1932

Abstract

This article reviews what is presently known about the biological roles of the diet-derived compound ergothioneine (ET). ET seems important to humans because it is rapidly taken up from the diet by a transporter largely or completely specific for ET, and once taken up it is retained within the body for weeks or months. The various possible functions of ET in vivo are explored. Much emphasis has been placed on the antioxidant properties of ET, but although these are well established in vitro, the evidence that antioxidant activity is the principal function of ET in vivo is weak. ET is not unique in this: The evidence for the antioxidant roles of vitamin C and polyphenols such as the flavonoids in vivo is also weak. By contrast, α-tocopherol has demonstrated in vivo antioxidant effects in humans.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-060822-122236
2023-03-27
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/food/14/1/annurev-food-060822-122236.html?itemId=/content/journals/10.1146/annurev-food-060822-122236&mimeType=html&fmt=ahah

Literature Cited

  1. Akanmu D, Cecchini R, Aruoma OI, Halliwell B. 1991. The antioxidant action of ergothioneine. Arch. Biochem. Biophys. 288:110–16
    [Google Scholar]
  2. Ames BN. 2018. Prolonging healthy aging: longevity vitamins and proteins. PNAS 115:4310836–44
    [Google Scholar]
  3. Ang A, Pullar JM, Currie MJ, Vissers MCM. 2018. Vitamin C and immune cell function in inflammation and cancer. Biochem. Soc. Trans. 46:51147–59
    [Google Scholar]
  4. Apparoo Y, Phan CW, Kuppusamy UR, Sabaratnam V. 2022. Ergothioneine and its prospects as an anti-ageing compound. Exp. Gerontol. 170:111982
    [Google Scholar]
  5. Aruoma OI, Halliwell B, Hoey BM, Butler J. 1989. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic. Biol. Med. 6:6593–97
    [Google Scholar]
  6. Aruoma OI, Whiteman M, England TG, Halliwell B. 1997. Antioxidant action of ergothioneine: assessment of its ability to scavenge peroxynitrite. Biochem. Biophys. Res. Commun. 231:2389–91
    [Google Scholar]
  7. Asmus KD, Bensasson RV, Bernier JL, Houssin R, Land EJ. 1996. One-electron oxidation of ergothioneine and analogues investigated by pulse radiolysis: redox reaction involving ergothioneine and vitamin C. Biochem. J. 315:2625–29
    [Google Scholar]
  8. Ba DM, Gao X, Al-Shaar L, Muscat JE, Chinchilli VM et al. 2022. Mushroom intake and cognitive performance among US older adults: the National Health and Nutrition Examination Survey, 2011–2014. Br. J. Nutr. 128:112241–48
    [Google Scholar]
  9. Beelman RB, Phillips AT, Richie JP, Ba DM, Duiker SW, Kalaras MD. 2022. Health consequences of improving the content of ergothioneine in the food supply. FEBS Lett 596:101231–40
    [Google Scholar]
  10. Behof WJ, Whitmore CA, Haynes JR, Rosenberg AJ, Tantawy MN et al. 2022. Improved synthesis of an ergothioneine PET radioligand for imaging oxidative stress in Alzheimer's disease. FEBS Lett 596:101279–89
    [Google Scholar]
  11. Block G, Jensen CD, Morrow JD, Holland N, Norkus EP et al. 2008. The effect of vitamins C and E on biomarkers of oxidative stress depends on baseline level. Free Radic. Biol. Med. 45:4377–84
    [Google Scholar]
  12. Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E et al. 2020. The biology of ergothioneine, an antioxidant nutraceutical. Nutr. Res. Rev. 33:2190–217
    [Google Scholar]
  13. Brancaccio M, Russo M, Masullo M, Palumbo A, Russo GL, Castellano I. 2019. Sulfur-containing histidine compounds inhibit γ-glutamyl transpeptidase activity in human cancer cells. J. Biol. Chem. 294:4014603–14
