1932

Abstract

Interest in fermented foods is increasing because fermented foods are promising solutions for more secure food systems with an increased proportion of minimally processed plant foods and a smaller environmental footprint. These developments also pertain to novel fermented food for which no traditional template exists, raising the question of how to develop starter cultures for such fermentations. This review establishes a framework that integrates traditional and scientific knowledge systems for the selection of suitable cultures. Safety considerations, the use of organisms in traditional food fermentations, and the link of phylogeny to metabolic properties provide criteria for culture selection. Such approaches can also select for microbial strains that have health benefits. A science-based approach to the development of novel fermented foods can substantially advance their value through more secure food systems, food products that provide health-promoting microbes, and the provision of foods that improve human health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034207
2024-06-28
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034207.html?itemId=/content/journals/10.1146/annurev-food-072023-034207&mimeType=html&fmt=ahah

Literature Cited

  1. Akan M, Michling F, Matti K, Krause S, Muno-Bender J, Wendland J. 2020.. Snails as taxis for a large yeast biodiversity. . Fermentation 6::30090
    [Crossref] [Google Scholar]
  2. Alitubeera PH, Eyu P, Kwesiga B, Ario AR, Zhu B-P. 2019.. Outbreak of cyanide poisoning caused by consumption of cassava flour—Kasese District, Uganda, September 2017. . Morb. Mortal. Wkly. Rep. 68::30811
    [Crossref] [Google Scholar]
  3. Alsammar H, Delneri D. 2020.. An update on the diversity, ecology and biogeography of the Saccharomyces genus. . FEMS Yeast Res. 20::foaa013
    [Crossref] [Google Scholar]
  4. Álvarez R, Garces F, Louis EJ, Dequin S, Camarasa C. 2023.. Beyond S. cerevisiae for winemaking: fermentation-related trait diversity in the genus Saccharomyces. . Food Microbiol. 113::104270
    [Crossref] [Google Scholar]
  5. Arias-Sánchez FI, Vessman B, Mitri S. 2019.. Artificially selecting microbial communities: If we can breed dogs, why not microbiomes?. PLOS Biol. 17::e3000356
    [Crossref] [Google Scholar]
  6. Armet AM, Deehan EC, O'Sullivan AF, Mota JF, Field CJ, et al. 2022.. Rethinking healthy eating in light of the gut microbiome. . Cell Host Microbe 30::76485
    [Crossref] [Google Scholar]
  7. Arranz-Otaegui A, Carretero LG, Ramsey MN, Fuller DQ, Richter T. 2018.. Archaeobotanical evidence reveals the origins of bread 14,400 years ago in northeastern Jordan. . PNAS 115::792530
    [Crossref] [Google Scholar]
  8. Aslankoohi E, Herrera-Malaver B, Rezaei MN, Steensels J, Courtin CM, Verstrepen KJ. 2016.. Non-conventional yeast strains increase the aroma complexity of bread. . PLOS ONE 11::e0165126
    [Crossref] [Google Scholar]
  9. Bagheri B, Bauer FF, Setati ME. 2017.. The impact of Saccharomyces cerevisiae on a wine yeast consortium in natural and inoculated fermentations. . Front. Microbiol. 8::1988
    [Crossref] [Google Scholar]
  10. Baschali A, Tsakalidou E, Kyriacou A, Karavasiloglou N, Matalas A-L. 2017.. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: a neglected food group. . Nutr. Res. Rev. 30::124
    [Crossref] [Google Scholar]
  11. Bigey F, Segond D, Friedrich A, Guezenec S, Bourgais A, et al. 2021.. Evidence for two main domestication trajectories in Saccharomyces cerevisiae linked to distinct bread-making processes. . Curr. Biol. 31::72232.e5
    [Crossref] [Google Scholar]
  12. Blasche S, Kim Y, Mars RAT, Machado D, Maansson M, et al. 2021.. Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. . Nat. Microbiol. 6::196208
    [Crossref] [Google Scholar]
  13. Bora SS, Dullah S, Dey KK, Hazarika DJ, Sarmah U, et al. 2022.. Additive-induced pH determines bacterial community composition and metabolome in traditional mustard seed fermented products. . Front. Sustain. Food Syst. 6::1006573
    [Crossref] [Google Scholar]
  14. Bourdichon F, Budde-Niekiel A, Dubois A, Fritz D, Hatte J-L, et al. 2022.. Bulletin of the IDF N° 514/2022: inventory of microbial food cultures with safety demonstration in fermented food products. Rep. , FIL-IDF, Brussels, Belg.: https://fil-idf.org/wp-content/uploads/woocommerce_uploads/2022/01/Bulletin-of-IDF-B514_Update-of-Inventory_of_microbial_food_cultures_CAT-faksy6.pdf
    [Google Scholar]
  15. Bourrie BCT, Richard C, Willing BP. 2020.. Kefir in the prevention and treatment of obesity and metabolic disorders. . Curr. Nutr. Rep. 9::18492
    [Crossref] [Google Scholar]
  16. Brandt M, Loponen J, Cappelle S. 2023.. Technology of sourdough fermentation and sourdough application. . In Handbook of Sourdough Biotechnology, ed. M Gänzle, M Gobbetti , pp. 6780. Heidelberg, Ger:.: Springer
    [Google Scholar]
  17. Brandt MJ, Hammes WP. 2001.. Einfluss von Fructosanen auf die Sauerteigfermentation. . Getreide Mehl. Brot. 55::34145
    [Google Scholar]
  18. Brochet S, Quinn A, Mars RAT, Neuschwander N, Sauer U, Engel P. 2021.. Niche partitioning facilitates coexistence of closely related gut bacteria. . eLife 10::e68583
    [Crossref] [Google Scholar]
