1932

Abstract

Mechano-bactericidal (MB) nanopatterns have the ability to inactivate bacterial cells by rupturing cellular envelopes. Such biocide-free, physicomechanical mechanisms may confer lasting biofilm mitigation capability to various materials encountered in food processing, packaging, and food preparation environments. In this review, we first discuss recent progress on elucidating MB mechanisms, unraveling property–activity relationships, and developing cost-effective and scalable nanofabrication technologies. Next, we evaluate the potential challenges that MB surfaces may face in food-related applications and provide our perspective on the critical research needs and opportunities to facilitate their adoption in the food industry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-060721-022330
2023-03-27
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/food/14/1/annurev-food-060721-022330.html?itemId=/content/journals/10.1146/annurev-food-060721-022330&mimeType=html&fmt=ahah

Literature Cited

  1. Abdolahpur Monikh F, Grundschober N, Romeijn S, Arenas-Lago D, Vijver MG et al. 2019. Development of methods for extraction and analytical characterization of carbon-based nanomaterials (nanoplastics and carbon nanotubes) in biological and environmental matrices by asymmetrical flow field-flow fractionation. Environ. Pollut. 255:113304
    [Google Scholar]
  2. Aguilar CA, Lu Y, Mao S, Chen S 2005. Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials 26:367642–49
    [Google Scholar]
  3. Ahn SH, Guo LJ. 2008. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv. Mater. 20:112044–49
    [Google Scholar]
  4. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H et al. 2010. Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv. Mater. 22:181993–2027
    [Google Scholar]
  5. Asatekin A, Gleason KK. 2011. Polymeric nanopore membranes for hydrophobicity-based separations by conformal initiated chemical vapor deposition. Nano Lett 11:2677–86
    [Google Scholar]
  6. Bandara CD, Singh S, Afara IO, Wolff A, Tesfamichael T et al. 2017. Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. ACS Appl. Mater. Interfaces 9:86746–60
    [Google Scholar]
  7. Bastarrachea LJ, Denis-Rohr A, Goddard JM. 2015. Antimicrobial food equipment coatings: applications and challenges. Annu. Rev. Food Sci. Technol. 6:97–118
    [Google Scholar]
  8. Beveridge TJ. 1999. Structures of gram-negative cell walls and their derived membrane vesicles. J. Bacteriol. 181:164725–33
    [Google Scholar]
  9. Cao Y, Su B, Chinnaraj S, Jana S, Bowen L et al. 2018. Nanostructured titanium surfaces exhibit recalcitrance towards Staphylococcus epidermidis biofilm formation. Sci. Rep. 8:11071
    [Google Scholar]
  10. Chen LY, Yin YT, Chen CH, Chiou JW. 2011. Influence of polyethyleneimine and ammonium on the growth of ZnO nanowires by hydrothermal method. J. Phys. Chem. C 115:4320913–19
    [Google Scholar]
  11. Chen P, Lang J, Zhou Y, Khlyustova A, Zhang Z et al. 2022. An imidazolium-based zwitterionic polymer for antiviral and antibacterial dual functional coatings. Sci. Adv. 8:2eabl8812
    [Google Scholar]
  12. Chen Y. 2015. Applications of nanoimprint lithography/hot embossing: a review. Appl. Phys. A 121:2451–65
    [Google Scholar]
  13. Chen Y, Shu Z, Zhang S, Zeng P, Liang H et al. 2021. Sub-10 nm fabrication: methods and applications. Int. J. Extreme Manuf. 3:3032003
    [Google Scholar]
  14. Cheng Y, Feng G, Moraru CI. 2019. Micro- and nanotopography sensitive bacterial attachment mechanisms: a review. Front. Microbiol. 10:191
    [Google Scholar]
  15. Cheng Y, Khlyustova A, Chen P, Yang R 2020. Kinetics of all-dry free radical polymerization under nanoconfinement. Macromolecules 53:2410699–710
    [Google Scholar]