    [Google Scholar]
  14. Brigelius-Flohé R. 2021. Vitamin E research: past, now and future. Free Radic. Biol. Med. 177:381–90
    [Google Scholar]
  15. Butterfield DA, Halliwell B. 2019. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 20:148–60
    [Google Scholar]
  16. Buzadžić B, Spasić M, Saičić ZS, Radojičić R, Petrović VM, Halliwell B. 1990. Antioxidant defenses in the ground squirrel Citellus citellus. 2. The effect of hibernation. Free Radic. Biol. Med. 9:5407–13
    [Google Scholar]
  17. Cheah IK, Feng L, Tang RMY, Lim KHC, Halliwell B. 2016. Ergothioneine levels in an elderly population decrease with age and incidence of cognitive decline; a risk factor for neurodegeneration?. Biochem. Biophys. Res. Commun. 478:1162–67
    [Google Scholar]
  18. Cheah IK, Halliwell B. 2012. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim. Biophys. Acta Mol. Basis Dis. 1822:5784–93
    [Google Scholar]
  19. Cheah IK, Halliwell B. 2020. Could ergothioneine aid in the treatment of coronavirus patients?. Antioxidants 9:7595
    [Google Scholar]
  20. Cheah IK, Halliwell B. 2021. Ergothioneine, recent developments. Redox Biol 42:101868
    [Google Scholar]
  21. Cheah IK, Lee JZ, Tang RMY, Koh PW, Halliwell B. 2022. Does Lactobacillus reuteri influence ergothioneine levels in the human body?. FEBS Lett 596:101241–51
    [Google Scholar]
  22. Cheah IK, Ng LT, Ng LF, Lam VY, Gruber J et al. 2019. Inhibition of amyloid-induced toxicity by ergothioneine in a transgenic Caenorhabditis elegans model. FEBS Lett 593:162139–50
    [Google Scholar]
  23. Cheah IK, Tang RMY, Yew TSZ, Lim KHC, Halliwell B. 2017. Administration of pure ergothioneine to healthy human subjects: uptake, metabolism, and effects on biomarkers of oxidative damage and inflammation. Antioxid. Redox Signal. 26:5193–206
    [Google Scholar]
  24. Chou RH, Wu PS, Wang SC, Wu CH, Lu SF et al. 2021. Paradox of trimethylamine-N-oxide, the impact of malnutrition on microbiota-derived metabolites and septic patients. J. Intensive Care 9:165
    [Google Scholar]
  25. Cordell GA, Lamahewage SNS. 2022. Ergothioneine, ovothiol A, and selenoneine-histidine-derived, biologically significant, trace global alkaloids. Molecules 27:92673
    [Google Scholar]
  26. Cronin H, Draelos ZD. 2010. Top 10 botanical ingredients in 2010 anti-aging creams. J. Cosmet. Dermatol. 9:3218–25
    [Google Scholar]
  27. Cross CE, Van der Vliet A, O'Neill CA, Louie S, Halliwell B 1994. Oxidants, antioxidants, and respiratory tract lining fluids. Environ. Health Perspect. 102:Suppl. 10185–91
    [Google Scholar]
  28. Dare A, Channa ML, Nadar A. 2021. l-Ergothioneine and its combination with metformin attenuates renal dysfunction in type-2 diabetic rat model by activating Nrf2 antioxidant pathway. Biomed. Pharmacother. 141:111921
    [Google Scholar]
  29. D'Onofrio N, Martino E, Balestrieri A, Mele L, Cautela D et al. 2022. Diet-derived ergothioneine induces necroptosis in colorectal cancer cells by activating the SIRT3/MLKL pathway. FEBS Lett 596:101313–29
    [Google Scholar]
  30. Dumitrescu DG, Gordon EM, Kovalyova Y, Seminara AB, Duncan-Lowey B et al. 2022. A microbial transporter of the dietary antioxidant ergothioneine. Cell 185:244469–71
    [Google Scholar]
  31. El Hanafi K, Pedrero Z, Ouerdane L, Marchán Moreno C, Queipo-Abad S et al. 2022. First time identification of selenoneine in seabirds and its potential role in mercury detoxification. Environ. Sci. Technol. 56:53288–98
    [Google Scholar]
