1932

Abstract

Berries are highly regarded as flavorful and healthy fruits that may prevent or delay some chronic diseases attributed to oxidative stress and inflammation. Berries are low in calories and harbor diverse bioactive phytochemicals, antioxidants, dietary fibers, and vitamins. This review delves into the main characteristics of fresh berries and berry products as foods and the technologies associated with their production. The main effects of processing operations and related variables on bioactive components and antioxidants are described. This review critically discusses why some health claims based on in vitro antioxidant data and clinical studies and intervention trials are difficult to assess. The review suggests that the beneficial health effects of berries are derived from a multifactorial combination of complex mixtures of abundant phenolic components, antioxidants, and their metabolites acting synergistically or additively with other nutrients like fibers and vitamins and possibly by modulating the gut microbiota.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034248
2024-06-28
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034248.html?itemId=/content/journals/10.1146/annurev-food-072023-034248&mimeType=html&fmt=ahah

Literature Cited

  1. Abuduaibifu A, Tamer CE. 2019.. Evaluation of physicochemical and bioaccessibility properties of goji berry kombucha. . J. Food Process. Preserv. 43:(9):me14077
    [Crossref] [Google Scholar]
  2. Afrin S, Gasparrini M, Forbes-Hernandez TY, Reboredo-Rodriguez P, Mezzetti B, et al. 2016.. Promising health benefits of the strawberry: a focus on clinical studies. . J. Agric. Food Chem. 64::443549
    [Crossref] [Google Scholar]
  3. Aguilera JM, Chiralt A, Fito P. 2003.. Food dehydration and product structure. . Trends Food Sci. Technol. 14::43237
    [Crossref] [Google Scholar]
  4. Aguilera JM, Toledo T. 2022.. Wild berries and related wild small fruits: use as traditional foods and future perspectives. . Crit. Rev. Food Sci. Nutr. In press
    [Google Scholar]
  5. Ahmed H, Maunula L, Korhonen J. 2020.. Reduction of norovirus in foods by nonthermal treatments: a review. . J. Food Prot. 83::205373
    [Crossref] [Google Scholar]
  6. Alba K, Campbell GM, Kontogiorgos V. 2019.. Dietary fibre from berry-processing waste and its impact on bread structure: a review. . J. Sci. Food Agric. 99::418999
    [Crossref] [Google Scholar]
  7. Alija J, Talens C. 2012.. New concept of desserts with no added sugar. . Int. J. Gastron. Food Sci. 1::11622
    [Crossref] [Google Scholar]
  8. Arfaoui L. 2021.. Dietary plant polyphenols: effects of food processing on their content and bioavailability. . Molecules 26:(10):2959
    [Crossref] [Google Scholar]
  9. Ayala-Zavala JF, Wang SY, Wang CY, Gonzalez-Aguilar GA. 2004.. Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. . LWT 37::68795
    [Crossref] [Google Scholar]
  10. Azofeifa G, Quesada S, Pérez AM, Vaillant F, Michel A. 2015.. Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. . J. Food Compos. Anal. 42::5662
    [Crossref] [Google Scholar]
  11. Barbosa-Cánovas GV, Donsì F, Yildiz S, Candoğa K, Pokhrel PR, et al. 2022.. Nonthermal processing technologies for stabilization and enhancement of bioactive compounds in foods. . Food Eng. Rev. 14::6399
    [Crossref] [Google Scholar]
  12. Basu A, Nguyen A, Betts NM, Lyons TJ. 2014.. Strawberry as a functional food: an evidence-based review. . Crit. Rev. Food Sci. Nutr. 54::790806
    [Crossref] [Google Scholar]
  13. Battino M, Beekwilder J, Denoyes-Rothan B, Laimer M, McDougall GJ, et al. 2009.. Bioactive compounds in berries relevant to human health. . Nutr. Rev. 67::S14550
    [Crossref] [Google Scholar]
  14. Beattie J, Crozier A, Duthie GG. 2005.. Potential health benefits of berries. . Curr. Nutr. Food Sci. 1::7186
    [Crossref] [Google Scholar]
  15. Bender C, Killermann KV, Rehmann D, Weidlich HH. 2017.. Effect of mash enzyme and heat treatments on the cellular antioxidant activity of black currant (Ribes nigrum), raspberry (Rubus idaeus), and blueberry (Vaccinium myrtillus) juices. . CYTA J. Food 15::27783
    [Crossref] [Google Scholar]
  16. Bevilacqua A, Petruzzi L, Perricone M, Speranza B, Campaniello D, et al. 2018.. Nonthermal technologies for fruit and vegetable juices and beverages: overview and advances. . Compr. Rev. Food Sci. Food Saf. 17:(1):262
    [Crossref] [Google Scholar]
  17. Bhat R, Geppert J, Funken E, Stamminger R. 2015.. Consumers perceptions and preference for strawberries: a case study from Germany. . Int. J. Fruit Sci. 15:(4):40524
    [Crossref] [Google Scholar]
  18. Boateng ID. 2022.. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. . Crit. Rev. Food Sci. Nutr. In press. https://doi.org/10.1080/10408398.2022.2140121