  16. Cheng Y, Yang R 2021. Toward programming bacterial behavior via synthetic interfaces: physicochemical nanopatterning, decoupling surface properties, and integrating material and biological insights. Acc. Mater. Res. 2:11979–85
    [Google Scholar]
  17. Chou SY, Krauss PR. 1997. Imprint lithography with sub-10 nm feature size and high throughput. Microelectron. Eng. 35:1–4237–40
    [Google Scholar]
  18. Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R et al. 2013. 25th anniversary article: CVD polymers: a new paradigm for surface modifi cation and device fabrication. Adv. Mater. 25:5392–423
    [Google Scholar]
  19. Cools I, Uyttendaele M, Cerpentier J, D'Haese E, Nelis HJ, Debevere J 2005. Persistence of Campylobacter jejuni on surfaces in a processing environment and on cutting boards. Lett. Appl. Microbiol. 40:6418–23
    [Google Scholar]
  20. Cui Q, Liu T, Li X, Song K, Ge D. 2020. Nanopillared polycarbonate surfaces having variable feature parameters as bactericidal coatings. ACS Appl. Nano Mater 3:54599–609
    [Google Scholar]
  21. Cui Q, Liu T, Li X, Zhao L, Wu Q et al. 2021. Validation of the mechano-bactericidal mechanism of nanostructured surfaces with finite element simulation. Colloids Surf. B 206:111929
    [Google Scholar]
  22. Cunha A, Elie AM, Plawinski L, Serro AP, Botelho do Rego AM et al. 2016. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation. Appl. Surf. Sci. 360:485–93
    [Google Scholar]
  23. De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. 2016. Protein folding in the cell envelope of Escherichia coli. Nat. Microbiol. 1:16107
    [Google Scholar]
  24. DeFlorio W, Liu S, White AR, Taylor TM, Cisneros-Zevallos L et al. 2021. Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross-contamination of food contact surfaces by bacteria. Compr. Rev. Food Sci. Food Saf. 20:33093–134
    [Google Scholar]
  25. Delgado-Ruíz RA, Calvo-Guirado JL, Moreno P, Guardia J, Gomez-Moreno G et al. 2011. Femtosecond laser microstructuring of zirconia dental implants. J. Biomed. Mater. Res. B 96:191–100
    [Google Scholar]
  26. Dickson MN, Liang EI, Rodriguez LA, Vollereaux N, Yee AF. 2015. Nanopatterned polymer surfaces with bactericidal properties. Biointerphases 10:2021010
    [Google Scholar]
  27. Dik DA, Marous DR, Fisher JF, Mobashery S. 2017. Lytic transglycosylases: concinnity in concision of the bacterial cell wall. Crit. Rev. Biochem. Mol. Biol. 52:5503–42
    [Google Scholar]
  28. Donadt TB, Yang R 2021. Amphiphilic polymer thin films with enhanced resistance to biofilm formation at the solid–liquid–air interface. Adv. Mater. Interfaces 8:52001791
    [Google Scholar]
  29. Du C, Wang C, Zhang T, Zheng L 2022a. Antibacterial performance of Zr-BMG, stainless steel, and titanium alloy with laser-induced periodic surface structures. ACS Appl. Bio Mater. 5:1272–84
    [Google Scholar]
  30. Du C, Yang Y, Zheng L, Zhang T, Zhao X, Wang C. 2022b. Structure-element surface modification strategy enhances the antibacterial performance of Zr-BMGs. ACS Appl. Mater. Interfaces 14:78793–803
    [Google Scholar]
  31. Durand PM, Ramsey G. 2019. The nature of programmed cell death. Biol. Theory 14:130–41
    [Google Scholar]
  32. Elbourne A, Coyle VE, Truong VK, Sabri YM, Kandjani AE et al. 2019. Multi-directional electrodeposited gold nanospikes for antibacterial surface applications. Nanoscale Adv 1:1203–12
    [Google Scholar]
  33. Eleftheriadou M, Pyrgiotakis G, Demokritou P. 2017. Nanotechnology to the rescue: using nano-enabled approaches in microbiological food safety and quality. Curr. Opin. Biotechnol. 44:87–93
    [Google Scholar]
  34. Erdoǧan M, Öktem B, Kalaycıoǧlu H, Yavaş S, Mukhopadhyay PK et al. 2011. Texturing of titanium (Ti6Al4V) medical implant surfaces with MHz-repetition-rate femtosecond and picosecond Yb-doped fiber lasers. Opt. Express 19:1110986