  32. Ey J, Schömig E, Taubert D. 2007. Dietary sources and antioxidant effects of ergothioneine. J. Agric. Food Chem. 55:166466–74
    [Google Scholar]
  33. Feng L, Cheah I, Ng M, Li J, Chan SM et al. 2019. The association between mushroom consumption and mild cognitive impairment (MCI): a study in Singapore. J. Alzheimer Dis. 68:197–203
    [Google Scholar]
  34. Fornasaro S, Sergo V, Bonifacio A. 2022. The key role of ergothioneine in label-free surface-enhanced Raman scattering spectra of biofluids: a retrospective re-assessment of the literature. FEBS Lett 596:101348–55
    [Google Scholar]
  35. Fovet T, Guilhot C, Delobel P, Chopard A, Py G, Brioche T. 2022. Ergothioneine improves aerobic performance without any negative effect on early muscle recovery signaling in response to acute exercise. Front. Physiol. 13:834597
    [Google Scholar]
  36. Fromentin S, Forslund SK, Chechi K, Aron-Wisnewsky J, Chakaroun R et al. 2022. Microbiome and metabolome features of the cardiometabolic disease spectrum. Nat. Med. 28:303–14
    [Google Scholar]
  37. Fu TT, Shen L. 2022. Ergothioneine as a natural antioxidant against oxidative stress–related diseases. Front. Pharmacol. 13:850813
    [Google Scholar]
  38. Garrett Q, Xu S, Simmons PA, Vehige J, Flanagan JL, Willcox MD. 2008. Expression and localization of carnitine/organic cation transporter OCTN1 and OCTN2 in ocular epithelium. Investig. Ophthalmol. Vis. Sci. 49:114844–49
    [Google Scholar]
  39. Gatarek P, Kaluzna-Czaplinska J. 2021. Trimethylamine N-oxide (TMAO) in human health. EXCLI J 20:301–19
    [Google Scholar]
  40. González-Domínguez R, Castellano-Escuder P, Carmona F, Lefèvre-Arbogast S, Low DY et al. 2021. Food and microbiota metabolites associate with cognitive decline in older subjects: a 12-year prospective study. Mol. Nutr. Food Res. 65:232100606
    [Google Scholar]
  41. González-Rodríguez P, Zampese E, Stout KA, Guzman JN, Ilijic E et al. 2021. Disruption of mitochondrial complex I induces progressive parkinsonism. Nature 599:7886650–56
    [Google Scholar]
  42. Gorelik S, Ligumsky M, Kohen R, Kanner J. 2008. The stomach as a “bioreactor”: when red meat meets red wine. J. Agric. Food Chem. 56:135002–7
    [Google Scholar]
  43. Graham SF, Turkoglu O, Kumar P, Yilmaz A, Bjorndahl TC et al. 2017. Targeted metabolic profiling of post-mortem brain from infants who died from sudden infant death syndrome. J. Proteome Res. 16:72587–96
    [Google Scholar]
  44. Gründemann D, Hartmann L, Flögel S. 2022. The ergothioneine transporter (ETT): substrates and locations, an inventory. FEBS Lett 596:101252–69
    [Google Scholar]
  45. Gutteridge JMC, Halliwell B. 2010. Antioxidants: molecules, medicines, and myths. Biochem. Biophys. Res. Commun. 393:4561–64
    [Google Scholar]
  46. Halliwell B. 2018. Artefacts with ascorbate and other redox-active compounds in cell culture: epigenetic modifications, and cell killing due to hydrogen peroxide generation in cell culture media. Free Radic. Res. 52:9907–9
    [Google Scholar]
  47. Halliwell B. 2020. Reflections of an aging free radical. Free Radic. Biol. Med. 161:234–45
    [Google Scholar]
  48. Halliwell B, Cheah IK. 2022. Introduction to the special issue on ergothioneine. FEBS Lett 596:101227–30
    [Google Scholar]
  49. Halliwell B, Cheah IK, Drum CL. 2016. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis.. Biochem. Biophys. Res. Commun. 470:2245–50
    [Google Scholar]
  50. Halliwell B, Cheah IK, Tang RMY. 2018. Ergothioneine: a diet-derived antioxidant with therapeutic potential. FEBS Lett 592:203357–66
    [Google Scholar]