  19. Bruner J, Marcus A, Fox G. 2021.. Brewing efficacy of non-conventional Saccharomyces non-cerevisiae yeasts. . Beverages 7:(3):68
    [Crossref] [Google Scholar]
  20. Capece A, Romaniello R, Siesto G, Romano P. 2018.. Conventional and non-conventional yeasts in beer production. . Fermentation 4:(2):38
    [Crossref] [Google Scholar]
  21. Carrau JL, Dillon AJP, Serafini LA, Pazqual MS. 1993.. L-malic acid degrading yeast for wine making. US Patent 5330774A
    [Google Scholar]
  22. Cheeseman K, Ropars J, Renault P, Dupont J, Gouzy J, et al. 2014.. Multiple recent horizontal transfers of a large genomic region in cheese making fungi. . Nat. Commun. 5::2876
    [Crossref] [Google Scholar]
  23. Chen Y, Gu F, Li J, He S, Xu F, Fang Y. 2015.. Involvement of colonizing Bacillus isolates in glucovanillin hydrolysis during the curing of Vanilla planifolia Andrews. . Appl. Environ. Microbiol. 81::494754
    [Crossref] [Google Scholar]
  24. Chu Y, Li M, Jin J, Dong X, Xu K, et al. 2023.. Advances in the application of the non-conventional yeast Pichia kudriavzevii in food and biotechnology industries. . J. Fungi 9:(2):170
    [Crossref] [Google Scholar]
  25. Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, et al. 2015.. The microbiome of uncontacted Amerindians. . Sci. Adv. 1::e1500183
    [Crossref] [Google Scholar]
  26. Cochrane SA, Vederas JC. 2016.. Lipopeptides from Bacillus and Paenibacillus spp.: a gold mine of antibiotic candidates. . Med. Res. Rev. 36::431
    [Crossref] [Google Scholar]
  27. Coelho MA, Gonçalves C, Sampaio JP, Gonçalves P. 2013.. Extensive intra-kingdom horizontal gene transfer converging on a fungal fructose transporter gene. . PLOS Genet. 9::e1003587
    [Crossref] [Google Scholar]
  28. Comasio A, Verce M, Van Kerrebroeck S, De Vuyst L. 2020.. Diverse microbial composition of sourdoughs from different origins. . Front. Microbiol. 11::1212
    [Crossref] [Google Scholar]
  29. Coton M, Pawtowski A, Taminiau B, Burgaud G, Deniel F, et al. 2017.. Unraveling microbial ecology of industrial-scale Kombucha fermentations by metabarcoding and culture-based methods. . FEMS Microbiol. Ecol. 93::fix048
    [Crossref] [Google Scholar]
  30. Crequer E, Ropars J, Jany J-L, Caron T, Coton M, et al. 2023.. A new cheese population in Penicillium roqueforti and adaptation of the five populations to their ecological niche. . bioRxiv 524518. https://doi.org/10.1101/2023.01.21.524518
  31. Cubillos FA, Gibson B, Grijalva-Vallejos N, Krogerus K, Nikulin J. 2019.. Bioprospecting for brewers: exploiting natural diversity for naturally diverse beers. . Yeast 36::38398
    [Crossref] [Google Scholar]
  32. Dal Bello F, Walter J, Hammes WP, Hertel C. 2003.. Increased complexity of the species composition of lactic acid bacteria in human feces revealed by alternative incubation condition. . Microb. Ecol. 45::45563
    [Crossref] [Google Scholar]
  33. Daniell SD, Sandine WE. 1981.. Development and commercial use of a multiple strain starter. . J. Dairy Sci. 64::40715
    [Crossref] [Google Scholar]
  34. Dank A, Abee T, Smid EJ. 2023.. Expanded metabolic diversity of Propionibacterium freudenreichii potentiates novel applications in food biotechnology. . Curr. Opin. Food Sci. 52::101048
    [Crossref] [Google Scholar]
  35. De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, et al. 2010.. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. . PNAS 107::1469196
    [Crossref] [Google Scholar]
  36. De Roos J, De Vuyst L. 2018.. Acetic acid bacteria in fermented foods and beverages. . Curr. Opin. Biotechnol. 49::11519
    [Crossref] [Google Scholar]
  37. Drider D, Fimland G, Héchard Y, McMullen LMM, Prévost H. 2006.. The continuing story of class IIa bacteriocins. . Microbiol. Mol. Biol. Rev. 70::56482
    [Crossref] [Google Scholar]
  38. Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, et al. 2017.. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. . FEMS Microbiol. Rev. 41::S2748
    [Crossref] [Google Scholar]
  39. Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, et al. 2020.. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. . Mol. Ecol. 29::263960
    [Crossref] [Google Scholar]
  40. Dwivedi M, Vasantha KY, Sreerama YN, Haware DJ, Singh RP, Sattur AP. 2015.. Nilamadana, new fungal fermented cereal based food. . J. Funct. Foods 15::21724
    [Crossref] [Google Scholar]
  41. Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. 2017.. Physiology, ecology and industrial applications of aroma formation in yeast. . FEMS Microbiol. Rev. 41:(Suppl. 1):S95128
    [Crossref] [Google Scholar]
  42. EFSA (Eur. Food Saf. Auth.). 2012.. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. . EFSA J. 10:(6):2740
    [Google Scholar]
  43. Erny C, Raoult P, Alais A, Butterlin G, Delobel P, et al. 2012.. Ecological success of a group of Saccharomyces cerevisiae/Saccharomyces kudriavzevii hybrids in the Northern European wine-making environment. . Appl. Environ. Microbiol. 78::325665
    [Crossref] [Google Scholar]
  44. Ferremi Leali N, Binati RL, Martelli F, Gatto V, Luzzini G, et al. 2022.. Reconstruction of simplified microbial consortia to modulate sensory quality of kombucha tea. . Foods 11::3045
    [Crossref] [Google Scholar]