    [Google Scholar]
  35. Espinha A, Dore C, Matricardi C, Alonso MI, Goñi AR, Mihi A. 2018. Hydroxypropyl cellulose photonic architectures by soft nanoimprinting lithography. Nat. Photonics 12:6343–48
    [Google Scholar]
  36. Feng G, Cheng Y, Wang S, Borca-Tasciuc DA, Worobo RW, Moraru CI. 2015. Bacterial attachment and biofilm formation on surfaces are reduced by small-diameter nanoscale pores: How small is small enough?. npj Biofilms Microbiomes 1:15022
    [Google Scholar]
  37. Feng G, Cheng Y, Wang S, Hsu LC, Feliz Y et al. 2014. Alumina surfaces with nanoscale topography reduce attachment and biofilm formation by Escherichia coli and Listeria spp. Biofouling 30:1253–68
    [Google Scholar]
  38. Feng G, Cheng Y, Worobo RW, Borca-Tasciuc DA, Moraru CI 2019. Nanoporous anodic alumina reduces Staphylococcus biofilm formation. Lett. Appl. Microbiol. 69:4246–51
    [Google Scholar]
  39. Frank JF, Koffi RA. 1990. Surface-adherent growth of Listeria monocytogenes is associated with increased resistance to surfactant sanitizers and heat. J. Food Prot. 53:7550–54
    [Google Scholar]
  40. Franklin T, Wu Y, Lang J, Li S, Yang R 2021. Design of polymeric thin films to direct microbial biofilm growth, virulence, and metabolism. Biomacromolecules 22:124933–44
    [Google Scholar]
  41. Franklin T, Yang R 2020. Vapor-deposited biointerfaces and bacteria: an evolving conversation. ACS Biomater. Sci. Eng. 6:1182–97
    [Google Scholar]
  42. Fruhwirth O, Herzog GW, Hollerer I. 1982. ZnO dissolution kinetics by means of a 65Zn tracer method. Surf. Technol. 15:43–52
    [Google Scholar]
  43. Galié S, García-Gutiérrez C, Miguélez EM, Villar CJ, Lombó F. 2018. Biofilms in the food industry: health aspects and control methods. Front. Microbiol. 9:898
    [Google Scholar]
  44. Ganjian M, Modaresifar K, Ligeon MRO, Kunkels LB, Tümer N et al. 2019. Nature helps: toward bioinspired bactericidal nanopatterns. Adv. Mater. Interfaces 6:161900640
    [Google Scholar]
  45. Gleason KK. 2020. Chemically vapor deposited polymer nanolayers for rapid and controlled permeation of molecules and ions. J. Vac. Sci. Technol. A 38:2020801
    [Google Scholar]
  46. Gleason KK. 2021. Controlled release utilizing initiated chemical vapor deposited (iCVD) of polymeric nanolayers. Front. Bioeng. Biotechnol. 9:632753
    [Google Scholar]
  47. Guo LJ. 2007. Nanoimprint lithography: methods and material requirements. Adv. Mater. 19:4495–513
    [Google Scholar]
  48. Gupta M, Gleason KK. 2006. Large-scale initiated chemical vapor deposition of poly(glycidyl methacrylate) thin films. Thin Solid Films 515:41579–84
    [Google Scholar]
  49. Han S, Ji S, Abdullah A, Kim D, Lim H, Lee D 2018. Applied surface science superhydrophilic nanopillar-structured quartz surfaces for the prevention of biofilm formation in optical devices. Appl. Surf. Sci. 429:244–52
    [Google Scholar]
  50. Harrand AS, Guariglia-Oropeza V, Skeens J, Kent D, Wiedmanna M. 2021. Nature versus nurture: assessing the impact of strain diversity and pregrowth conditions on Salmonella enterica, Escherichia coli, and Listeria species growth and survival on elected produce items. Appl. Environ. Microbiol. 87:6e01925-20
    [Google Scholar]
  51. Harrand AS, Kovac J, Carroll LM, Guariglia-Oropeza V, Kent DJ, Wiedmann M. 2019. Assembly and characterization of a pathogen strain collection for produce safety applications: pre-growth conditions have a larger effect on peroxyacetic acid tolerance than strain diversity. Front. Microbiol. 10:1223
    [Google Scholar]
  52. Hasan J, Webb HK, Truong VK, Pogodin S, Baulin VA et al. 2013. Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces. Appl. Microbiol. Biotechnol. 97:209257–62
