1932

Abstract

Gellan, an anionic heteropolysaccharide synthesized by , is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan–polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating–cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan–polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034318
2024-06-28
2024-10-16
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034318.html?itemId=/content/journals/10.1146/annurev-food-072023-034318&mimeType=html&fmt=ahah

Literature Cited

  1. Acar H, Kurt A. 2020.. Purified salep glucomannan synergistically interacted with xanthan gum: rheological and textural studies on a novel pH-/thermo-sensitive hydrogel. . Food Hydrocoll. 101::105463
    [Crossref] [Google Scholar]
  2. Alshammari N, Muttakin S, Liu Q, Gouseti O, Alyami J, et al. 2021.. The effect of adding gellan gum to white rice on the starch hydrolysis and glycemic index. . Curr. Dev. Nutr. 5:(Suppl. 2):571
    [Crossref] [Google Scholar]
  3. Andrade Souto-Maior JF, Reis AV, Pedreiroa LN, Cavalcanti OA. 2010.. Phosphated crosslinked pectin as a potential excipient for specific drug delivery: preparation and physicochemical characterization. . Polym. Int. 59:(1):12735
    [Crossref] [Google Scholar]
  4. Bahaji A, Li J, Sánchez-López ÁM, Baroja-Fernández E, Muñoz FJ, et al. 2014.. Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. . Biotechnol. Adv. 32:(1):87106
    [Crossref] [Google Scholar]
  5. Bahnassey YA, Breene WM. 1994.. Rapid visco-analyzer (RVA) pasting profiles of wheat, corn, waxy corn, tapioca and amaranth starches (A. hypochondriacus and A. cruentus) in the presence of konjac flour, gellan, guar, xanthan and locust bean gums. . Starch 46:(4):13441
    [Crossref] [Google Scholar]
  6. Bemiller JN. 2011.. Pasting, paste, and gel properties of starch-hydrocolloid combinations. . Carbohydr. Polym. 86:(2):386423
    [Crossref] [Google Scholar]
  7. Benjamin O, Davidovich Pinhas M, Shpigelman A, Rytwo G. 2018.. Utilization of polysaccharides to modify salt release and texture of a fresh semi hard model cheese. . Food Hydrocoll. 75::95106
    [Crossref] [Google Scholar]
  8. Boni FI, Cury BSF, Ferreira NN, Gremião MPD. 2021.. Ionic cross-linking as a strategy to modulate the properties of oral mucoadhesive microparticles based on polysaccharide blends. . Pharmaceutics 13:(3):407
    [Crossref] [Google Scholar]
  9. Cao L, Lu W, Mata A, Nishinari K, Fang Y. 2020.. Egg-box model-based gelation of alginate and pectin: a review. . Carbohydr. Polym. 242::116389
    [Crossref] [Google Scholar]
  10. Chen T, Wu Y, Liu F, Zhang N, Yan B, et al. 2022.. Unusual gelation behavior of low-acetyl gellan under microwave field: changes in rheological and hydration properties. . Carbohydr. Polym. 296::119930
    [Crossref] [Google Scholar]
  11. Coronato R, Biasutti EAR, Carvalho CWP, Grossmann MVE. 2012.. Gellan gum/cassava starch mixtures in water systems and in milk systems. . Starch 64:(5):35966
    [Crossref] [Google Scholar]
  12. Cropotova J, Tylewicz U, Dellarosa N, Laghi L, Romani S, Dalla Rosa M. 2016.. Effect of freezing on microstructure and degree of syneresis in differently formulated fruit fillings. . Food Chem. 195::7178
    [Crossref] [Google Scholar]
  13. Dafe A, Etemadi H, Dilmaghani A, Mahdavinia GR. 2017.. Investigation of pectin/starch hydrogel as a carrier for oral delivery of probiotic bacteria. . Int. J. Biol. Macromol. 97::53643
    [Crossref] [Google Scholar]
  14. de Oliveira Cardoso VM, Cury BSF, Evangelista RC, Daflon Gremião MP. 2017.. Development and characterization of cross-linked gellan gum and retrograded starch blend hydrogels for drug delivery applications. . J. Mech. Behav. Biomed. Mater. 65::31733
    [Crossref] [Google Scholar]
  15. de Oliveira Cardoso VM, Evangelista RC, Gremião MPD, Cury BSF. 2020.. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. . J. Drug Deliv. Sci. Technol. 55::101445
    [Crossref] [Google Scholar]
  16. de Oliveira Cardoso VM, Kiraly VTR, Boni FI, Ferreira NN, Ferreira LMB, et al. 2021.. Rational design of nanocarriers based on gellan gum/retrograded starch exploiting polyelectrolyte complexation and ionic cross-linking processes: a potential technological platform for oral delivery of bevacizumab. . J. Drug Deliv. Sci. Technol. 66::102765
    [Crossref] [Google Scholar]