  45. Fox PF, Guineee TP, Cogann TM, McSweeney PLH. 2017.. Fundamentals of Cheese Science. New York:: Springer. , 2nd ed..
    [Google Scholar]
  46. Franz CMAP, Stiles ME, Schleifer KH, Holzapfel WH. 2003.. Enterococci in foods—a conundrum for food safety. . Int. J. Food Microbiol. 88::10522
    [Crossref] [Google Scholar]
  47. Fuller R. 1992.. History and development of probiotics. . In Probiotics: The Scientific Basis, ed. R Fuller , pp. 18. Dordrecht, Neth:.: Springer
    [Google Scholar]
  48. Galimberti A, Bruno A, Agostinetto G, Casiraghi M, Guzzetti L, Labra M. 2021.. Fermented food products in the era of globalization: tradition meets biotechnology innovations. . Curr. Opin. Biotechnol. 70::3641
    [Crossref] [Google Scholar]
  49. Galli BD, Martin JGP, da Silva PPM, Porto E, Spoto MHF. 2016.. Sensory quality of Camembert-type cheese: relationship between starter cultures and ripening molds. . Int. J. Food Microbiol. 234::7175
    [Crossref] [Google Scholar]
  50. Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, et al. 2016.. Domestication and divergence of Saccharomyces cerevisiae beer yeasts. . Cell 166::1397410.e16
    [Crossref] [Google Scholar]
  51. Gangoiti J, Pijning T, Dijkhuizen L. 2018.. Biotechnological potential of novel glycoside hydrolase family 70 enzymes synthesizing α-glucans from starch and sucrose. . Biotechnol. Adv. 36::196207
    [Crossref] [Google Scholar]
  52. Gänzle M. 2015.. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. . Curr. Opin. Food Sci. 2::10617
    [Crossref] [Google Scholar]
  53. Gänzle M. 2022.. The periodic table of fermented foods: limitations and opportunities. . Appl. Microbiol. Biotechnol. 106::281526
    [Crossref] [Google Scholar]
  54. Gänzle M, Ripari V. 2016.. Composition and function of sourdough microbiota: from ecological theory to bread quality. . Int. J. Food Microbiol. 239::1925
    [Crossref] [Google Scholar]
  55. Gänzle M, Zheng J. 2019.. Lifestyles of sourdough lactobacilli: Do they matter for microbial ecology and bread quality?. Int. J. Food Microbiol. 302::1523
    [Crossref] [Google Scholar]
  56. Gänzle MG. 2020.. Food fermentations for improved digestibility of plant foods: an essential ex situ digestion step in agricultural societies?. Curr. Opin. Food Sci. 32::12432
    [Crossref] [Google Scholar]
  57. Garrigues C, Johansen E, Crittenden R. 2013.. Pangenomics: an avenue to improved industrial starter cultures and probiotics. . Curr. Opin. Biotechnol. 24::18791
    [Crossref] [Google Scholar]
  58. Gaur G, Gänzle MG. 2023.. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: novel insights into metabolic pathways and functional metabolites. . Curr. Res. Food Sci. 6::100448
    [Crossref] [Google Scholar]
  59. GBD 2016 Diarrhoeal Dis. Collab. 2018.. Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016. . Lancet Infect. Dis. 18::121128
    [Crossref] [Google Scholar]
  60. Gelsomino R, Vancanneyt M, Cogan TM, Swings J. 2003.. Effect of raw-milk cheese consumption on the enterococcal flora of human feces. . Appl. Environ. Microbiol. 69::31219
    [Crossref] [Google Scholar]
  61. Gibbons JG, Salichos L, Slot JC, Rinker DC, McGary KL, et al. 2012.. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. . Curr. Biol. 22::14039
    [Crossref] [Google Scholar]
  62. Gobbetti M, Gänzle M. 2023.. Handbook on Sourdough Biotechnology. Heidelberg, Ger:.: Springer. , 2nd ed..
    [Google Scholar]
  63. Gouliamova D, Dimitrov R. 2020.. Kazachstania chrysolinae and Kazachstania bozae two new yeast species of the genus Kazachstania. Transfer of four Kazachstania species to Grigorovia gen. nov. as new combinations. . Comptes Rendus Acad. Sci. 73::4857
    [Google Scholar]
  64. Grasso N, Roos YH, Crowley SV, Arendt EK, O'Mahony JA. 2021.. Composition and physicochemical properties of commercial plant-based block-style products as alternatives to cheese. . Future Foods 4::100048
    [Crossref] [Google Scholar]
  65. Groeger D, O'Mahony L, Murphy EF, Bourke JF, Dinan TG, et al. 2013.. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. . Gut Microbes 4::32539
    [Crossref] [Google Scholar]
  66. Hammes WP, Hertel C. 1996.. Selection and improvement of lactic acid bacteria used in meat and sausage fermentation. . Lait 76::15968
    [Crossref] [Google Scholar]
  67. Hebly M, Brickwedde A, Bolat I, Driessen MRM, de Hulster EAF, et al. 2015.. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. . FEMS Yeast Res. 15::fov055
    [Crossref] [Google Scholar]
  68. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, et al. 2014.. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. . Nat. Rev. Gastroenterol. Hepatol. 11::50614
    [Crossref] [Google Scholar]
  69. Hill C, Tancredi DJ, Cifelli CJ, Slavin JL, Gahche J, et al. 2023.. Positive health outcomes associated with live microbe intake from foods, including fermented foods, assessed using the NHANES database. . J. Nutr. 153::114349
    [Crossref] [Google Scholar]
  70. Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, et al. 2006.. γ-Polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities. . J. Chin. Chem. Soc. 53::136384
    [Crossref] [Google Scholar]