    [Google Scholar]
  19. Boath AS, Grussu D, Stewart D, McDougall GJ. 2012.. Berry polyphenols inhibit digestive enzymes: a source of potential health benefits?. Food Dig. 3::17
    [Crossref] [Google Scholar]
  20. Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. 2022.. Effect of berry-based supplements and foods on cognitive function: a systematic review. . Sci. Rep. 12::3239
    [Crossref] [Google Scholar]
  21. Bozkurt H, Phan-Thien KY, van Ogtrop F, Bell T, McConchie R. 2021.. Outbreaks, occurrence, and control of norovirus and hepatitis A virus contamination in berries: a review. . Crit. Rev. Food Sci. Nutr. 61::11638
    [Crossref] [Google Scholar]
  22. Brew. Assoc. 2022.. 2021 beer style guidelines. Rep. , Brew. Assoc., Boulder, CO:. https://www.brewersassociation.org/edu/brewers-association-beer-style-guidelines/
    [Google Scholar]
  23. Brown AW, Aslibekyan S, Bier D, Ferreira da Silva R, Hoover A, et al. 2021.. Toward more rigorous and informative nutritional epidemiology: the rational space between dismissal and defense of the status quo. . Crit. Rev. Food Sci. Nutr. 63:(18):315067
    [Crossref] [Google Scholar]
  24. Calín-Sánchez A, Lipan L, Cano-Lamadrid M, Kharaghani A, Masztalerz K, et al. 2020.. Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. . Foods 9:(9):1261
    [Crossref] [Google Scholar]
  25. Cao X, Huang R, Chen H. 2019.. Evaluation of food safety and quality parameters for shelf life extension of pulsed light treated strawberries. . J. Food Sci. 86::1494500
    [Crossref] [Google Scholar]
  26. Carpéné C, Les F, Cáseda G, Umuhoza F, Arbonés-Mainar JM, et al. 2019.. Engineering and biomedical effects of commercial juices of berries, cherries, and pomegranates with high polyphenol content. . Non-Alcohol. Beverages 6::25983
    [Crossref] [Google Scholar]
  27. Celli GB, Ghanem A, Brooks M. 2015.. Influence of freezing process and frozen storage on fruits and fruit products quality. . Food Rev. Int. 32::280304
    [Crossref] [Google Scholar]
  28. Chakraborty S, Ghag S, Saurabhi Bhalerao PP, Gokhale JS. 2020.. The potential of pulsed light treatment to produce enzymatically stable Indian gooseberry (Emblica officinalis Gaertn.) juice with maximal retention in total phenolics and vitamin C. . J. Food Process. Preserv. 44:(12):e14932
    [Crossref] [Google Scholar]
  29. Cheikhyoussef A, Cheikhyoussef N, Rahman A, Maroyi A. 2020.. Cold pressed berry seed oils. . In Cold Press Oils: Green Technology, Bioactive Compounds, Functionality, and Applications, ed. MF Ramadan , pp. 27787. London:: Academic
    [Google Scholar]
  30. Chen X, Li H, Zhang B, Deng Z. 2022.. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. . Crit. Rev. Food Sci. Nutr. 62::565877
    [Crossref] [Google Scholar]
  31. Conidi C, Castro-Muñoz R, Cassano A. 2020.. Membrane-based operations in the fruit juice processing industry: a review. . Beverages 6:(1):18
    [Crossref] [Google Scholar]
  32. Côté M, Lamarche B. 2022.. Artificial intelligence in nutrition research: perspectives on current and future applications. . Appl. Physiol. Nutr. Metab. https://doi.org/10.1139/apnm-2021-0448
    [Google Scholar]
  33. Curtis PJ, van der Velpen V, Berends L, Jennings A, Feelisch M, et al. 2019.. Blueberries improve biomarkers of cardiometabolic function in participants with metabolic syndrome: results from a 6-month, double-blind, randomized controlled trial. . Am. J. Clin. Nutr. 109::153545
    [Crossref] [Google Scholar]
  34. Da Costa JP. 2017.. A current look at nutraceuticals—key concepts and future prospects. . Trends Food Sci. Technol. 62::6878
    [Crossref] [Google Scholar]
  35. De Amicis R, Mambrini SP, Pellizzari M, Foppiani A, Bertoli S, et al. 2022.. Systematic review on the potential effect of berry intake in the cognitive functions of healthy people. . Nutrients 14:(14):2977
    [Crossref] [Google Scholar]
  36. de Oliveira AA, Torres AG, Perrone D, Monteiro M. 2021.. Effect of high hydrostatic pressure processing on the anthocyanins content, antioxidant activity, sensorial acceptance and stability of jussara (Euterpe edulis) juice. . Foods 10:(10):2246
    [Crossref] [Google Scholar]
  37. Debelo H, Li M, Ferruzzi MG. 2020.. Processing influences on food polyphenol profiles and biological activity. . Curr. Opin. Food Sci. 32::90102
    [Crossref] [Google Scholar]
  38. Di Vittori L, Mazzoni L, Battino M, Mezzetti B. 2018.. Pre-harvest factors influencing the quality of berries. . Sci. Hortic. 233::31022
    [Crossref] [Google Scholar]
  39. Diamante LM, Bai X, Busch J. 2014.. Fruit leathers: method of preparation and effect of different conditions on qualities. . Int. J. Food Sci. 2014::139890
    [Crossref] [Google Scholar]
