013. Intestinal histology of newborn goat kids fed lyophilized bovine colostrum. Czech J. Anim. Sci. 58:232–41
    [Google Scholar]
  103. O'Callaghan TF, O'Donovan M, Murphy JP, Sugrue K, Mannion D et al. 2020. Evolution of the bovine milk fatty acid profile: from colostrum to milk five days post parturition. Int. Dairy J. 104:104655
    [Google Scholar]
  104. Organ. Econ. Co-op. Dev 2018. OECD-FAO Agricultural Outlook 2018–2027 Paris: OECD Publ https://stats.oecd.org/Index.aspx?DataSetCode=HIGH_AGLINK_2018
    [Google Scholar]
  105. O'Riordan N, O'Callaghan J, Buttò LF, Kilcoyne M, Joshi L, Hickey RM 2018. Bovine glycomacropeptide promotes the growth of Bifidobacterium longum ssp. infantis and modulates its gene expression. J. Dairy Sci. 101:6730–41
    [Google Scholar]
  106. Otto W, Najnigier B, Stelmasiak T, Robins-Browne RM. 2011. Randomized control trials using a tablet formulation of hyperimmune bovine colostrum to prevent diarrhea caused by enterotoxigenic Escherichia coli in volunteers. Scand. J. Gastroenterol. 46:862–68
    [Google Scholar]
  107. Pagnoncelli MGB, do Prado FG, Machado JMC, Anschau A, Soccol CR. 2022. Potential bovine colostrum for human and animal therapy. Curr. Dev. Biotechnol. Bioeng. 2022:377–95
    [Google Scholar]
  108. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A. 2013. Critical role of transforming growth factor beta in different phases of wound healing. Adv. Wound Care 2:215–24
    [Google Scholar]
  109. Pannaraj PS, Ly M, Cerini C, Saavedra M, Aldrovandi GM et al. 2018. Shared and distinct features of human milk and infant stool viromes. Front. Microbiol. 9:1162
    [Google Scholar]
  110. Parapary MHG, Nobakht A, Mehmannavaz Y. 2020. Co-supplementation of colostrum powder on performance, intestinal morphology, blood biochemical parameters and antioxidant status of broilers in heat stress. Semina Cienc. Agrar. 41:3419–27
    [Google Scholar]
  111. Pereira RV, Bicalho ML, Machado VS, Lima S, Teixeira AG et al. 2014. Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G. J. Dairy Sci. 97:2866–75
    [Google Scholar]
  112. Playford RJ, Cattell M, Marchbank T. 2020. Marked variability in bioactivity between commercially available bovine colostrum for human use; implications for clinical trials. PLOS ONE 15:e0234719
    [Google Scholar]
  113. Playford RJ, MacDonald CE, Calnan DP, Floyd DN, Podas T et al. 2001. Co-administration of the health food supplement, bovine colostrum, reduces the acute non-steroidal anti-inflammatory drug-induced increase in intestinal permeability. Clin. Sci. 100:627–33
    [Google Scholar]
  114. Playford RJ, Weiser MJ. 2021. Bovine colostrum: its constituents and uses. Nutrients 13:265
    [Google Scholar]
  115. Pontoppidan PEL, Shen RL, Cilieborg MS, Jiang P, Kissow H et al. 2015. Bovine colostrum modulates myeloablative chemotherapy-induced gut toxicity in piglets. J. Nutr. 145:1472–80
    [Google Scholar]
  116. Rasmussen SO, Martin L, Østergaard MV, Rudloff S, Li Y et al. 2016. Bovine colostrum improves neonatal growth, digestive function, and gut immunity relative to donor human milk and infant formula in preterm pigs. Am. J. Physiol. Gastrointest. Liver Physiol. 311:G480–91
    [Google Scholar]
  117. Rathe M, De Pietri S, Wehner PS, Frandsen TL, Grell K et al. 2020. Bovine colostrum against chemotherapy-induced gastrointestinal toxicity in children with acute lymphoblastic leukemia: a randomized, double-blind, placebo-controlled trial. J. Parenter. Enter. Nutr. 44:337–47
    [Google Scholar]
  118. Rattray M. 2005. Technology evaluation: colostrinin, ReGen. Curr. Opin. Mol. Ther. 7:78–84
    [Google Scholar]
  119. Robbers L, Jorritsma R, Nielen M, Koets A. 2021. A scoping review of on-farm colostrum management practices for optimal transfer of immunity in dairy calves. Front. Vet. Sci. 8:668639