  71. Hutkins RW. 2019.. Microbiology and Technology of Fermented Foods. Hoboken, NJ:: Wiley-Blackwell. , 2nd ed..
    [Google Scholar]
  72. Jahn LJ, Rekdal VM, Sommer MOA. 2023.. Microbial foods for improving human and planetary health. . Cell 186:(3):P46978
    [Crossref] [Google Scholar]
  73. Jahreis G, Vogelsang H, Kiessling G, Schubert R, Bunte C, Hammes WP. 2002.. Influence of probiotic sausage (Lactobacillus paracasei) on blood lipids and immunological parameters of healthy volunteers. . Food Res. Int. 35::13338
    [Crossref] [Google Scholar]
  74. Jeske S, Zannini E, Arendt EK. 2018.. Past, present and future: the strength of plant-based dairy substitutes based on gluten-free raw materials. . Food Res. Int. 110::4251
    [Crossref] [Google Scholar]
  75. Keohane DM, Ghosh TS, Jeffery IB, Molloy MG, O'Toole PW, Shanahan F. 2020.. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. . Nat. Med. 26::108995
    [Crossref] [Google Scholar]
  76. Kewuyemi YO, Kesa H, Chinma CE, Adebo OA. 2020.. Fermented edible insects for promoting food security in. Africa. Insects 11::283
    [Crossref] [Google Scholar]
  77. Key FM, Posth C, Esquivel-Gomez LR, Hübler R, Spyrou MA, et al. 2020.. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. . Nat. Ecol. Evol. 4::32433
    [Crossref] [Google Scholar]
  78. Kim HE, Han SY, Kim YS. 2010.. Quality characteristics of gochujang meju prepared with different fermentation tools and inoculation time of Aspergillus oryzae. . Food Sci. Biotechnol. 19::157985
    [Crossref] [Google Scholar]
  79. Koch R. 1893.. Wasserfiltration und Cholera. . Zeitschrift Hyg. Infekt. 14::393426
    [Crossref] [Google Scholar]
  80. Kort R, Caspers M, van de Graaf A, van Egmond W, Keijser B, Roeselers G. 2014.. Shaping the oral microbiota through intimate kissing. . Microbiome 2::41
    [Crossref] [Google Scholar]
  81. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. 2022.. Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 15: suitability of taxonomic units notified to EFSA until September 2021. . EFSA J. 20::e07045
    [Google Scholar]
  82. Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, et al. 2023.. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 17: suitability of taxonomic units notified to EFSA until September 2022. . EFSA J. 21::e07746
    [Google Scholar]
  83. Krumbeck JA, Marsteller NL, Frese SA, Peterson DA, Ramer-Tait AE, et al. 2016.. Characterization of the ecological role of genes mediating acid resistance in Lactobacillus reuteri during colonization of the gastrointestinal tract. . Environ. Microbiol. 18::217284
    [Crossref] [Google Scholar]
  84. Landis EA, Oliverio AM, McKenney EA, Nichols LM, Kfoury N, et al. 2021.. The diversity and function of sourdough starter microbiomes. . eLife 10::e61644
    [Crossref] [Google Scholar]
  85. Lebeer S, Bron PA, Marco ML, Van Pijkeren JP, O'Connell Motherway M, et al. 2018.. Identification of probiotic effector molecules: present state and future perspectives. . Curr. Opin. Biotechnol. 49::21723
    [Crossref] [Google Scholar]
  86. Legras JL, Galeote V, Bigey F, Camarasa C, Marsit S, et al. 2018.. Adaptation of S. cerevisiae to fermented food environments reveals remarkable genome plasticity and the footprints of domestication. . Mol. Biol. Evol. 35::171227
    [Crossref] [Google Scholar]
  87. Leroy F, Scholliers P, Amilien V. 2015.. Elements of innovation and tradition in meat fermentation: conflicts and synergies. . Int. J. Food Microbiol. 212::28
    [Crossref] [Google Scholar]
  88. Li C, Xu T, Liu XW, Wang X, Xia T. 2021.. The expression of β-glucosidase during natto fermentation increased the active isoflavone content. . Food Biosci. 43::101286
    [Crossref] [Google Scholar]
  89. Li F, Li X, Cheng CC, Bujdoš D, Tollenaar S, et al. 2023.. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. . BMC Biol. 21:(1):53
    [Crossref] [Google Scholar]
  90. Li Q, Gänzle M. 2020.. Host-adapted lactobacilli in food fermentations: impact of metabolic traits of host adapted lactobacilli on food quality and human health. . Curr. Opin. Food Sci. 31::7180
    [Crossref] [Google Scholar]
  91. Li Z, Fernandez KX, Vederas JC, Gänzle MG. 2023a.. Composition and activity of antifungal lipopeptides produced by Bacillus spp. in daqu fermentation. . Food Microbiol. 111::104211
    [Crossref] [Google Scholar]
  92. Li Z, Zheng M, Zheng J, Gänzle MG. 2023b.. Bacillus species in food fermentations: an underappreciated group of organisms for safe use in food fermentations. . Curr. Opin. Food Sci. 50::101007
    [Crossref] [Google Scholar]
  93. Lin XB, Wang T, Stothard P, Corander J, Wang J, et al. 2018.. The evolution of ecological facilitation within mixed-species biofilms in the mouse gastrointestinal tract. . ISME J. 12::277084
    [Crossref] [Google Scholar]
  94. Liu L, Chen X, Hao L, Zhang G, Jin Z, et al. 2022.. Traditional fermented soybean products: processing, flavor formation, nutritional and biological activities. . Crit. Rev. Food Sci. Nutr. 62::197189
    [Crossref] [Google Scholar]
  95. Liu L, Wang J, Rosenberg D, Zhao H, Lengyel G, Nadel D. 2018.. Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: investigating Natufian ritual feasting. . J. Archaeol. Sci. Rep. 21::78393
    [Google Scholar]