    [Google Scholar]
  53. Hasan J, Xu Y, Yarlagadda T, Schuetz M, Spann K, Yarlagadda PKDV. 2020. Antiviral and antibacterial nanostructured surfaces with excellent mechanical properties for hospital applications. ACS Biomater. Sci. Eng. 6:63608–18
    [Google Scholar]
  54. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T et al. 2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLOS Med 12:12e100193
    [Google Scholar]
  55. Hawi S, Goel S, Kumar V, Pearce O, Ayre WN, Ivanova EP. 2022. Critical review of nanopillar-based mechanobactericidal systems. ACS Appl. Nano Mater 5:11–17
    [Google Scholar]
  56. Hayles A, Hasan J, Bright R, Palms D, Brown T et al. 2021. Hydrothermally etched titanium: a review on a promising mechano-bactericidal surface for implant applications. Mater. Today Chem. 22:100622
    [Google Scholar]
  57. Hizal F, Zhuk I, Sukhishvili S, Busscher HJ, Van Der Mei HC, Choi CH 2015. Impact of 3D hierarchical nanostructures on the antibacterial efficacy of a bacteria-triggered self-defensive antibiotic coating. ACS Appl. Mater. Interfaces 7:3620304–13
    [Google Scholar]
  58. Ishak MI, Liu X, Jenkins J, Nobbs AH, Su B. 2020. Protruding nanostructured surfaces for antimicrobial and osteogenic titanium implants. Coatings 10:8756
    [Google Scholar]
  59. Ivanova EP, Hasan J, Webb HK, Gervinskas G, Juodkazis S et al. 2013. Bactericidal activity of black silicon. Nat. Commun. 4:2838
    [Google Scholar]
  60. Ivanova EP, Hasan J, Webb HK, Truong VK, Watson GS et al. 2012. Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. Small 8:162489–94
    [Google Scholar]
  61. Ivanova EP, Linklater DP, Werner M, Baulin VA, Xu XM et al. 2020. The multi-faceted mechano-bactericidal mechanism of nanostructured surfaces. PNAS 117:2312598–605
    [Google Scholar]
  62. Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV. 2017. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15:64
    [Google Scholar]
  63. Jaggessar A, Yarlagadda PKDV. 2020. Modelling the growth of hydrothermally synthesised bactericidal nanostructures, as a function of processing conditions. Mater. Sci. Eng. C 108:110434
    [Google Scholar]
  64. Jang Y, Choi WT, Johnson CT, García AJ, Singh PM et al. 2018. Inhibition of bacterial adhesion on nanotextured stainless steel 316L by electrochemical etching. ACS Biomater. Sci. Eng. 4:190–97
    [Google Scholar]
  65. Jenkins J, Mantell J, Neal C, Gholinia A, Verkade P et al. 2020. Antibacterial effects of nanopillar surfaces are mediated by cell impedance, penetration and induction of oxidative stress. Nat. Commun. 11:1626
    [Google Scholar]
  66. Jiang R, Yi Y, Hao L, Chen Y, Tian L et al. 2021. Thermoresponsive nanostructures: from mechano-bactericidal action to bacteria release. ACS Appl. Mater. Interfaces 13:5160865–77
    [Google Scholar]
  67. Khlyustova A, Cheng Y, Yang R 2020. Vapor-deposited functional polymer thin films in biological applications. J. Mater. Chem. B 8:316588–609
    [Google Scholar]
  68. Khlyustova A, Kirsch M, Ma X, Cheng Y, Yang R 2022. Surfaces with antifouling-antimicrobial dual function via immobilization of lysozyme on zwitterionic polymer thin films. J. Mater. Chem. B 10:142728–39
    [Google Scholar]
  69. Kwiatkowski CF, Andrews DQ, Birnbaum LS, Bruton TA, Dewitt JC et al. 2020. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 7:8532–43
    [Google Scholar]
  70. Lang J, Ma X, Chen P, Serota MD, Andre NM et al. 2022. Haloperoxidase-mimicking CeO2–x nanorods for the deactivation of human coronavirus OC43. Nanoscale 14:103731–37
    [Google Scholar]
  71. Leduc M, Kasra R, Van Heijenoort J. 1982. Induction and control of the autolytic system of Escherichia coli. J. Bacteriol. 152:126–34
    [Google Scholar]