  40. Dimitrellou D, Solomakou N, Kokkinomagoulos E, Kandylis P. 2020.. Yogurts supplemented with juices from grapes and berries. . Foods 9:(9):1158
    [Crossref] [Google Scholar]
  41. Do Amaral Souza F, Gomes Sanders L, de Oliveira K, Paiva Lopes J, Moreira Mar J, et al. 2019.. Thermosonication applied on camu-camu nectars processing: effect on bioactive compounds and quality parameters. . Food Bioprod. Process. 116::21218
    [Crossref] [Google Scholar]
  42. Dreher M. 2018.. Whole fruits and fruit fiber emerging health effects. . Nutrients 10:(12):1833
    [Crossref] [Google Scholar]
  43. Duan Y, Wang G-B, Fawole OA, Verboven P, Zhang X-R, et al. 2020.. Postharvest precooling of fruit and vegetables: a review. . Trends Food Sci. Technol. 100::27891
    [Crossref] [Google Scholar]
  44. Espín JC, García-Conesa MT, Tomás-Barberán FA. 2007.. Nutraceuticals: facts and fiction. . Phytochemistry 68::29863008
    [Crossref] [Google Scholar]
  45. FAOSTAT. 2021.. Crops and livestock products. FAOSTAT Statistical Database: Food Agric . Organ., Rome:, updated March 24, 2023, accessed on Dec. 20, 2022. http://www.fao.org/faostat/en/#data/QC
    [Google Scholar]
  46. Fardet A. 2017.. New concepts and paradigms for the protective effects of plant-based food components in relation to food complexity. . In Vegetarian and Plant-Based Diets in Health and Disease Prevention, ed. F Mariotti , pp. 293312. New York:: Academic
    [Google Scholar]
  47. Farruggia D, Crescimanno M, Galati A, Tinervia S. 2016.. The quality perception of fresh berries: an empirical survey in the German market. . Agric. Agric. Sci. Procedia 8::56675
    [Google Scholar]
  48. Finley JW, Kong A-N, Hintze KJ, Jeffery EH, Ji LL, et al. 2011.. Antioxidants in foods: state of the science important to the food industry. . J. Agric. Food Chem. 59::683746
    [Crossref] [Google Scholar]
  49. Foito A, McDougall GJ, Stewart D. 2018.. Evidence for health benefits of berries. . Annu. Plant Rev. 1::143
    [Google Scholar]
  50. Forbes-Hernandez TY. 2020.. Berries polyphenols: nano-delivery systems to improve their potential in cancer therapy. . J. Berry Res. 10::4560
    [Crossref] [Google Scholar]
  51. Fortune Bus. Insights. 2020.. Organic berries market size, share & COVID-19 impact analysis, by time (strawberries, cranberries, gooseberries, blueberries, and others), application (food and beverage, pharmaceuticals, cosmetics, and personal care, and household), processing type (processed and fresh), and regional forecast, 2020–2027. Rep. FBI103191 , Fortune Bus. Insights, Maharashtra, India:. https://www.fortunebusinessinsights.com/organic-berries-market-103191
    [Google Scholar]
  52. Gagneten M, Corfield R, Mattson MG, Sozzi A, Leiva G, et al. 2019.. Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. . Powder Technol. 342::100815
    [Crossref] [Google Scholar]
  53. Gao Y, Xia W, Shao P, Wu W, Chen H, et al. 2022.. Impact of thermal processing on dietary flavonoids. . Curr. Opin. Food Sci. 48::100915
    [Crossref] [Google Scholar]
  54. Garden-Robinson J. 2020.. Jams and jellies from native (wild) fruits. Rep. FN1423 , North Dakota State Univ., Fargo:. https://www.ag.ndsu.edu/publications/food-nutrition/jams-and-jellies-from-native-wild-fruits
    [Google Scholar]
  55. Giannakourou M, Taoukis P. 2021.. Effect of alternative preservation steps and storage on vitamin C stability in fruit and vegetable products: critical review and kinetic modelling approaches. . Foods 10:(11):2630
    [Crossref] [Google Scholar]
  56. Gibot-Leclerc S, Gallaud D. 2010.. La filière crème de cassis en Bourgogne. . Infos CTIFL 259::4751
    [Google Scholar]
  57. Gilbert JL, Olmstead JW, Colquhoun TA, Levin LA, Clark DG, et al. 2014.. Consumer-assisted selection of blueberry fruit quality traits. . HortScience 49::86473
    [Crossref] [Google Scholar]
  58. Golovinskaia O, Wang C-K. 2021.. Review of functional and pharmacological activities of berries. . Molecules 26:(13):3904
    [Crossref] [Google Scholar]
  59. Gonzalez de Mejia E, Zhang Q, Penta K, Eroglu A, Lila MA. 2020.. The colors of health: chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. . Annu. Rev. Food Sci. Technol. 11::14582
    [Crossref] [Google Scholar]
  60. González de Peredo V, Vázquez-Espinosa A, Espada-Bellido M, Ferreiro-González E, Amores-Arrocha M, et al. 2019.. Alternative ultrasound-assisted method for the extraction of the bioactive compounds present in myrtle (Myrtus communis L.). . Molecules 24::882
    [Crossref] [Google Scholar]
  61. Govers C, Berkel Kasikci M, van der Sluis AA, Mes JJ. 2018.. Review of the health effects of berries and their phytochemicals on the digestive and immune systems. . Nutr. Rev. 76::2946
    [Crossref] [Google Scholar]
  62. Grobelna A, Kalisz S, Kieliszek M. 2019.. Effect of processing methods and storage time on the content of bioactive compounds in blue honeysuckle berry purees. . Agronomy 9:(12):860