  51. Halliwell B, Gutteridge JMC. 2015. Free Radicals in Biology and Medicine Oxford, UK: Clarendon. , 5th ed..
  52. Halliwell B, Rafter J, Jenner A. 2005. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not?. Am. J. Clin. Nutr. 81:Suppl. 1268–76
    [Google Scholar]
  53. Halliwell B, Zhao K, Whiteman M. 2000. The gastrointestinal tract: a major site of antioxidant action?. Free Radic. Res. 33:6819–30
    [Google Scholar]
  54. Han Y, Tang X, Zhang Y, Hu X, Ren LJ. 2021. The current status of biotechnological production and the application of a novel antioxidant ergothioneine. Crit. Rev. Biotechnol. 41:4580–93
    [Google Scholar]
  55. Hartman PE. 1990. Ergothioneine as antioxidant. Methods Enzymol 186:310–18
    [Google Scholar]
  56. Harwood MD, Zhang M, Pathak SM. 2019. The regional-specific relative and absolute expression of gut transporters in adult Caucasians: a meta-analysis. Drug Metab. Dispos. 47:8854–64
    [Google Scholar]
  57. Hatano T, Saiki S, Okuzumi A, Mohney RP, Hattori N. 2016. Identification of novel biomarkers for Parkinson's disease by metabolomic technologies. J. Neurol. Neurosurg. Psychiatry 87:3295–301
    [Google Scholar]
  58. Hau RK, Klein RR, Wright SH, Cherrington NJ. 2022. Localization of xenobiotic transporters expressed at the human blood-testis barrier. Drug Metab. Dispos. 50:6770–80
    [Google Scholar]
  59. Hollman PC. 2014. Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism. Arch. Biochem. Biophys. 559:100–5
    [Google Scholar]
  60. Hoyles L, Pontifex MG, Rodriguez-Ramiro I, Anis-Alavi MA, Jelane KS et al. 2021. Regulation of blood-brain barrier integrity by microbiome-associated methylamines and cognition by trimethylamine N-oxide. Microbiome 9:1235
    [Google Scholar]
  61. Hseu YC, Vudhya Gowrisankar Y, Chen XZ, Yang YC, Yang HL. 2020. The antiaging activity of ergothioneine in UVA-irradiated human dermal fibroblasts via the inhibition of the AP-1 pathway and the activation of Nrf2-mediated antioxidant genes. Oxid. Med. Cell. Longev. 2020:e2576823
    [Google Scholar]
  62. Ishimoto T, Kato Y. 2022. Ergothioneine in the brain. FEBS Lett 596:101290–98
    [Google Scholar]
  63. Ivanyuk A, Livio F, Biollaz J, Buclin T. 2017. Renal drug transporters and drug interactions. Clin. Pharmacokinet. 56:8825–92
    [Google Scholar]
  64. Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. 2018. Implication of trimethylamine N-oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients 10:101398
    [Google Scholar]
  65. Jenner AM, Rafter J, Halliwell B. 2005. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic. Biol. Med. 38:6763–72
    [Google Scholar]
  66. Jenny KA, Mose G, Haupt DJ, Hondal RJ. 2022. Oxidized forms of ergothioneine are substrates for mammalian thioredoxin reductase. Antioxidants 11:2185
    [Google Scholar]
  67. Kaikkonen J, Porkkala-Sarataho E, Morrow JD, Roberts LJ, Nyyssönen K et al. 2001. Supplementation with vitamin E but not with vitamin C lowers lipid peroxidation in vivo in mildly hypercholesterolemic men. Free Radic. Res. 35:6967–78
    [Google Scholar]
  68. Kameda M, Teruya T, Yanagida M, Kondoh H. 2020. Frailty markers comprise blood metabolites involved in antioxidation, cognition, and mobility. PNAS 117:179483–89
    [Google Scholar]
  69. Kato Y, Kubo Y, Iwata D, Kato S, Sudo T et al. 2010. Gene knockout and metabolome analysis of carnitine/organic cation transporter OCTN1. Pharm. Res. 27:5832–40
    [Google Scholar]
  70. Kawano H, Otani M, Takeyama K, Kawai Y, Mayumi T, Hama T. 1982. Studies on ergothioneine. VI. Distribution and fluctuations of ergothioneine in rats. Chem. Pharm. Bull. 30:51760–65
    [Google Scholar]
  71. Kelly R, Poo Yeo K, Isaac H, Lee CY, Huang SH et al. 2008. Lack of effect of acute oral ingestion of vitamin C on oxidative stress, arterial stiffness or blood pressure in healthy subjects. Free Radic. Res. 42:5514–22
    [Google Scholar]
  72. Kenny LC, Brown LW, Tuytten R, Kell DB 2022. Relationship between the concentration of ergothioneine in plasma and the likelihood of developing pre-eclampsia. Molecules In press
    [Google Scholar]