  72. Li G, Tang L, Zhang X, Dong J. 2019. A review of factors affecting the efficiency of clean-in-place procedures in closed processing systems. Energy 178:57–71
    [Google Scholar]
  73. Linklater DP, Baulin VA, Juodkazis S, Crawford RJ, Stoodley P, Ivanova EP. 2020. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol. 19:9–12
    [Google Scholar]
  74. Linklater DP, De Volder M, Baulin VA, Werner M, Jessl S et al. 2018. High aspect ratio nanostructures kill bacteria via storage and release of mechanical energy. ACS Nano 12:76657–67
    [Google Scholar]
  75. Linklater DP, Ivanova EP. 2022. Nanostructured antibacterial surfaces: What can be achieved?. Nano Today 43:101404
    [Google Scholar]
  76. Linklater DP, Juodkazis S, Rubanov S, Ivanova EP. 2017. Comment on “Bactericidal effects of natural nanotopography of dragonfly wing on Escherichia coli. .” ACS Appl. Mater. Interfaces 9:3529387–93
    [Google Scholar]
  77. Linklater DP, Saita S, Murata T, Yanagishita T, Dekiwadia C et al. 2022. Nanopillar polymer films as antibacterial packaging materials. ACS Appl. Nano Mater. 5:22578–91
    [Google Scholar]
  78. Liu CF, Lu YJ, Hu CC. 2018. Effects of anions and pH on the stability of ZnO nanorods for photoelectrochemical water splitting. ACS Omega 3:33429–39
    [Google Scholar]
  79. Liu L, Chen S, Xue Z, Zhang Z, Qiao X et al. 2018. Bacterial capture efficiency in fluid bloodstream improved by bendable nanowires. Nat. Commun. 9:444
    [Google Scholar]
  80. Liu L, Chen S, Zhang X, Xue Z, Cui S et al. 2020. Mechanical penetration of β-lactam-resistant Gram-negative bacteria by programmable nanowires. Sci. Adv. 6:27eabb9593
    [Google Scholar]
  81. Liu T, Cui Q, Wu Q, Li X, Song K et al. 2019. Mechanism study of bacteria killed on nanostructures. J. Phys. Chem. B 123:418686–96
    [Google Scholar]
  82. Liu Z, Yi Y, Song L, Chen Y, Tian L et al. 2022. Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 141:198–208
    [Google Scholar]
  83. Machell J, Prior K, Allan R, Andresen JM 2015. The water energy food nexus-challenges and emerging solutions. Environ. Sci. Water Res. Technol. 1:115–16
    [Google Scholar]
  84. Maleki E, Mirzaali MJ, Guagliano M, Bagherifard S. 2021. Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species. Surf. Coat. Technol. 408:126782
    [Google Scholar]
  85. Martin TP, Kooi SE, Chang SH, Sedransk KL, Gleason KK. 2007. Initiated chemical vapor deposition of antimicrobial polymer coatings. Biomaterials 28:6909–15
    [Google Scholar]
  86. Maslar JE, Hurst WS, Bowers JJ, Hendricks JH. 2002. In situ raman spectroscopic investigation of stainless steel hydrothermal corrosion. Corrosion 58:9739–47
    [Google Scholar]
  87. Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T. 2001. Square and triangular nanohole array architectures in anodic alumina. Adv. Mater. 13:3189–92
    [Google Scholar]
  88. Mattila-Sandholm T, Wirtanen G. 1992. Biofilm formation in the industry: a review. Food Rev. Int. 8:573–603
    [Google Scholar]
  89. Mattsson K, Johnson EV, Malmendal A, Linse S, Hansson LA, Cedervall T. 2017. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci. Rep. 7:11452
    [Google Scholar]
  90. Mazinanian N, Odnevall Wallinder I, Hedberg Y 2015. Comparison of the influence of citric acid and acetic acid as simulant for acidic food on the release of alloy constituents from stainless steel AISI 201. J. Food Eng. 145:51–63
    [Google Scholar]
  91. Meijer J, Du K, Gillner A, Hoffmann D, Kovalenko VS et al. 2002. Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons. CIRP Ann. Manuf. Technol. 51:2531–50
    [Google Scholar]
  92. Michalska M, Divan R, Noirot P, Laible PD. 2021. Antimicrobial properties of nanostructured surfaces—demonstrating the need for a standard testing methodology. Nanoscale 13:4117603–14