    [Crossref] [Google Scholar]
  63. Gustinelli G, Eliasson L, Svelander C, Andlid T, Lundin L, et al. 2018.. Supercritical fluid extraction of berry seeds: chemical composition and antioxidant activity. . J. Food Qual. 2018::6046074
    [Crossref] [Google Scholar]
  64. Hager TJ, Howard LR, Prior RL. 2008.. Processing and storage effects on monomeric anthocyanins, percent polymeric color, and antioxidant capacity of processed blackberry products. . J. Agric. Food Chem. 56::68995
    [Crossref] [Google Scholar]
  65. Hibler J. 2010.. The Berry Bible: With 175 Recipes Using Cultivated and Wild, Fresh and Frozen Berries. Las Vegas:: Amazon Encore
    [Google Scholar]
  66. Hjartåker A, Knudsen MD, Tretli S, Weiderpass E. 2014.. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. . Eur. J. Nutr. 54::599608
    [Crossref] [Google Scholar]
  67. Hornedo-Ortega R, Álvarez-Fernández MA, Cerezo AB, Garcia-Garcia I, Troncoso AM, et al. 2017.. Influence of fermentation process on the anthocyanin composition of wine and vinegar elaborated from strawberry. . J. Food Sci. 82::36472
    [Crossref] [Google Scholar]
  68. Horvitz S. 2017.. Postharvest handling of berries. . In Postharvest Handling, ed. I Kahramanoglu , pp. 10723. London:: IntechOpen
    [Google Scholar]
  69. Hutzler P, Fischbach R, Heller W, Jungblut TP, Reuber S, et al. 1998.. Tissue localization of phenolic compounds in plants by confocal laser scanning microscopy. . J. Exp. Bot. 49::95365
    [Crossref] [Google Scholar]
  70. Huynh KN, Wilson MD, Eyles A, Stanley RA. 2019.. Recent advances in postharvest technologies to extend the shelf life of blueberries (Vaccinium sp.), raspberries (Rubus idaeus L.) and blackberries (Rubus sp.). . J. Berry Res. 9::687707
    [Crossref] [Google Scholar]
  71. Ifie I, Marshall LJ. 2018.. Food processing and its impact on phenolic constituents in food. . Cogent Food Agric. 4:(1):1507782
    [Crossref] [Google Scholar]
  72. İlyasoğlu H, Arpa TE. 2017.. Effect of brewing conditions on antioxidant properties of rosehip tea beverage: study by response surface methodology. . J. Food Sci. Technol. 54::373743
    [Crossref] [Google Scholar]
  73. Jadhav HB, Annapure US, Deshmukh RR. 2021.. Non-thermal technologies for food processing. . Front. Nutr. 8::657090
    [Crossref] [Google Scholar]
  74. Jin TZ, Yu Y, Gurtler JB. 2017.. Effects of pulsed electric field processing on microbial survival, quality change and nutritional characteristics of blueberries. . LWT 77::51724
    [Crossref] [Google Scholar]
  75. Kalt W, Cassidy A, Howard LR, Krikorian R, Stull AJ, et al. 2020.. Recent research on the health benefits of blueberries and their anthocyanins. . Adv. Nutr. 11::22436
    [Crossref] [Google Scholar]
  76. Kamiloglu S. 2019.. Effect of different freezing methods on the bioaccessibility of strawberry polyphenols. . Int. J. Food Sci. Technol. 54::265260
    [Crossref] [Google Scholar]
  77. Karlund A, Moor U, Sandell M, Karjalainen R. 2014.. The impact of harvesting, storage and processing factors on health-promoting phytochemicals in berries and fruits. . Processes 2::596624
    [Crossref] [Google Scholar]
  78. Kesa A-L, Pop CR, Mudura E, Salanta LC, Pasqualone A, et al. 2021.. Strategies to improve the potential functionality of fruit-based fermented beverages. . Plants 10:(11):2263
    [Crossref] [Google Scholar]
  79. Khan MK, Ahmad K, Hassan S, Imran M, Ahmad N, et al. 2018.. Effect of novel technologies on polyphenols during food processing. . Innov. Food Sci. Emerg. Technol. 45::36181
    [Crossref] [Google Scholar]
  80. Kidon M, Narasimhan G. 2022.. Effect of ultrasound and enzymatic mash treatment on bioactive compounds and antioxidant capacity of black, red and white currant juices. . Molecules 27:(1):31
    [Crossref] [Google Scholar]
  81. Kim J, Adhikari K. 2020.. Current trends in kombucha: marketing perspectives and the need for improved sensory research. . Beverages 6:(1):15
    [Crossref] [Google Scholar]
  82. Korus A, Jaworska G, Bernaś E, Juszczak L. 2015.. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs. . J. Food Sci. Technol. 52::281523
    [Crossref] [Google Scholar]
  83. Kotha RR, Tareq FS, Yildiz E, Luthria DL. 2022.. Oxidative stress and antioxidants: a critical review on in vitro antioxidant assays. . Antioxidants 11:(12):2388
    [Crossref] [Google Scholar]
  84. Kruszewski B, Zawada K, Karpinski P. 2021.. Impact of high-pressure homogenization parameters on physicochemical characteristics, bioactive compounds content, and antioxidant capacity of blackcurrant juice. . Molecules 26:(6):1802
    [Crossref] [Google Scholar]