  73. Kim HJ, Lee YR, Lee S, Kwon S, Chun YT et al. 2022. Discovery of donor age markers from bloodstain by LC-MS/MS using a metabolic approach. Int. J. Legal Med. 136:1297–308
    [Google Scholar]
  74. Kitsanayanyong L, Ohshima T. 2022. Ergothioneine: a potential antioxidative and antimelanosis agent for food quality preservation. FEBS Lett 596:101330–47
    [Google Scholar]
  75. Koh SS, Ooi SC, Lui NM, Qiong C, Ho LT et al. 2021. Effect of ergothioneine on 7-ketocholesterol-induced endothelial injury. NeuroMol. Med. 23:184–98
    [Google Scholar]
  76. Kondoh H, Teruya T, Kameda M, Yanagida M. 2022. Decline of ergothioneine in frailty and cognition impairment. FEBS Lett 596:101270–78
    [Google Scholar]
  77. Kondoh H, Teruya T, Yanagida M. 2020. Metabolomics of human fasting: new insights about old questions. Open Biol 10:9200176
    [Google Scholar]
  78. Kwok B, Yamauchi A, Rajesan R, Chan L, Dhillon U et al. 2006. Carnitine/xenobiotics transporters in the human mammary gland epithelia, MCF12A. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:3R793–802
    [Google Scholar]
  79. Lane DJR, Richardson DR. 2014. The active role of vitamin C in mammalian iron metabolism: much more than just enhanced iron absorption!. Free Radic. Biol. Med. 75:69–83
    [Google Scholar]
  80. Larsen EL, Weimann A, Poulsen HE. 2019. Interventions targeted at oxidatively generated modifications of nucleic acids focused on urine and plasma markers. Free Radic. Biol. Med. 145:256–83
    [Google Scholar]
  81. Levine M, Wang Y, Padayatty SJ, Morrow J. 2001. A new recommended dietary allowance of vitamin C for healthy young women. PNAS 98:179842–46
    [Google Scholar]
  82. Li RWS, Yang C, Sit ASM, Kwan YW, Lee SMY et al. 2014. Uptake and protective effects of ergothioneine in human endothelial cells. J. Pharmacol. Exp. Ther. 350:3691–700
    [Google Scholar]
  83. Long LH, Hoi A, Halliwell B. 2010. Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch. Biochem. Biophys. 501:1162–69
    [Google Scholar]
  84. Loreto RG, Hughes DP. 2019. The metabolic alteration and apparent preservation of the zombie ant brain. J. Insect Physiol. 118:103918
    [Google Scholar]
  85. Makiishi S, Furuichi K, Yamamura Y, Sako K, Shinozaki Y et al. 2021. Carnitine/organic cation transporter 1 precipitates the progression of interstitial fibrosis through oxidative stress in diabetic nephropathy in mice. Sci. Rep. 11:19093
    [Google Scholar]
  86. Mastrangelo D, Pelosi E, Castelli G, Lo-Coco F, Testa U. 2018. Mechanisms of anti-cancer effects of ascorbate: cytotoxic activity and epigenetic modulation. Blood Cells Mol. Dis. 69:57–64
    [Google Scholar]
  87. Matsuda Y, Ozawa N, Shinozaki T, Wakabayashi K-i, Suzuki K et al. 2020. Ergothioneine, a metabolite of the gut bacterium Lactobacillus reuteri, protects against stress-induced sleep disturbances. Transl. Psychiatry 10:1170
    [Google Scholar]
  88. Maurer A, Leisinger F, Lim D, Seebeck FP. 2019. Structure and mechanism of ergothionase from Treponema denticola. Chem. A Eur. J. 25:4410298–303
    [Google Scholar]
  89. Mayumi T, Kawanc H, Sakamoto Y, Suehisa E, Kawai Y, Hama T. 1978. Studies on ergothioneine. V. Determination by high performance liquid chromatography and application to metabolic research. Chem. Pharm. Bull. 26:123772–78
    [Google Scholar]
  90. Melville DB. 1959. Ergothioneine. Vitam. Horm. 17:155–204
    [Google Scholar]
  91. Mena P, Bresciani L, Brindani N, Ludwig IA, Pereira-Caro G et al. 2019. Phenyl-γ-valerolactones and phenylvaleric acids, the main colonic metabolites of flavan-3-ols: synthesis, analysis, bioavailability, and bioactivity. Nat. Prod. Rep. 36:5714–52
    [Google Scholar]
  92. Milne GL, Dai Q, Roberts LJ. 2015. The isoprostanes: 25 years later. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:4433–45
    [Google Scholar]
  93. Mollica A, Macedonio G, Stefanucci A, Carradori S, Akdemir A et al. 2017. Five- and six-membered nitrogen-containing compounds as selective carbonic anhydrase activators. Molecules 22:122178
    [Google Scholar]
  94. Müller JP, Gründemann D. 2022. Does intracellular metabolism render gemcitabine uptake undetectable in mass spectrometry?. Int. J. Mol. Sci. 23:94690
    [Google Scholar]