  96. Liu Y, Lu Y, Liu S-Q. 2023.. Transforming spent coffee grounds’ hydrolysates with yeast Lachancea thermotolerans and lactic acid bacterium Lactiplantibacillus plantarum to develop potential novel alcoholic beverages. . Foods 12::1161
    [Crossref] [Google Scholar]
  97. Lo R, Ho VTT, Bansal N, Turner MS. 2018.. The genetic basis underlying variation in production of the flavour compound diacetyl by Lactobacillus rhamnosus strains in milk. . Int. J. Food Microbiol. 265::3039
    [Crossref] [Google Scholar]
  98. Loponen J, König K, Wu J, Gänzle MG. 2008.. Influence of thiol metabolism of lactobacilli on egg white proteins in wheat sourdoughs. . J. Agric. Food Chem. 56::335762
    [Crossref] [Google Scholar]
  99. Lynch KM, Coffey A, Arendt EK. 2018.. Exopolysaccharide producing lactic acid bacteria: their techno-functional role and potential application in gluten-free bread products. . Food Res. Int. 110::5261
    [Crossref] [Google Scholar]
  100. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, et al. 2017.. Health benefits of fermented foods: microbiota and beyond. . Curr. Opin. Biotechnol. 44::94102
    [Crossref] [Google Scholar]
  101. Marco ML, Hill C, Hutkins R, Slavin J, Tancredi DJ, et al. 2020.. Should there be a recommended daily intake of microbes?. J. Nutr. 150::306167
    [Crossref] [Google Scholar]
  102. Marco ML, Sanders ME, Gänzle M, Arrieta MC, Cotter PD, et al. 2021.. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. . Nat. Rev. Gastroenterol. Hepatol. 18::196208
    [Crossref] [Google Scholar]
  103. Maria Calabrese F, Ameur H, Nikoloudaki O, Celano G, Lemos Junior WJF, et al. 2022.. Metabolic framework of spontaneous and synthetic sourdough metacommunities to unravel microbial players implying resilience and performance. . Microbiome 10::148
    [Crossref] [Google Scholar]
  104. Martin V, Jose Valera M, Medina K, Boido E, Carrau F. 2018.. Oenological impact of the Hanseniaspora/Kloeckera yeast genus on wines—a review. . Fermentation 4::76
    [Crossref] [Google Scholar]
  105. Martínez I, Stegen JC, Maldonado-Gómez MX, Eren MA, Siba PM, et al. 2015.. The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. . Cell Rep. 11::52738
    [Crossref] [Google Scholar]
  106. Meng X, Gangoiti J, Bai Y, Pijning T, Van Leeuwen SS, Dijkhuizen L. 2016.. Structure-function relationships of family GH70 glucansucrase and 4,6-α-glucanotransferase enzymes, and their evolutionary relationships with family GH13 enzymes. . Cell. Mol. Life Sci. 73::2681706
    [Crossref] [Google Scholar]
  107. Merenstein DJ, Sanders ME, Tancredi DJ. 2020.. Probiotics as a Tx resource in primary care. . J. Fam. Pract. 69::E110
    [Google Scholar]
  108. Meyer V, Basenko EY, Benz JP, Braus GH, Caddick MX, et al. 2020.. Growing a circular economy with fungal biotechnology: a white paper. . Fungal Biol. Biotechnol. 7::5
    [Crossref] [Google Scholar]
  109. Michel E, Masson E, Bubbendorf S, Lapicque L, Nidelet T, et al. 2023.. Artisanal and farmer bread making practices differently shape fungal species community composition in French sourdoughs. . Peer Community J. 3::e11
    [Crossref] [Google Scholar]
  110. Miller ER, Kearns PJ, Niccum BA, Schwartz JOM, Ornstein A, et al. 2019.. Establishment limitation constrains the abundance of lactic acid bacteria in the Napa cabbage phyllosphere. . Appl. Environ. Microbiol. 85::e00269-19
    [Google Scholar]
  111. Morelli L. 2000.. In vitro selection of probiotic lactobacilli: a critical appraisal. . Curr. Issues Intest. Microbiol. 1::5967
    [Google Scholar]
  112. Moroni AV, Dal Bello F, Arendt EK. 2009.. Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue?. Food Microbiol. 26::67684
    [Crossref] [Google Scholar]
  113. Mouritsen OG, Duelund L, Calleja G, Frøst MB. 2017.. Flavour of fermented fish, insect, game, and pea sauces: garum revisited. . Int. J. Gastron. Food Sci. 9::1628
    [Crossref] [Google Scholar]
  114. Mozzachiodi S, Bai FY, Baldrian P, Bell G, Boundy-Mills K, et al. 2022.. Yeasts from temperate forests. . Yeast 39::424
    [Crossref] [Google Scholar]
  115. Mudoor Sooresh M, Willing BP, Bourrie BCT. 2023.. Opportunities and challenges of understanding community assembly in spontaneous food fermentation. . Foods 12::673
    [Crossref] [Google Scholar]
  116. Naumova ES, Naumov GI, Masneuf-Pomarède I, Aigle M, Dubourdieu D. 2005.. Molecular genetic study of introgression between Saccharomyces bayanus and S. cerevisiae. . Yeast 22::1099115
    [Crossref] [Google Scholar]
  117. Neylon E, Arendt EK, Zannini E, Sahin AW. 2021.. Fermentation as a tool to revitalise brewers’ spent grain and elevate techno-functional properties and nutritional value in high fibre bread. . Foods 10::1639
    [Crossref] [Google Scholar]
  118. Nie Z, Zheng Y, Du H, Xie S, Wang M. 2015.. Dynamics and diversity of microbial community succession in traditional fermentation of Shanxi aged vinegar. . Food Microbiol. 47::6268
    [Crossref] [Google Scholar]
  119. Owusu-Kwarteng J, Parkouda C, Adewumi GA, Ouoba LII, Jespersen L. 2020.. Technologically relevant Bacillus species and microbial safety of West African traditional alkaline fermented seed condiments. . Crit. Rev. Food Sci. Nutr. 62::87178
    [Crossref] [Google Scholar]