  85. Laaksonen O, Knaapila A, Niva T, Deegan KC, Sandell M. 2016.. Sensory properties and consumer characteristics contributing to liking of berries. . Food Qual. Prefer. 53::11723
    [Crossref] [Google Scholar]
  86. Lachowicz S, Oszmiański J, Kolniak-Ostek J, Stokłosa D. 2019.. Effect of different sizes of ceramic membranes in the process of microfiltration on physicochemical parameters of chokeberry juice. . Eur. Food Res. Technol. 245::126375
    [Crossref] [Google Scholar]
  87. Lavefve L, Howard LR, Carbonero F. 2020.. Berry polyphenols: metabolism and impact on human gut microbiota and health. . Food Funct. 11::4565
    [Crossref] [Google Scholar]
  88. Leong ZY, Oey I. 2017.. Berry juices. . In Innovative Technologies in Beverage Processing, ed. I Aguiló-Aguayo, L Plaza , pp. 131203. Chichester, UK:: John Wiley & Sons
    [Google Scholar]
  89. Li F, Chen G, Zhang B, Fu X. 2017.. Current applications and new opportunities for the thermal and non-thermal processing technologies to generate berry product or extracts with high nutraceutical contents. . Food Res. Int. 100::1930
    [Crossref] [Google Scholar]
  90. Li Y, Li P, Yang K, He Q, Wang Y, et al. 2021.. Impact of drying methods on phenolic components and antioxidant activity of sea buckthorn (Hippophae rhamnoides L.) berries from different varieties in China. . Molecules 26:(23):7189
    [Crossref] [Google Scholar]
  91. Liguori I, Russo G, Curcio F, Bulli G, Aran L, et al. 2018.. Oxidative stress, aging, and diseases. . Clin. Interv. Aging 13::75772
    [Crossref] [Google Scholar]
  92. Lo Piccolo E, Martinez Garcia L, Landi M, Guidi L, Massai R, et al. 2020.. Influences of postharvest storage and processing techniques on antioxidant and nutraceutical properties of Rubus idaeus L.: a mini-review. . Horticulturae 6:(4):105
    [Crossref] [Google Scholar]
  93. López F, Rodríguez-Bencomo JJ, Orriols I, Pérez-Correa JR. 2017.. Fruit brandies. . In Science and Technology of Fruit Wine Production, ed. MR Kosseva, VK Joshi, PS Panesar , pp. 53156. London:: Academic
    [Google Scholar]
  94. Lorenzo JM, Pateiro M, Domínguez R, Barba FJ, Putnik P, et al. 2018.. Berries extracts as natural antioxidants in meat products: a review. . Food Res. Int. 106::1095104
    [Crossref] [Google Scholar]
  95. Lozano JE. 2006.. Fruit Manufacturing. New York:: Springer
    [Google Scholar]
  96. Lucarini M, Durazzo A, Bernini R, Campo M, Vita C, et al. 2021.. Fruit wastes as a valuable source of value-added compounds: a collaborative perspective. . Molecules 26:(21):6338
    [Crossref] [Google Scholar]
  97. Luczaj L, Pieroni A, Tardío J, Pardo-de-Santayana M, Sõukand R, et al. 2012.. Wild food plant use in 21st century Europe: the disappearance of old traditions and the search for new cuisines involving wild edibles. . Acta Soc. Bot. Pol. 81::35970
    [Crossref] [Google Scholar]
  98. Maksimović V, Maksimović JD. 2017.. Composition, nutritional, and therapeutic values of fruit and berry wines. . In Science and Technology of Fruit Wine Production, ed. MR Kosseva, VK Joshi, PS Panesar , pp. 177226. Amsterdam:: Elsevier
    [Google Scholar]
  99. Manganaris GA, Goulas V, Vicente AR, Terry LA. 2014.. Berry antioxidants: small fruits providing large benefits. . J. Sci. Food Agric. 94::82533
    [Crossref] [Google Scholar]
  100. Matsui KN, Ditchfield C, Tadini CC. 2018.. Microwave processing of fruits: novel and conventional technologies. . In Fruit Preservation: Novel and Conventional Technologies, ed. A Rosenthal, R Deliza, J Welti-Chanes, G Barbosa-Cánovas , pp. 41740. New York:: Springer
    [Google Scholar]
  101. Mauricio EM, Rosado C, Duarte MP, Fernando AL, Diaz-Lanza AM. 2020.. Evaluation of industrial sour cherry liquor wastes as an ecofriendly source of added value chemical compounds and energy. . Waste Biomass Valoriz. 11::20110
    [Crossref] [Google Scholar]
  102. Meda V, Mitra P, Lee JH, Chang KS. 2016.. Optimization of microwave-vacuum drying processing parameters on the physical properties of dried Saskatoon berries. . Open Agric. 1::717
    [Crossref] [Google Scholar]
  103. Mengist MF, Grace MH, Mackey T, Munoz B, Pucker B, et al. 2022.. Dissecting the genetic basis of bioactive metabolites and fruit quality traits in blueberries (Vaccinium corymbosum L.). . Front. Plant Sci. 13::964656
    [Crossref] [Google Scholar]
  104. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R. 2012.. Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. . J. Food Sci. 77::C106470
    [Crossref] [Google Scholar]
  105. Munialo CD, Naumovski N, Sergi D, Stewart D, Mellor DD. 2019.. Critical evaluation of the extrapolation of data relative to antioxidant function from the laboratory and their implications on food production and human health: a review. . Int. J. Food Sci. Technol. 54::144859
    [Crossref] [Google Scholar]