  95. Mundra LS, Maranda EL, Cortizo J, Augustynowicz A, Shareef S, Jimenez JJ. 2016. The Salem witch trials: bewitchment or ergotism. JAMA Dermatol 152:5540
    [Google Scholar]
  96. Murphy MP, Bayir H, Belousov V, Chang CJ, Davies KJ et al. 2022. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab. 4:651–62
    [Google Scholar]
  97. Nakamichi N, Nakao S, Nishiyama M, Takeda Y, Ishimoto T et al. 2021. Oral administration of the food-derived hydrophilic antioxidant ergothioneine enhances object recognition memory in mice. Curr. Mol. Pharmacol. 14:2220–33
    [Google Scholar]
  98. Nielsen TK, Højgaard M, Andersen JT, Jørgensen NR, Zerahn B et al. 2017. Weekly ascorbic acid infusion in castration-resistant prostate cancer patients: a single-arm phase II trial. Transl. Androl. Urol. 6:3517–28
    [Google Scholar]
  99. Nierenberg JL, He J, Li C, Gu X, Shi M et al. 2020. Serum metabolites associate with physical performance among middle-aged adults: evidence from the Bogalusa Heart Study. Aging 12:1211914–41
    [Google Scholar]
  100. Niki E 2021. Lipid oxidation that is, and is not, inhibited by vitamin E: consideration about physiological functions of vitamin E. Free Radic. Biol. Med. 176:1–15
    [Google Scholar]
  101. Novotny BC, Fernandez V, Budde JP, Bergmann K, Morris JC et al. 2022. Profiling the metabolic landscape of AD. Alzheimers Dement. 17:S3e050086
    [Google Scholar]
  102. Olarini A, Ernst M, Gürdeniz G, Kim M, Brustad N et al. 2022. Vertical transfer of metabolites detectable from newborn's dried blood spot samples using UPLC-MS: a chemometric study. Metabolites 12:294
    [Google Scholar]
  103. O'Reilly JD, Mallet AI, McAnlis GT, Young IS, Halliwell B et al. 2001. Consumption of flavonoids in onions and black tea: lack of effect on F2-isoprostanes and autoantibodies to oxidized LDL in healthy humans. Am. J. Clin. Nutr. 73:61040–44
    [Google Scholar]
  104. Oteiza PI, Fraga CG, Galleano M. 2021. Linking biomarkers of oxidative stress and disease with flavonoid consumption: from experimental models to humans. Redox Biol 42:101914
    [Google Scholar]
  105. Oumari M, Goldfuss B, Stoffels C, Schmalz HG, Gründemann D. 2019. Regeneration of ergothioneine after reaction with singlet oxygen. Free Radic. Biol. Med. 134:498–504
    [Google Scholar]
  106. Pan HY, Ye ZW, Zheng QW, Yun F, Tu MZ et al. 2022. Ergothioneine exhibits longevity-extension effect in Drosophila melanogaster via regulation of cholinergic neurotransmission, tyrosine metabolism, and fatty acid oxidation. Food Funct 13:1227–41
    [Google Scholar]
  107. Paul BD. 2022. Ergothioneine: a stress vitamin with antiaging, vascular, and neuroprotective roles?. Antioxid. Redox Signal. 36:16–18
    [Google Scholar]
  108. Paul BD, Snyder SH. 2010. The unusual amino acid l-ergothioneine is a physiologic cytoprotectant. Cell Death Differ 17:71134–40
    [Google Scholar]
  109. Pfeiffer C, Bach M, Bauer T, Campos Da Ponte J, Schömig E, Gründemann D 2015. Knockout of the ergothioneine transporter ETT in zebrafish results in increased 8-oxoguanine levels. Free Radic. Biol. Med. 83:178–85
    [Google Scholar]
  110. Pierce MR, DiAsio DL, Rodrigues LM, Harrison FE, May JM. 2013. Combined vitamin C and E deficiency induces motor defects in gulo−/−SVCT2+/− mice. Nutr. Neurosci. 16:4160–73
    [Google Scholar]
  111. Pochini L, Galluccio M, Scalise M, Console L, Pappacoda G, Indiveri C. 2022. OCTN1: a widely studied but still enigmatic organic cation transporter linked to human pathology and drug interactions. Int. J. Mol. Sci. 23:2914
    [Google Scholar]
  112. Priemé H, Loft S, Nyyssönen K, Salonen JT, Poulsen HE. 1997. No effect of supplementation with vitamin E, ascorbic acid, or coenzyme Q10 on oxidative DNA damage estimated by 8-oxo-7,8-dihydro-2′-deoxyguanosine excretion in smokers. Am. J. Clin. Nutr. 65:2503–7
    [Google Scholar]
  113. Qiu Y, Chen Z, Su E, Wang L, Sun L et al. 2021. Recent strategies for the biosynthesis of ergothioneine. J. Agric. Food Chem. 69:4613682–90
    [Google Scholar]
  114. Radi R. 2018. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. PNAS 115:235839–48
    [Google Scholar]