    [Google Scholar]
  93. Michalska M, Gambacorta F, Divan R, Aranson IS, Sokolov A et al. 2018. Tuning antimicrobial properties of biomimetic nanopatterned surfaces. Nanoscale 10:146639–50
    [Google Scholar]
  94. Mimura S, Shimizu T, Shingubara S, Iwaki H, Ito T. 2022. Bactericidal effect of nanostructures: via lytic transglycosylases of Escherichia coli. RSC Adv 12:31645–52
    [Google Scholar]
  95. Minoura K, Yamada M, Mizoguchi T, Kaneko T, Nishiyama K et al. 2017. Antibacterial effects of the artificial surface of nanoimprinted moth-eye film. PLOS ONE 12:9e0185366
    [Google Scholar]
  96. Mirzaali MJ, Van Dongen ICP, Tümer N, Weinans H, Yavari SA, Zadpoor AA 2018. In-silico quest for bactericidal but non-cytotoxic nanopatterns. Nanotechnology 29:4343LT02
    [Google Scholar]
  97. Modaresifar K, Azizian S, Ganjian M, Fratila-Apachitei LE, Zadpoor AA. 2019. Bactericidal effects of nanopatterns: a systematic review. Acta Biomater 83:29–36
    [Google Scholar]
  98. Modaresifar K, Kunkels LB, Ganjian M, Tümer N, Hagen CW et al. 2020. Deciphering the roles of interspace and controlled disorder in the bactericidal properties of nanopatterns against Staphylococcus aureus. Nanomaterials 10:2347
    [Google Scholar]
  99. Mousavi SM, Hashemi SA, Gholami A, Omidifar N, Zarei M et al. 2021. Bioinorganic synthesis of polyrhodanine stabilized Fe3O4/graphene oxide in microbial supernatant media for anticancer and antibacterial applications. Bioinorg. Chem. Appl. 2021:9972664
    [Google Scholar]
  100. Negut I, Grumezescu V, Ficai A, Grumezescu AM, Holban AM et al. 2018. MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings. Appl. Surf. Sci. 455:1513–21
    [Google Scholar]
  101. Nishiyama T, Hashimoto Y, Kusakabe H, Kumano T, Kobayashi M. 2014. Natural low-molecular mass organic compounds with oxidase activity as organocatalysts. PNAS 111:4817152–57
    [Google Scholar]
  102. Nyankson E, Agbe H, Takyi GKS, Bensah YD, Sarkar DK. 2022. Recent advances in nanostructured superhydrophobic surfaces: fabrication and long-term durability challenges. Curr. Opin. Chem. Eng. 36:100790
    [Google Scholar]
  103. Park HH, Sun K, Lee D, Seong M, Cha C, Jeong HE. 2019a. Cellulose acetate nanoneedle array covered with phosphorylcholine moiety as a biocompatible and sustainable antifouling material. Cellulose 26:168775–88
    [Google Scholar]
  104. Park HH, Sun K, Seong M, Kang M, Park S et al. 2019b. Lipid-hydrogel-nanostructure hybrids as robust biofilm-resistant polymeric materials. ACS Macro Lett 8:164–69
    [Google Scholar]
  105. Paxson AT, Yagüe JL, Gleason KK, Varanasi KK. 2014. Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26:3418–23
    [Google Scholar]
  106. Peter A, Lutey AHA, Faas S, Romoli L, Onuseit V, Graf T. 2020. Direct laser interference patterning of stainless steel by ultrashort pulses for antibacterial surfaces. Opt. Laser Technol. 123:105954
    [Google Scholar]
  107. Pham VTH, Truong VK, Mainwaring DE, Guo Y, Baulin VA et al. 2014. Nanotopography as a trigger for the microscale, autogenous and passive lysis of erythrocytes. J. Mater. Chem. B 2:192819–26
    [Google Scholar]
  108. Piret JP, Vankoningsloo S, Mejia J, Noël F, Boilan E et al. 2012. Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicology 6:7789–803
    [Google Scholar]
  109. Pogodin S, Hasan J, Baulin VA, Webb HK, Truong VK et al. 2013. Biophysical model of bacterial cell interactions with nanopatterned cicada wing surfaces. Biophys. J. 104:4835–40
    [Google Scholar]
  110. Reeja-Jayan B, Kovacik P, Yang R, Sojoudi H, Ugur A et al. 2014. A route towards sustainability through engineered polymeric interfaces. Adv. Mater. Interfaces 1:41400117
    [Google Scholar]