  120. Padilla B, Gil JV, Manzanares P. 2016.. Past and future of non-Saccharomyces yeasts: from spoilage microorganisms to biotechnological tools for improving wine aroma complexity. . Front. Microbiol. 7::411
    [Google Scholar]
  121. Pasolli E, De Filippis F, Mauriello IE, Cumbo F, Walsh AM, et al. 2020.. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. . Nat. Commun. 11::2610
    [Crossref] [Google Scholar]
  122. Pendleton JN, Gorman SP, Gilmore BF. 2013.. Clinical relevance of the ESKAPE pathogens. . Expert Rev. Anti-Infect. Ther. 11::297308
    [Crossref] [Google Scholar]
  123. Pérez-Torrado R, Querol A, Guillamón JM. 2015.. Genetic improvement of non-GMO wine yeasts: strategies, advantages and safety. . Trends Food Sci. Technol. 45::111
    [Crossref] [Google Scholar]
  124. Pérez-Través L, Lopes CA, Barrio E, Querol A. 2012.. Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking. . Int. J. Food Microbiol. 156::10211
    [Crossref] [Google Scholar]
  125. Pontonio E, Verni M, Montemurro M, Rizzello CG. 2023.. Sourdough: a tool for non-conventional fermentations and to recover side streams. . In Handbook on Sourdough Biotechnology, ed. M Gobbetti, M Gänzle , pp. 257302. Cham, Switz:.: Springer
    [Google Scholar]
  126. Pswarayi F, Gänzle M. 2022.. African cereal fermentations: a review on fermentation processes and microbial composition of non-alcoholic fermented cereal foods and beverages. . Int. J. Food Microbiol. 378::109815
    [Crossref] [Google Scholar]
  127. Pswarayi F, Gänzle MG. 2019.. Composition and origin of the fermentation microbiota of mahewu, a Zimbabwean fermented cereal beverage. . Appl. Environ. Microbiol. 85::e03130-18
    [Crossref] [Google Scholar]
  128. Qin H, Wu H, Shen K, Liu Y, Li M, et al. 2022.. Fermented minor grain foods: classification, functional components, and probiotic potential. . Foods 11::3155
    [Crossref] [Google Scholar]
  129. Radke-Mitchell LC, Sandine WE. 1986.. Influence of temperature on associative growth of Streptococcus thermophilus and Lactobacillus bulgaricus. . J. Dairy Sci. 69::255868
    [Crossref] [Google Scholar]
  130. Redzepi R, Zilber D. 2018.. The Noma Guide to Fermentation: Foundations of Flavor. New York:: Artisan Books
    [Google Scholar]
  131. Rossi S, Turchetti B, Sileoni V, Marconi O, Perretti G. 2018.. Evaluation of Saccharomyces cerevisiae strains isolated from non-brewing environments in beer production. . J. Inst. Brew. 124::38188
    [Crossref] [Google Scholar]
  132. Roudil L, Russo P, Berbegal C, Albertin W, Spano G, Capozzi V. 2020.. Non-Saccharomyces commercial starter cultures: scientific trends, recent patents and innovation in the wine sector. . Recent Pat. Food. Nutr. Agric. 11::2739
    [Crossref] [Google Scholar]
  133. Rychen G, Aquilina G, Azimonti G, Bampidis V, Bastos MDL, et al. 2018.. Guidance on the characterisation of microorganisms used as feed additives or as production organisms. . EFSA J. 16::e5206
    [Google Scholar]
  134. Sakandar HA, Hussain R, Farid Khan Q, Zhang H. 2020.. Functional microbiota in Chinese traditional Baijiu and Mijiu Qu (starters): a review. . Food Res. Int. 138::109830
    [Crossref] [Google Scholar]
  135. Sánchez Mainar M, Stavropoulou DA, Leroy F. 2017.. Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review. . Int. J. Food Microbiol. 247::2437
    [Crossref] [Google Scholar]
  136. Sanders ME, Benson A, Lebeer S, Merenstein DJ, Klaenhammer TR. 2018.. Shared mechanisms among probiotic taxa: implications for general probiotic claims. . Curr. Opin. Biotechnol. 49::20716
    [Crossref] [Google Scholar]
  137. Savary O, Coton E, Maillard M-B, Gaucheron F, Le Meur C, et al. 2023.. Functional diversity of Bisifusarium domesticum and the newly described Nectriaceae cheese-associated species. . Food Res. Int. 168::112691
    [Crossref] [Google Scholar]
  138. Savary O, Coton M, Jany JL, Coroller L, Coton E. 2022.. Effect of abiotic factors and culture media on the growth of cheese-associated Nectriaceae species. . Int. J. Food Microbiol. 364::109509
    [Crossref] [Google Scholar]
  139. Savary O, Mounier J, Thierry A, Poirier E, Jourdren J, et al. 2021.. Tailor-made microbial consortium for kombucha fermentation: microbiota-induced biochemical changes and biofilm formation. . Food Res. Int. 147::110549
    [Crossref] [Google Scholar]
  140. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, et al. 2014.. Gut microbiome of the Hadza hunter-gatherers. . Nat. Commun. 5::3654
    [Crossref] [Google Scholar]
  141. Sebranek JG, Jackson-Davis AL, Myers KL, Lavieri NA. 2012.. Beyond celery and starter culture: advances in natural/organic curing processes in the United States. . Meat Sci. 92::26773
    [Crossref] [Google Scholar]
  142. Shankar V, Gouda M, Moncivaiz J, Gordon A, Reo NV, et al. 2017.. Differences in gut metabolites and microbial composition and functions between Egyptian and U.S. children are consistent with their diets. . mSystems 2::e00169-16
    [Crossref] [Google Scholar]
  143. Shori AB. 2012.. Comparative study of chemical composition, isolation and identification of micro-flora in traditional fermented camel milk products: Gariss, Suusac, and Shubat. . J. Saudi Soc. Agric. Sci. 11::7988
    [Google Scholar]