  106. Munteanu IG, Apetrei C. 2021.. Analytical methods used in determining antioxidant activity: a review. . Int. J. Mol. Sci. 22:(7):3380
    [Crossref] [Google Scholar]
  107. Nayak B, Liu RH, Tang J. 2015.. Effect of processing on phenolic antioxidants of fruits, vegetables, and grains: a review. . Crit. Rev. Food Sci. Nutr. 55::887918
    [Crossref] [Google Scholar]
  108. Nemzer B, Vargas L, Xia X, Sintara M, Feng H. 2018.. Phytochemical and physical properties of blueberries, tart cherries, strawberries, and cranberries as affected by different drying methods. . Food Chem. 262::24250
    [Crossref] [Google Scholar]
  109. Neri L, Faieta M, Di Mattia C, Sacchetti G, Mastrocola D, et al. 2020.. Antioxidant activity in frozen plant foods: effect of cryoprotectants, freezing process and frozen storage. . Foods 9:(12):1886
    [Crossref] [Google Scholar]
  110. Niki E. 2011.. Antioxidant capacity: which capacity and how to assess it?. J. Berry Res. 1::16976
    [Crossref] [Google Scholar]
  111. Niki E. 2021.. Factors affecting in vitro and in vivo antioxidant effects. Experimental conditions and nature of oxidants determine antioxidant efficacy. . J. Berry Res. 11::6019
    [Crossref] [Google Scholar]
  112. Nile SH, Park SW. 2014.. Edible berries: bioactive components and their effect on human health. . Nutrition 30::13444
    [Crossref] [Google Scholar]
  113. Nwachukwu ID, Sarteshnizi RA, Udenigwe CC, Aluko RE. 2021.. A concise review of current in vitro chemical and cell-based antioxidant assay methods. . Molecules 26:(16):4865
    [Crossref] [Google Scholar]
  114. Olas B. 2018.. Berry phenolic antioxidants: implications for human health?. Front. Pharmacol. 9::78
    [Crossref] [Google Scholar]
  115. Oliveira M, Martins Rodrigues C, Teixeira P. 2019.. Microbiological quality of raw berries and their products: a focus on foodborne pathogens. . Heliyon 5:(12):e02992
    [Crossref] [Google Scholar]
  116. Paciulli M, Medina Meza IG, Rinaldi M, Ganino T, Pugliese A, et al. 2019.. Improved physicochemical and structural properties of blueberries by high hydrostatic pressure processing. . Foods 8:(7):272
    [Crossref] [Google Scholar]
  117. Padmanabhan P, Correa-Betanzo J, Paliyath G. 2016.. Berries and related fruits. . In Encyclopedia of Food and Health, ed. B Caballero, PM Finglas, F Toldrá , pp. 36471. Amsterdam:: Elsevier
    [Google Scholar]
  118. Panou AA, Karabagias IK, Riganakos KA. 2020.. Effect of gamma-irradiation on sensory characteristics, physicochemical parameters, and shelf life of strawberries stored under refrigeration. . Int. J. Fruit Sci. 20::191206
    [Crossref] [Google Scholar]
  119. Pap N, Fidelis M, Azevedo L, do Carmo MAV, Wang D, et al. 2021.. Berry polyphenols and human health: evidence of antioxidant, anti-inflammatory, microbiota modulation, and cell-protecting effects. . Curr. Opin. Food Sci. 42::16786
    [Crossref] [Google Scholar]
  120. Pathak N, Grossi Bovi G, Limnaios A, Fröhling A, Brincat J-P, et al. 2020.. Impact of cold atmospheric pressure plasma processing on storage of blueberries. . J. Food Process. Preserv. 44:(8):e14581
    [Crossref] [Google Scholar]
  121. Patras A, Brunton NP, Da Pieve S, Butler F. 2009.. Impact of high pressure processing on total antioxidant activity, phenolic, ascorbic acid, anthocyanin content and colour of strawberry and blackberry purées. . Innov. Food Sci. Emerg. Technol. 10::30813
    [Crossref] [Google Scholar]
  122. Pellegrini N, Vitaglione P, Granato D, Fogliano V. 2018.. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: merits and limitations. . J. Sci. Food Agric. 100::506478
    [Crossref] [Google Scholar]
  123. Pérez-Lamela C, Franco I, Falqué E. 2021.. Impact of high-pressure processing on antioxidant activity during storage of fruits and fruit products: a review. . Molecules 26:(17):5265
    [Crossref] [Google Scholar]
  124. Piasecka I, Wiktor A, Górska A. 2022.. Alternative methods of bioactive compounds and oils extraction from berry fruit by-products: a review. . Appl. Sci. 12:(3):1734
    [Crossref] [Google Scholar]
  125. Poiana MA, Moigradean D, Raba D, Alda L-M, Popa M. 2010.. The effect of long-term frozen storage on the nutraceutical compounds, antioxidant properties and color indices of different kinds of berries. . J. Food Agric. Environ. 8::5458
    [Google Scholar]
  126. Popa ME, Geicu-Cristea M, Popa A, Draghici M, Tanase EE, et al. 2017.. Consumption and attitudes regarding berries-based products—comparative analysis of Romania, France and Turkey. . Rom. Biotechnol. Lett. 22::1256876
    [Google Scholar]
  127. Predná L, Habánová M, Gažarová M, Mendelová A, Habán M, et al. 2016.. Effect of thermal pasteurization and high pressure processing on bioactive properties in strawberry juice. . Potr. Slovak J. Food Sci. 10::53742