  115. Ramirez-Martinez A, Wesolek N, Yadan JC, Moutet M, Roudot AC. 2016. Intake assessment of l-ergothioneine in some European countries and in the United States. Hum. Ecol. Risk Assess. 22:667–77
    [Google Scholar]
  116. Roberts LJ 2nd, Oates JA, Linton MF, Fazio S, Meador BP et al. 2007. The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic. Biol. Med. 43:101388–93
    [Google Scholar]
  117. Rossman MJ, Gioscia-Ryan RA, Clayton ZS, Murphy MP, Seals DR. 2020. Targeting mitochondrial fitness as a strategy for healthy vascular aging. Clin. Sci. 134:121491–519
    [Google Scholar]
  118. Salama SA, Abd-Allah GM, Mohamadin AM, Elshafey MM, Gad HS. 2021. Ergothioneine mitigates cisplatin-evoked nephrotoxicity via targeting Nrf2, NF-κB, and apoptotic signaling and inhibiting γ-glutamyl transpeptidase. Life Sci 278:119572
    [Google Scholar]
  119. Samuel P, Tsapekos M, de Pedro N, Liu AG, Lippmeier JC, Chen S 2022. Ergothioneine mitigates telomere shortening under oxidative stress conditions. J. Diet. Suppl. 19:2212–25
    [Google Scholar]
  120. Schaffer S, Halliwell B. 2012. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes Nutr 7:299–109
    [Google Scholar]
  121. Seet RCS, Lee CYJ, Lim ECH, Tan JJH, Quek AML et al. 2010. Oxidative damage in Parkinson disease: measurement using accurate biomarkers. Free Radic. Biol. Med. 48:4560–66
    [Google Scholar]
  122. Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Meshcheryakova EN et al. 2021. Biochemical response to freezing in the Siberian salamander Salamandrella keyserlingii. Biology 10:111172
    [Google Scholar]
  123. Shi C, Han X, Guo W, Wu Q, Yang X et al. 2022. Disturbed gut-liver axis indicating oral exposure to polystyrene microplastic potentially increases the risk of insulin resistance. Environ. Int. 164:107273
    [Google Scholar]
  124. Shukla Y, Kulshrestha OP, Khuteta KP. 1981. Ergothioneine content in normal and senile human cataractous lenses. Indian J. Med. Res. 73:472–73
    [Google Scholar]
  125. Simó C, García-Cañas V. 2020. Dietary bioactive ingredients to modulate the gut microbiota–derived metabolite TMAO. New opportunities for functional food development. Food Funct 11:86745–76
    [Google Scholar]
  126. Smith E, Ottosson F, Hellstrand S, Ericson U, Orho-Melander M et al. 2020. Ergothioneine is associated with reduced mortality and decreased risk of cardiovascular disease. Heart 106:9691–97
    [Google Scholar]
  127. Sotgia S, Taras A, Zinellu A, Cherchi R, Mangoni AA et al. 2020. Hercynine, ergothioneine and redox state in stallion's seminal plasma. Antioxidants 9:9855
    [Google Scholar]
  128. Sotiriou S, Gispert S, Cheng J, Wang Y, Chen A et al. 2002. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat. Med. 8:5514–17
    [Google Scholar]
  129. Speisky H, Shahidi F, de Camargo AC, Fuentes J. 2022. Revisiting the oxidation of flavonoids: loss, conservation or enhancement of their antioxidant properties. Antioxidants 11:1133
    [Google Scholar]
  130. Stoia M, Oancea S. 2022. Low-molecular-weight synthetic antioxidants: classification, pharmacological profile, effectiveness and trends. Antioxidants 11:4638
    [Google Scholar]
  131. Sugiura T, Kato S, Shimizu T, Wakayama T, Nakamichi N et al. 2010. Functional expression of carnitine/organic cation transporter OCTN1/SLC22A4 in mouse small intestine and liver. Drug Metab. Dispos. 38:101665–72
    [Google Scholar]
  132. Tan CN, Audley BG. 1968. Ergothioneine and hercynine in Hevea brasiliensis latex. Phytochemistry 7:109–18
    [Google Scholar]
  133. Tang RMY, Cheah IKM, Yew TSK, Halliwell B. 2018. Distribution and accumulation of dietary ergothioneine and its metabolites in mouse tissues. Sci. Rep. 8:11601
    [Google Scholar]
  134. Teruya T, Chen YJ, Kondoh H, Fukuji Y, Yanagida M. 2021. Whole-blood metabolomics of dementia patients reveal classes of disease-linked metabolites. PNAS 118:37e2022857118
    [Google Scholar]
  135. Toh DSL, Limenta LMG, Yee JY, Wang LZ, Goh BC et al. 2014. Effect of mushroom diet on pharmacokinetics of gabapentin in healthy Chinese subjects. Br. J. Clin. Pharmacol. 78:1129–34
    [Google Scholar]