  144. Siesto G, Pietrafesa R, Tufariello M, Gerardi C, Grieco F, Capece A. 2023.. Application of microbial cross-over for the production of Italian grape ale (IGA), a fruit beer obtained by grape must addition. . Food Biosci. 52::102487
    [Crossref] [Google Scholar]
  145. Smid EJ, Lacroix C. 2013.. Microbe-microbe interactions in mixed culture food fermentations. . Curr. Opin. Biotechnol. 24::14854
    [Crossref] [Google Scholar]
  146. Song E, Ang L, Lee HW, Kim MS, Kim YJ, et al. 2023.. Effects of kimchi on human health: a scoping review of randomized controlled trials. . J. Ethn. Foods 10::7
    [Crossref] [Google Scholar]
  147. Song YR, Jeong DY, Baik SH. 2015.. Monitoring of yeast communities and volatile flavor changes during traditional Korean soy sauce fermentation. . J. Food Sci. 80::M200514
    [Crossref] [Google Scholar]
  148. Sonnenburg ED, Sonnenburg JL. 2014.. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. . Cell Metab. 20::77986
    [Crossref] [Google Scholar]
  149. Spencer SP, Silva EGL, Caffery EB, Carter MM, Culver RN, et al. 2022.. Fermented foods restructure gut microbiota and promote immune regulation via microbial metabolites. . bioRxiv 490523. https://doi.org/10.1101/2022.05.11.490523
    [Google Scholar]
  150. Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL, et al. 2014.. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. . Genome Biol. Evol. 6::177289
    [Crossref] [Google Scholar]
  151. Steensels J, Snoek T, Meersman E, Nicolino MP, Voordeckers K, Verstrepen KJ. 2014.. Improving industrial yeast strains: exploiting natural and artificial diversity. . FEMS Microbiol. Rev. 38::94795
    [Crossref] [Google Scholar]
  152. Stodolak B, Starzyńska-Janiszewska A, Bączkowicz M. 2020.. Aspergillus oryzae (koji mold) and Neurospora intermedia (oncom mold) application for flaxseed oil cake processing. . LWT 131::109651
    [Crossref] [Google Scholar]
  153. Su MS-W, Oh PL, Walter J, Gänzle MG. 2012.. Intestinal origin of sourdough Lactobacillus reuteri isolates as revealed by phylogenetic, genetic, and physiological analysis. . Appl. Environ. Microbiol. 78::677780
    [Crossref] [Google Scholar]
  154. Sugahara H, Kato S, Nagayama K, Sashihara K, Nagatomi Y. 2022.. Heterofermentative lactic acid bacteria such as Limosilactobacillus as a strong inhibitor of aldehyde compounds in plant-based milk alternatives. . Front. Sustain. Food Syst. 6::376
    [Crossref] [Google Scholar]
  155. Surachat K, Deachamag P, Kantachote D, Wonglapsuwan M, Jeenkeawpiam K, Chukamnerd A. 2021.. In silico comparative genomics analysis of Lactiplantibacillus plantarum DW12, a potential gamma-aminobutyric acid (GABA)-producing strain. . Microbiol. Res. 251::126833
    [Crossref] [Google Scholar]
  156. Svensson L, Sekwati-Monang B, Lutz DL, Schieber R, Gänzle MG. 2010.. Phenolic acids and flavonoids in nonfermented and fermented red sorghum (Sorghum bicolor (L.) Moench). . J. Agric. Food Chem. 58::921420
    [Crossref] [Google Scholar]
  157. Tangyu M, Muller J, Bolten CJ, Wittmann C. 2019.. Fermentation of plant-based milk alternatives for improved flavour and nutritional value. . Appl. Microbiol. Biotechnol. 103::926375
    [Crossref] [Google Scholar]
  158. Tannock GW, Munro K, Harmsen HJ, Welling GW, Smart J, Gopal PK. 2000.. Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. . Appl. Environ. Microbiol. 66::257888
    [Crossref] [Google Scholar]
  159. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J, et al. 2012.. Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. . ISME J. 6::92738
    [Crossref] [Google Scholar]
  160. Taylor BC, Lejzerowicz F, Poirel M, Shaffer JP, Jiang L, et al. 2020.. Consumption of fermented foods is associated with systematic differences in the gut microbiome and metabolome. . mSystems 5:(2):e00901-19
    [Crossref] [Google Scholar]
  161. Taylor JRN, Duodu KG. 2019.. Traditional sorghum and millet food and beverage products and their technologies. . In Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes, ed. JRN Taylor, KG Duodu , pp. 25992. Washington, DC:: AACC Int. Press
    [Google Scholar]
  162. Timmermans E, Langie I, Bautil A, Brijs K, Buvé C, et al. 2023.. Study of the fermentation characteristics of non-conventional yeast strains in sweet dough. . Foods 12:(4):830
    [Crossref] [Google Scholar]
  163. Toelstede S, Dunkel A, Hofmann T. 2009.. A series of kokumi peptides impart the long-lasting mouthfulness of matured gouda cheese. . J. Agric. Food Chem. 57::144048
    [Crossref] [Google Scholar]
  164. Toelstede S, Hofmann T. 2009.. Kokumi-active glutamyl peptides in cheeses and their biogeneration by Penicillium roquefortii. . J. Agric. Food Chem. 57::373848
    [Crossref] [Google Scholar]
  165. Tsuji S, Tanaka K, Takenaka S, Yoshida K. 2015.. Enhanced secretion of natto phytase by Bacillus subtilis. . Biosci. Biotechnol. Biochem. 79::190614
    [Crossref] [Google Scholar]
  166. Tuorila H, Andersson Å, Martikainen A, Salovaara H. 1998.. Effect of product formula, information and consumer characteristics on the acceptance of a new snack food. . Food Qual. Prefer. 9::31320
    [Crossref] [Google Scholar]
  167. Valles-Colomer M, Blanco-Míguez A, Manghi P, Asnicar F, Dubois L, et al. 2023.. The person-to-person transmission landscape of the gut and oral microbiomes. . Nature 614::12535
    [Crossref] [Google Scholar]