    [Crossref] [Google Scholar]
  128. Rätsep R, Bleive U, Kaldmäe H, Kahu K, Kikas A. 2020.. Impact of enzymatic treatment on the blackcurrant (Ribes nigrum L.) polyphenols in juice and press-residue. . Int. J. Food Sci. Agric. 4::4348
    [Google Scholar]
  129. Ravichandran KS, Krishnaswamy K. 2021.. Sustainable food processing of selected North American native berries to support agroforestry. . Crit. Rev. Food Sci. Nutr. 63:(20):423560
    [Crossref] [Google Scholar]
  130. Reque PM, Steckert EV, dos Santos FT, Danelli D, Jablonski A, et al. 2016.. Heat processing of blueberries and its effect on their physicochemical and bioactive properties. . J. Food Process Eng. 39::56472
    [Crossref] [Google Scholar]
  131. Robert P, Fredes C. 2015.. The encapsulation of anthocyanins from berry-type fruits. Trends in foods. . Molecules 20:(4):587588
    [Crossref] [Google Scholar]
  132. Rodriguez-Daza MC, Roquim M, Dudonna S, Pilon G, Levy E, et al. 2020.. Berry polyphenols and fibers modulate distinct microbial metabolic functions and gut microbiota enterotype-like clustering in obese mice. . Front. Microbiol. 11::2032
    [Crossref] [Google Scholar]
  133. Romero J, Albertos I, Díez-Méndez A, Poveda J. 2022.. Control of postharvest diseases in berries through edible coatings and bacterial probiotics. . Sci. Hort. 304::111326
    [Crossref] [Google Scholar]
  134. Rosenthal A, Pokhrel PR, da Rocha Ferreira EH, Tiburski JH, Barbosa-Cánovas GV, et al. 2018.. High pressure processing of fruit products. . In Fruit Preservation: Novel and Conventional Technologies, ed. A Rosenthal, R Deliza, J Welti-Chanes, G Barbosa-Cánovas , pp. 35198. New York:: Springer
    [Google Scholar]
  135. Sablani SS, Andrews PK, Davies NM, Walters T, Saez H, et al. 2011.. Effects of air and freeze drying on phytochemical content of conventional and organic berries. . Dry. Technol. 29::20516
    [Crossref] [Google Scholar]
  136. Salo HM, Nguyen N, Alakärppä E, Klavins L, Hykkerud AL, et al. 2021.. Authentication of berries and berry-based food products. . Compr. Rev. Food Sci. Food Saf. 20::5197225
    [Crossref] [Google Scholar]
  137. Šavikin K, Zdunić G, Janković T, Gođevac D, Stanojković T, et al. 2014.. Berry fruit teas: phenolic composition and cytotoxic activity. . Food Res Int. 62::67783
    [Crossref] [Google Scholar]
  138. Schaich KM, Tian X, Xie J. 2015.. Hurdles and pitfalls in measuring antioxidant efficacy: a critical evaluation of ABTS, DPPH, and ORAC assays. . J. Funct. Foods 14::11125
    [Crossref] [Google Scholar]
  139. Senger E, Osorio S, Olbricht K, Shaw DP, Predieri S, et al. 2022.. Towards smart and sustainable development of modern berry cultivars in Europe. . Plant J. 111::123851
    [Crossref] [Google Scholar]
  140. Shahidi F, Ambigaipalan P. 2015.. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects—a review. . J. Funct. Foods 18::82097
    [Crossref] [Google Scholar]
  141. Shahidi F, Pan Y. 2021.. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: a review. . Crit. Rev. Food Sci. Nutr. 62:(23):642145
    [Crossref] [Google Scholar]
  142. Shinwari KJ, Rao PS. 2018.. Stability of bioactive compounds in fruit jam and jelly during processing and storage: a review. . Trends Food Sci. Technol. 75::18193
    [Crossref] [Google Scholar]
  143. Siemińska-Kuczer A, Szymańska-Chargot M, Zdunek A. 2022.. Recent advances in interactions between polyphenols and plant cell wall polysaccharides as studied using an adsorption technique. . Food Chem. 373:(Part B):131487
    [Crossref] [Google Scholar]
  144. Silva S, Costa EM, Veiga M, Morais RM, Calhau C, Pintado M. 2020.. Health promoting properties of blueberries: a review. . Crit. Rev. Food Sci. Nutr. 60::181200
    [Crossref] [Google Scholar]
  145. Skrovankova S, Sumczynski D, Mlcek J, Jurikova T, Sochor J. 2015.. Bioactive compounds and antioxidant activity in different types of berries. . Int. J. Mol. Sci. 16::24673706
    [Crossref] [Google Scholar]
  146. Śliwińska M, Wiśniewska P, Dymerski T, Wardencki W, Namieśnik J. 2015.. The flavour of fruit spirits and fruit liqueurs: a review. . Flavour Fragr. J. 30::197207
    [Crossref] [Google Scholar]
  147. Stevanović SM, Petrović TS, Marković DD, Milovančević UM, Stevanović SV, et al. 2021.. Changes of quality and free radical scavenging activity of strawberry and raspberry frozen under different conditions. . J. Food Process. Preserv. 46:(10):e1598
    [Google Scholar]
  148. Struck S, Plaza M, Turner C, Rohm H. 2016.. Berry pomace: a review of processing and chemical analysis of its polyphenols. . Int. J. Food Sci. Technol. 51::130518
    [Crossref] [Google Scholar]
  149. Suriyaprom S, Mosoni P, Leroy S, Kaewkod T, Desvaux M, et al. 2022.. Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. . Antioxidants 11:(3):602