  136. Traber MG, Head B. 2021. Vitamin E: how much is enough, too much and why!. Free Radic. Biol. Med. 177:212–25
    [Google Scholar]
  137. Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S et al. 2016. Safety of synthetic l-ergothioneine (Ergoneine®) as a novel food pursuant to Regulation (EC) No 258/97. EFSA J 14:114629
    [Google Scholar]
  138. Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S et al. 2017. Statement on the safety of synthetic l-ergothioneine as a novel food: supplementary dietary exposure and safety assessment for infants and young children, pregnant and breastfeeding women. EFSA J 15:11e05060
    [Google Scholar]
  139. Valachova K, Svik K, Biro C, Collins MN, Jurcik R et al. 2021. Impact of ergothioneine, hercynine, and histidine on oxidative degradation of hyaluronan and wound healing. Polymers 13:195
    [Google Scholar]
  140. Villagran M, Ferreira J, Martorell M, Mardones L. 2021. The role of vitamin C in cancer prevention and therapy: a literature review. Antioxidants 10:121894
    [Google Scholar]
  141. Vo DK, Nguyen TT, Maeng HJ. 2022. Effects of 1α,25-dihydroxyvitamin D3 on the pharmacokinetics and biodistribution of ergothioneine, an endogenous organic cation/carnitine transporter 1 substrate, in rats. J. Pharm. Investig. 52:341–51
    [Google Scholar]
  142. Wada E, Koyanagi S, Kusunose N, Akamine T, Masui H et al. 2015. Modulation of peroxisome proliferator-activated receptor-α activity by bile acids causes circadian changes in the intestinal expression of Octn1/Slc22a4 in mice. Mol. Pharmacol. 87:2314–22
    [Google Scholar]
  143. Whitmore CA, Haynes JR, Behof WJ, Rosenberg AJ, Tantawy MN et al. 2022. Longitudinal consumption of ergothioneine reduces oxidative stress and amyloid plaques and restores glucose metabolism in the 5XFAD mouse model of Alzheimer's disease. Pharmaceuticals 15:6742
    [Google Scholar]
  144. Williamson G, Kay CD, Crozier A. 2018. The bioavailability, transport, and bioactivity of dietary flavonoids: a review from a historical perspective. Compr. Rev. Food Sci. Food Saf. 17:51054–112
    [Google Scholar]
  145. Williamson RD, McCarthy FP, Manna S, Groarke E, Kell DB et al. 2020. l-(+)-Ergothioneine significantly improves the clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model. Hypertension 75:2561–68
    [Google Scholar]
  146. Winterbourn CC, Metodiewa D. 1999. Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med. 27:3–4322–28
    [Google Scholar]
  147. Wolff JB. 1962. Ergothionase from Escherichia coli. J. Biol. Chem. 237:3874–81
    [Google Scholar]
  148. Wu D, Shu T, Yang X, Song JX, Zhang M et al. 2020. Plasma metabolomic and lipidomic alterations associated with COVID-19. Natl. Sci. Rev. 7:71157–68
    [Google Scholar]
  149. Wu LY, Cheah IK, Chong JR, Chai YL, Tan JY et al. 2021. Low plasma ergothioneine levels are associated with neurodegeneration and cerebrovascular disease in dementia. Free Radic. Biol. Med. 177:201–11
    [Google Scholar]
  150. Wu LY, Kan CN, Cheah IK, Chong JR, Xu X et al. 2022. Low plasma ergothioneine predicts cognitive and functional decline in an elderly cohort attending memory clinics. Antioxidants 11:91717
    [Google Scholar]
  151. Yadan JC. 2022. Matching chemical properties to molecular biological activities opens a new perspective on l-ergothioneine. FEBS Lett 596:101299–312
    [Google Scholar]
  152. Zhang S, Tomata Y, Sugiyama K, Sugawara Y, Tsuji I. 2017. Mushroom consumption and incident dementia in elderly Japanese: the Ohsaki Cohort 2006 Study. J. Am. Geriatr. Soc. 65:71462–69
    [Google Scholar]
  153. Zhang Y, Gonzalez-Gutierrez G, Legg KA, Walsh BJC, Pis Diez CMet al 2022. Discovery and structure of a widespread bacterial ABC transporter specific for ergothioneine. Nat. Commun 13:7586
    [Google Scholar]
  154. Zhu BZ, Mao L, Fan RM, Zhu JG, Zhang YN et al. 2011. Ergothioneine prevents copper-induced oxidative damage to DNA and protein by forming a redox-inactive ergothioneine-copper complex. Chem. Res. Toxicol. 24:130–34
    [Google Scholar]
/content/journals/10.1146/annurev-food-060822-122236
Loading
/content/journals/10.1146/annurev-food-060822-122236
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error