  111. Robertson GL. 2013. Food Packaging: Principles and Practice Boca Raton, FL: CRC Press. , 3rd ed..
    [Google Scholar]
  112. Román-Kustas J, Hoffman JB, Reed JH, Gonsalves AE, Oh J et al. 2020. Molecular and topographical organization: influence on cicada wing wettability and bactericidal properties. Adv. Mater. Interfaces 7:102000112
    [Google Scholar]
  113. Roy A, Chatterjee K. 2021. Theoretical and computational investigations into mechanobactericidal activity of nanostructures at the bacteria-biomaterial interface: a critical review. Nanoscale 13:2647–58
    [Google Scholar]
  114. Scheldeman P, Herman L, Foster S, Heyndrickx M. 2006. Bacillus sporothermodurans and other highly heat-resistant spore formers in milk. J. Appl. Microbiol. 101:3542–55
    [Google Scholar]
  115. Setlow P. 2007. I will survive: DNA protection in bacterial spores. Trends Microbiol 15:4172–80
    [Google Scholar]
  116. Sjollema J, Zaat SAJ, Fontaine V, Ramstedt M, Luginbuehl R et al. 2018. In vitro methods for the evaluation of antimicrobial surface designs. Acta Biomater 70:12–24
    [Google Scholar]
  117. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. 2018. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 13:44
    [Google Scholar]
  118. Sulka GD 2008. Highly ordered anodic porous alumina formation by self-organized anodizing. Nanostructured Materials in Electrochemistry A Eftekhari 1–116. Weinheim, Ger: Wiley-VCH
    [Google Scholar]
  119. Sundara Selvam PS, Chinnadurai GS, Ganesan D, Kandan V 2020. Eggshell membrane-mediated V2O5/ZnO nanocomposite: synthesis, characterization, antibacterial activity, minimum inhibitory concentration, and its mechanism. Appl. Phys. A 126:893
    [Google Scholar]
  120. Takei S, Hanabata M. 2015. Ultraviolet nanoimprint lithography using cyclodextrin-based porous template for pattern failure reduction. Appl. Phys. Lett. 107:141904
    [Google Scholar]
  121. Takei S, Yasuda K. 2020. Fabrication of nanostructured antibacterial film derived from oligoglucosamine in ultraviolet nanoimprint lithography using a solvent-permeable template. Appl. Phys. Express 13:106506
    [Google Scholar]
  122. Talbert JN, Goddard JM. 2013. Influence of nanoparticle diameter on conjugated enzyme activity. Food Bioprod. Process. 91:4693–99
    [Google Scholar]
  123. Tan R, Marzolini N, Jiang P, Jang Y. 2020. Bio-inspired polymer thin films with non-close-packed nanopillars for enhanced bactericidal and antireflective properties. ACS Appl. Polym. Mater. 2:125808–16
    [Google Scholar]
  124. Thimothe J, Nightingale KK, Gall K, Scott VN, Wiedmann M. 2004. Tracking of Listeria monocytogenes in smoked fish processing plants. J. Food Prot. 67:2328–41
    [Google Scholar]
  125. Tiller JC, Liao CJ, Lewis K, Klibanov AM. 2001. Designing surfaces that kill bacteria on contact. PNAS 98:115981–85
    [Google Scholar]
  126. Toole GO, Kaplan HB, Kolter R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54:49–79
    [Google Scholar]
  127. Tripathy A, Sen P, Su B, Briscoe WH. 2017. Natural and bioinspired nanostructured bactericidal surfaces. Adv. Colloid Interface Sci. 248:85–104
    [Google Scholar]
  128. Tu Y, Lv M, Xiu P, Huynh T, Zhang M et al. 2013. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 8:594–601
    [Google Scholar]
  129. Unger K, Salzmann P, Masciullo C, Cecchini M, Koller G, Coclite AM. 2017. Novel light-responsive biocompatible hydrogels produced by initiated chemical vapor deposition. ACS Appl. Mater. Interfaces 9:2017408–16