    [Crossref] [Google Scholar]
  150. Szutowska J. 2020.. Functional properties of lactic acid bacteria in fermented fruit and vegetable juices: a systematic literature review. . Eur. Food Res. Technol. 246::35772
    [Crossref] [Google Scholar]
  151. Tadapaneni RK, Hossein D, Krishnamurthy K, Edirisinghe I, Burton-Freeman BM. 2014.. High-pressure processing of berry and other fruit products: implications for bioactive compounds and food safety. . J. Agric. Food Chem. 62::387785
    [Crossref] [Google Scholar]
  152. Thomson C, Garcia AL, Edwards CA. 2021.. Interactions between dietary fibre and the gut microbiota. . Proc. Nutr. Soc. https://doi.org/10.1017/S0029665121002834
    [Google Scholar]
  153. Tian Y, Liimatainen J, Alanne A-L, Lindstedt A, Liu P, et al. 2017.. Phenolic compounds extracted by acidic aqueous ethanol from berries and leaves of different berry plants. . Food Chem. 220::26681
    [Crossref] [Google Scholar]
  154. Tsiaka T, Kritsi E, Tsiantas K, Christodoulou P, Sinanoglou VJ, et al. 2022.. Design and development of novel nutraceuticals: current trends and methodologies. . Nutraceuticals 2:(2):7190
    [Crossref] [Google Scholar]
  155. Van Hoed V, de Clercq N, Echim C, Andjelkovic M. 2009.. Berry seeds: a source of specialty oils with high content of bioactives and nutritional value. . J. Food Lipids 16::3349
    [Crossref] [Google Scholar]
  156. Vahapoglu B, Erskine E, Gultekin Subasi B, Capanoglu E. 2021.. Recent studies on berry bioactives and their health-promoting roles. . Molecules 27:(1):10
    [Crossref] [Google Scholar]
  157. Varalakshmi S. 2021.. A review on the application and safety of non-thermal techniques on fresh produce and their products. . LWT 149::111849
    [Crossref] [Google Scholar]
  158. Velic D, Velic N, Amidzic D, Llaric I, Petravic Dominac V, et al. 2018.. The production of fruit wines—a review. . Croat. J. Food Sci. Technol. 10::27990
    [Crossref] [Google Scholar]
  159. Verghese M, Willis S, Boateng J, Gomaa A, Kaur R. 2021.. Effect of food processing on antioxidant potential, availability, and bioavailability. . Annu. Rev. Food Sci. Technol. 12::30729
    [Crossref] [Google Scholar]
  160. Wang C, Meng X. 2016.. Effect of 60Co γ-irradiation on storage quality and cell wall ultra-structure of blueberry fruit during cold storage. . Innov. Food Sci. Emerg. Technol. 38::9197
    [Crossref] [Google Scholar]
  161. Wang D, Zhang M, Mujumdar A, Yu D. 2022.. Advanced detection techniques using artificial intelligence in processing of berries. . Food Eng. Rev. 14::17699
    [Crossref] [Google Scholar]
  162. Wicklund T, Rosenfeld HJ, Martinse BK, Sundfør MW, Lea P, et al. 2005.. Antioxidant capacity and colour of strawberry jam as influenced by cultivar and storage conditions. . LWT 38::38791
    [Crossref] [Google Scholar]
  163. Witkamp RF. 2021.. Nutrition to optimise human health: how to obtain physiological substantiation?. Nutrients 13:(7):2155
    [Crossref] [Google Scholar]
  164. Witkamp RF. 2022.. Bioactive components in traditional foods aimed at health promotion: a route to novel mechanistic insights and lead molecules?. Annu. Rev. Food Sci. Technol. 13::31536
    [Crossref] [Google Scholar]
  165. Wu Y, Li S, Tao Y, Li D, Han Y, et al. 2021.. Fermentation of blueberry and blackberry juices using Lactobacillus plantarum, Streptococcus thermophilus and Bifidobacterium bifidum: growth of probiotics, metabolism of phenolics, antioxidant capacity in vitro and sensory evaluation. . Food Chem. 348::129083
    [Crossref] [Google Scholar]
  166. Yang B, Kortesniemi M. 2015.. Clinical evidence on potential health benefits of berries. . Curr. Opin. Food Sci. 2::3642
    [Crossref] [Google Scholar]
  167. Zhang J, Zhang C, Chen X, Quek SY. 2020.. Effect of spray drying on phenolic compounds of cranberry juice and their stability during storage. . J. Food Eng. 269::109744
    [Crossref] [Google Scholar]
  168. Zhang L, Virgous C, Si H. 2019.. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. . J. Nutr. Biochem. 69::1930
    [Crossref] [Google Scholar]
  169. Zhao Y. 2007.. Berry Fruits: Value Added Products for Health Promotion. Boca Raton, FL:: CRC Press
    [Google Scholar]
  170. Žlabur JS, Mikulec N, Doždor L, Duralija B, Galic A, et al. 2021.. Preservation of biologically active compounds and nutritional potential of quick-frozen berry fruits of the genus Rubus. . Processes 9:(11):1940
    [Crossref] [Google Scholar]
  171. Zorzi M, Gai F, Medana C, Aigotti R, Morello S, et al. 2020.. Bioactive compounds and antioxidant capacity of small berries. . Foods 9:(5):623
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034248
Loading
/content/journals/10.1146/annurev-food-072023-034248
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error