    [Google Scholar]
  120. Roy D, Ye A, Moughan PJ, Singh H. 2020. Composition, structure, and digestive dynamics of milk from different species—a review. Front. Nutr. 7:577759
    [Google Scholar]
  121. Sales-Campos H, Souza PR, Peghini BC, da Silva JS, Cardoso CR. 2013. An overview of the modulatory effects of oleic acid in health and disease. Mini Rev. Med. Chem. 13:201–10
    [Google Scholar]
  122. Sats A, Kaart T, Poikalainen V, Aare A, Lepasalu L et al. 2020. Bovine colostrum whey: postpartum changes of particle size distribution and immunoglobulin G concentration at different filtration pore sizes. J. Dairy Sci. 103:6810–19
    [Google Scholar]
  123. Sats A, Yurchenko S, Kaart T, Tatar V, Lutter L, Jõudu I. 2022. Bovine colostrum: postpartum changes in fat globule size distribution and fatty acid profile. J. Dairy Sci. 105:3846–60
    [Google Scholar]
  124. Satyaraj E, Reynolds A, Pelker R, Labuda J, Zhang P, Sun P. 2013. Supplementation of diets with bovine colostrum influences immune function in dogs. Br. J. Nutr. 110:2216–21
    [Google Scholar]
  125. Scammell AW, Billakanti J 2022. Colostrum. Encyclopedia of Dairy Sciences PLH McSweeney, JP McNamara 18–30. Oxford, UK: Academic. , 3rd ed..
    [Google Scholar]
  126. Sharma D, Kaur A, Farahbakhsh N, Agarwal S. 2020. Role of oropharyngeal administration of colostrum in very low birth weight infants for reducing necrotizing enterocolitis: a randomized controlled trial. Am. J. Perinatol. 37:716–21
    [Google Scholar]
  127. Sienkiewicz M, Szymańska P, Fichna J. 2021. Supplementation of bovine colostrum in inflammatory bowel disease: benefits and contraindications. Adv. Nutr. 12:533–45
    [Google Scholar]
  128. Spalinger MR, Atrott K, Baebler K, Schwarzfischer M, Melhem H et al. 2019. Administration of the hyper-immune bovine colostrum extract IMM-124E ameliorates experimental murine colitis. J. Crohn's Colitis 13:785–97
    [Google Scholar]
  129. Stelwagen K, Carpenter E, Haigh B, Hodgkinson A, Wheeler TT. 2009. Immune components of bovine colostrum and milk. J. Anim. Sci. 87:3–9
    [Google Scholar]
  130. Sun J, Li Y, Pan X, Nguyen DN, Brunse A et al. 2019. Human milk fortification with bovine colostrum is superior to formula-based fortifiers to prevent gut dysfunction, necrotizing enterocolitis, and systemic infection in preterm pigs. J. Parenter. Enter. Nutr. 43:252–62
    [Google Scholar]
  131. Sun Q, Chen X, Yu J, Zen K, Zhang CY, Li L. 2013. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein Cell 4:197–210
    [Google Scholar]
  132. Sydney ACN, Ikeda IK, de Oliveira Ribeiro MC, Sydney EB, de Carvalho Neto DP et al. 2022. Colostrum new insights: products and processes. Current Developments in Biotechnology and Bioengineering C Larroche, M Sanroman, G Du, A Pandey 397–422. Amsterdam: Elsevier
    [Google Scholar]
  133. Tanideh N, Abdordideh E, Yousefabad SLA, Daneshi S, Hosseinabadi OK, Samani SM. 2017. Evaluation of the healing effect of honey and colostrum in treatment of cutaneous wound in rat. Comp. Clin. Pathol. 26:71–77
    [Google Scholar]
  134. Tao J, Mao J, Yang J, Su Y 2020. Effects of oropharyngeal administration of colostrum on the incidence of necrotizing enterocolitis, late-onset sepsis, and death in preterm infants: a meta-analysis of RCTs. Eur. J. Clin. Nutr. 74:1122–31
    [Google Scholar]
  135. ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Feitsma AL, van Hoffen E, Schoterman MHC. 2014. Functional role and mechanisms of sialyllactose and other sialylated milk oligosaccharides. Nutr. Rev. 72:377–89
    [Google Scholar]
  136. Tsioulpas A, Grandison AS, Lewis MJ. 2007. Changes in physical properties of bovine milk from the colostrum period to early lactation. J. Dairy Sci. 90:5012–17