  168. van Wyk N, Badura J, von Wallbrunn C, Pretorius IS. 2024.. Exploring future applications of the apiculate yeast Hanseniaspora. . Crit. Rev. Biotechnol. 44::10019
    [Crossref] [Google Scholar]
  169. Vellend M. 2010.. Conceptual synthesis in community ecology. . Q. Rev. Biol. 85::183206
    [Crossref] [Google Scholar]
  170. Vogel RF, Knorr R, Müller MRA, Steudel U, Gänzle MG, Ehrmann MA. 1999.. Non-dairy lactic fermentations: the cereal world. . Int. J. Gen. Mol. Microbiol. 76::40311
    [Google Scholar]
  171. Waldherr FW, Doll VM, Meißner D, Vogel RF. 2010.. Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. . Food Microbiol. 27::67278
    [Crossref] [Google Scholar]
  172. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP. 2001.. Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. . Appl. Environ. Microbiol. 67::257885
    [Crossref] [Google Scholar]
  173. Wang Z, Li P, Luo L, Simpson DJ, Gänzle M. 2018.. Daqu fermentation selects for heat-resistant Enterobacteriaceae and bacilli. . Appl. Environ. Microbiol. 84::e01483-18
    [Google Scholar]
  174. Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, et al. 2021.. Gut-microbiota-targeted diets modulate human immune status. . Cell 184::413753.e14
    [Crossref] [Google Scholar]
  175. Wels M, Siezen R, Van Hijum S, Kelly WJ, Bachmann H. 2019.. Comparative genome analysis of Lactococcus lactis indicates niche adaptation and resolves genotype/phenotype disparity. . Front. Microbiol. 10::4
    [Crossref] [Google Scholar]
  176. Wibowo MC, Yang Z, Borry M, Hübner A, Huang KD, et al. 2021.. Reconstruction of ancient microbial genomes from the human gut. . Nature 594::23439
    [Crossref] [Google Scholar]
  177. Wiesel I, Rehm HJ, Bisping B. 1997.. Improvement of tempe fermentations by application of mixed cultures consisting of Rhizopus sp. and bacterial strains. . Appl. Microbiol. Biotechnol. 47::21825
    [Crossref] [Google Scholar]
  178. Xie J, Gänzle MG. 2021.. Characterization of γ-glutamyl cysteine ligases from Limosilactobacillus reuteri producing kokumi-active γ-glutamyl dipeptides. . Appl. Microbiol. Biotechnol. 105::550315
    [Crossref] [Google Scholar]
  179. Yamamoto E, Watanabe R, Tooyama E, Kimura K. 2021.. Effect of fumaric acid on the growth of Lactobacillus delbrueckii ssp. bulgaricus during yogurt fermentation. . J. Dairy Sci. 104::961726
    [Crossref] [Google Scholar]
  180. Yan J, Tong H. 2023.. An overview of bitter compounds in foodstuffs: classifications, evaluation methods for sensory contribution, separation and identification techniques, and mechanism of bitter taste transduction. . Compr. Rev. Food Sci. Food Saf. 22::187232
    [Crossref] [Google Scholar]
  181. Yang J, Sun-Waterhouse D, Cui C, Dong K, Wang W. 2017.. Synthesis and sensory characteristics of kokumi γ-[Glu]n-Phe in the presence of glutamine and phenylalanine: glutaminase from Bacillus amyloliquefaciens or Aspergillus oryzae as the catalyst. . J. Agric. Food Chem. 65::8696703
    [Crossref] [Google Scholar]
  182. Yassour M, Jason E, Hogstrom LJ, Arthur TD, Tripathi S, et al. 2018.. Strain-level analysis of mother-to-child bacterial transmission during the first few months of life. . Cell Host Microbe 24::14654.e4
    [Crossref] [Google Scholar]
  183. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, et al. 2012.. Human gut microbiome viewed across age and geography. . Nature 486::22227
    [Crossref] [Google Scholar]
  184. Yu AO, Leveau JHJ, Marco ML. 2020.. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. . Environ. Microbiol. Rep. 12::1629
    [Crossref] [Google Scholar]
  185. Zaccaria E, Klaassen T, Alleleyn AME, Boekhorst J, Smokvina T, et al. 2023.. Endogenous small intestinal microbiome determinants of transient colonisation efficiency by bacteria from fermented dairy products: a randomised controlled trial. . Microbiome 11::43
    [Crossref] [Google Scholar]
  186. Zannini E, Pontonio E, Waters DM, Arendt EK. 2012.. Applications of microbial fermentations for production of gluten-free products and perspectives. . Appl. Microbiol. Biotechnol. 93::47385
    [Crossref] [Google Scholar]
  187. Zhao CJ, Kinner M, Wismer W, Gänzle MG. 2015.. Effect of glutamate accumulation during sourdough fermentation with Lactobacillus reuteri on the taste of bread and sodium-reduced bread. . Cereal Chem. 92::22430
    [Crossref] [Google Scholar]
  188. Zhao X, Wang W, Blaine A, Kane ST, Zijlstra RT, Gänzle MG. 2019.. Impact of probiotic Lactobacillus sp. on autochthonous lactobacilli in weaned piglets. . J. Appl. Microbiol. 126::24254
    [Crossref] [Google Scholar]
  189. Zheng J, Ruan L, Sun M, Gänzle M. 2015.. A genomic view of lactobacilli and pediococci demonstrates that phylogeny matches ecology and physiology. . Appl. Environ. Microbiol. 81::723343
    [Crossref] [Google Scholar]
  190. Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, et al. 2020.. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. . Int. J. Syst. Evol. Microbiol. 70::278258
    [Crossref] [Google Scholar]
  191. Zhu Y, Tramper J. 2013.. Koji: where East meets West in fermentation. . Biotechnol. Adv. 31::144857
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034207
Loading
/content/journals/10.1146/annurev-food-072023-034207
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error