    [Google Scholar]
  130. Valiei A, Lin N, Bryche JF, McKay G, Canva M et al. 2020. Hydrophilic mechano-bactericidal nanopillars require external forces to rapidly kill bacteria. Nano Lett 20:85720–27
    [Google Scholar]
  131. Velic A, Hasan J, Li Z, Yarlagadda PKDV. 2021. Mechanics of bacterial interaction and death on nanopatterned surfaces. Biophys. J. 120:2217–31
    [Google Scholar]
  132. Vorst KL, Todd ECD, Ryser ET. 2006. Transfer of Listeria monocytogenes during slicing of turkey breast, bologna, and salami with simulated kitchen knives. J. Food Prot. 69:122939–46
    [Google Scholar]
  133. Wagner S, Reemtsma T. 2019. Things we know and don't know about nanoplastic in the environment. Nat. Nanotechnol. 14:4300–1
    [Google Scholar]
  134. Wandiyanto JV, Tamanna T, Linklater DP, Truong VK, Al Kobaisi M et al. 2020. Tunable morphological changes of asymmetric titanium nanosheets with bactericidal properties. J. Colloid Interface Sci. 560:572–80
    [Google Scholar]
  135. Watson GS, Green DW, Schwarzkopf L, Li X, Cribb BW et al. 2015. A gecko skin micro/nano structure: a low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface. Acta Biomater 21:109–22
    [Google Scholar]
  136. Watson GS, Green DW, Watson JA, Zhou Z, Li X et al. 2019. A simple model for binding and rupture of bacterial cells on nanopillar surfaces. Adv. Mater. Interfaces 6:101801646
    [Google Scholar]
  137. Worgull M, Schneider M, Röhrig M, Meier T, Heilig M et al. 2013. Hot embossing and thermoforming of biodegradable three-dimensional wood structures. RSC Adv 3:4320060–64
    [Google Scholar]
  138. Wu B, Zhou M, Li J, Ye X, Li G, Cai L. 2009. Superhydrophobic surfaces fabricated by microstructuring of stainless steel using a femtosecond laser. Appl. Surf. Sci. 256:161–66
    [Google Scholar]
  139. Wu S, Zuber F, Maniura-Weber K, Brugger J, Ren Q. 2018. Nanostructured surface topographies have an effect on bactericidal activity. J. Nanobiotechnol. 16:20
    [Google Scholar]
  140. Xie Y, Qu X, Li J, Li D, Wei W et al. 2020. Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. Sci. Total Environ. 738:139714
    [Google Scholar]
  141. Yamada M, Minoura K, Mizoguchi T, Nakamatsu K, Taguchi T et al. 2018. Antibacterial effects of nano-imprinted motheye film in practical settings. PLOS ONE 13:10e0198300
    [Google Scholar]
  142. Yang R, Asatekin A, Gleason KK. 2012. Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter 8:131–43
    [Google Scholar]
  143. Yi Y, Jiang R, Liu Z, Dou H, Song L et al. 2022. Bioinspired nanopillar surface for switchable mechano-bactericidal and releasing actions. J. Hazard. Mater. 432:128658
    [Google Scholar]
  144. Yu H, Zhang Z, Han M, Hao X, Zhu F. 2005. A general low-temperature route for large-scale fabrication of highly oriented ZnO nanorod/nanotube arrays. J. Am. Chem. Soc. 127:82378–79
    [Google Scholar]
  145. Yuan Y, Zhang Y. 2017. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays. Nanomed. Nanotechnol. Biol. Med. 13:72199–207
    [Google Scholar]
  146. Zhao S, Li Z, Linklater DP, Han L, Jin P et al. 2022. Programmed death of injured Pseudomonas aeruginosa on mechano-bactericidal surfaces. Nano Lett 22:31129–37
    [Google Scholar]
/content/journals/10.1146/annurev-food-060721-022330
Loading
/content/journals/10.1146/annurev-food-060721-022330
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error