    [Google Scholar]
  137. Ulfman LH, Leusen JHW, Savelkoul HFJ, Warner JO, Van Neerven RJ. 2018. Effects of bovine immunoglobulins on immune function, allergy, and infection. Front. Nutr. 5:52
    [Google Scholar]
  138. Usuga A, Zabala DA, Medina LC, Hernandez DV, Ramirez WV, Rojano BA. 2022. Effect of three storage methods on physical and chemical properties of colostrum from Bos indicus cows. Ciênc. Rural 52: https://doi.org/10.1590/0103-8478cr20210288
    [Google Scholar]
  139. Uusküla A, Keis A, Toompere K, Planken A, Rebrov K 2022. Cluster randomised, controlled, triple-blind trial assessing the efficacy of intranasally administered virus-neutralising bovine colostrum supplement in preventing SARS-CoV-2 infection in household contacts of SARS-CoV-2-positive individuals: a study protocol. Trials 23:92
    [Google Scholar]
  140. Van Hese I, Goossens K, Vandaele L, Opsomer G. 2020. Invited review: microRNAs in bovine colostrum—focus on their origin and potential health benefits for the calf. J. Dairy Sci. 103:1–15
    [Google Scholar]
  141. Vasquez A, Nydam D, Foditsch C, Warnick L, Wolfe C et al. 2022. Characterization and comparison of the microbiomes and resistomes of colostrum from selectively treated dry cows. J. Dairy Sci. 105:637–53
    [Google Scholar]
  142. Weinborn V, Li Y, Shah IM, Yu H, Dallas DC et al. 2020. Production of functional mimics of human milk oligosaccharides by enzymatic glycosylation of bovine milk oligosaccharides. Int. Dairy J. 102:104583
    [Google Scholar]
  143. Wilms JN, Hare KS, Fischer-Tlustos AJ, Vahmani P, Dugan MER et al. 2022. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J. Dairy Sci. 105:54692–710
    [Google Scholar]
  144. Wolfson LM, Sumner SS. 1993. Antibacterial activity of the lactoperoxidase system: a review. J. Food Prot. 56:887–92
    [Google Scholar]
  145. Yamamoto M, Muranishi H, Inagaki M, Uchida K, Yamashita K et al. 2013. Skimmed, sterilized, and concentrated bovine late colostrum promotes both prevention and recovery from intestinal tissue damage in mice. J. Dairy Sci. 96:1347–55
    [Google Scholar]
  146. Yan X, Sangild PT, Peng Y, Li Y, Bering SB, Pan X. 2021. Supplementary bovine colostrum feedings to formula-fed preterm pigs improve gut function and reduce necrotizing enterocolitis. J. Pediatr. Gastroenterol. Nutr. 73:e39–46
    [Google Scholar]
  147. Yang B, Chen H, Stanton C, Ross RP, Zhang H et al. 2015. Review of the roles of conjugated linoleic acid in health and disease. J. Funct. Foods 15:314–25
    [Google Scholar]
  148. Yeoman CJ, Ishaq SL, Bichi E, Olivo SK, Lowe J, Aldridge BM. 2018. Biogeographical differences in the influence of maternal microbial sources on the early successional development of the bovine neonatal gastrointestinal tract. Sci. Rep. 8:3197
    [Google Scholar]
  149. Yi Y-S. 2016. Functional role of milk fat globule-epidermal growth factor VIII in macrophage-mediated inflammatory responses and inflammatory/autoimmune diseases. Mediat. Inflamm. 2016:5628486
    [Google Scholar]
  150. Zabłocka A, Sokołowska A, Macała J, Bartoszewska M, Mitkiewicz M et al. 2020. Colostral proline-rich polypeptide complexes. Comparative study of the antioxidant properties, cytokine-inducing activity, and nitric oxide release of preparations produced by a laboratory and a large-scale method. Int. J. Pept. Res. Ther. 26:685–94
    [Google Scholar]
  151. Zhao X, Xu X-X, Liu Y, Xi E-Z, An J-J et al. 2019. The in vitro protective role of bovine lactoferrin on intestinal epithelial barrier. Molecules 24:148
    [Google Scholar]
/content/journals/10.1146/annurev-food-060721-014650
Loading
/content/journals/10.1146/annurev-food-060721-014650
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error