  17. Du Y, Sun J, Wang L, Wu C, Gong J, et al. 2019.. Development of antimicrobial packaging materials by incorporation of gallic acid into Ca2+ crosslinking konjac glucomannan/gellan gum films. . Int. J. Biol. Macromol. 137::107685
    [Crossref] [Google Scholar]
  18. Eom H, Chang Y, Lee E, Choi HD, Han J. 2018.. Development of a starch/gum-based edible coating for rice cakes to retard retrogradation during storage. . LWT 97::51622
    [Crossref] [Google Scholar]
  19. Evageliou V, Papastamopoulou K, Frantzeskaki D, Christodoulidou CC. 2015.. Retention of esters by gellan and pectin solutions or their mixtures. . Food Hydrocoll. 51::5459
    [Crossref] [Google Scholar]
  20. Fan Z, Cheng P, Gao Y, Wang D, Jia G, et al. 2022.. Understanding the rheological properties of a novel composite salecan/gellan hydrogels. . Food Hydrocoll. 123::107162
    [Crossref] [Google Scholar]
  21. Fang S, Wang J, Xu X, Zuo X. 2018.. Influence of low acyl and high acyl gellan gums on pasting and rheological properties of rice starch gel. . Food Biophys. 13::11623
    [Crossref] [Google Scholar]
  22. Fernandes FP, Fortes AC, da Cruz Fonseca SG, Breitkreutz J, Ferraz HG. 2018.. Manufacture and characterization of mucoadhesive buccal films based on pectin and gellan gum containing triamcinolone acetonide. . Int. J. Polym. Sci. 2018::2403802
    [Crossref] [Google Scholar]
  23. Fu Z, BeMiller JN. 2017.. Effect of hydrocolloids and salts on retrogradation of native and modified maize starch. . Food Hydrocoll. 69::3648
    [Crossref] [Google Scholar]
  24. Gantar A, da Silva LP, Oliveira JM, Marques AP, Correlo VM, et al. 2014.. Nanoparticulate bioactive-glass-reinforced gellan-gum hydrogels for bone-tissue engineering. . Mater. Sci. Eng. C 43::2736
    [Crossref] [Google Scholar]
  25. Guo Q, Su J, Shu X, Yuan F, Mao L, Gao Y. 2020.. Development of high methoxyl pectin-surfactant-pea protein isolate ternary complexes: fabrication, characterization and delivery of resveratrol. . Food Chem. 321::126706
    [Crossref] [Google Scholar]
  26. Hamcerencu M, Popa M, Riess G, Desbrieres J. 2020.. Chemically modified xanthan and gellan for preparation of biomaterials for ophthalmic applications. . Polym. Int. 69:(11):105157
    [Crossref] [Google Scholar]
  27. Hashemi FS, Taghi Gharibzahedi SM, Hamishehkar H. 2015.. The effect of high methoxyl pectin and gellan including psyllium gel on doogh stability. . RSC Adv. 5:(53):4234653
    [Crossref] [Google Scholar]
  28. Hernández-García E, Vargas M, Chiralt A. 2021.. Thermoprocessed starch-polyester bilayer films as affected by the addition of gellan or xanthan gum. . Food Hydrocoll. 113::106509
    [Crossref] [Google Scholar]
  29. Hofmann M. 2014.. 3D printing gets a boost and opportunities with polymer materials. . ACS Macro Lett. 3:(4):38286
    [Crossref] [Google Scholar]
  30. Hu X, Karthik P, Chen J. 2021.. Enhanced oral oil release and mouthfeel perception of starch emulsion gels. . Food Res. Int. 144::110356
    [Crossref] [Google Scholar]
  31. Huang M, Kennedy JF, Li B, Xu X, Xie BJ. 2007.. Characters of rice starch gel modified by gellan, carrageenan, and glucomannan: a texture profile analysis study. . Carbohydr. Polym. 69:(3):41118
    [Crossref] [Google Scholar]
  32. Kalia S, Roy Choudhury A. 2019.. Synthesis and rheological studies of a novel composite hydrogel of xanthan, gellan and pullulan. . Int. J. Biol. Macromol. 137::47582
    [Crossref] [Google Scholar]
  33. Kang D, Zhang H, Nitta Y, Fang Y, Nishinari K. 2015.. Gellan. . In Polysaccharides: Bioactivity and Biotechnology, ed. KG Ramawat, JM Mérillon , pp. 162782 Cham, Switz:.: Springer
    [Google Scholar]
  34. Kanyuck KM, Norton-Welch AB, Mills TB, Norton IT. 2021.. Structural characterization of interpenetrating network formation of high acyl gellan and maltodextrin gels. . Food Hydrocoll. 112:(3):106295
    [Crossref] [Google Scholar]
  35. Kiani H, Mousavi ME, Razavi H, Morris ER. 2010.. Effect of gellan, alone and in combination with high-methoxy pectin, on the structure and stability of doogh, a yogurt-based Iranian drink. . Food Hydrocoll. 24:(8):74454
    [Crossref] [Google Scholar]
  36. Kim SRB, Choi YG, Kim JY, Lim ST. 2015.. Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. . LWT Food Sci. Technol. 64:(1):47582
    [Crossref] [Google Scholar]
  37. Koyyada A, Orsu P. 2021.. Natural gum polysaccharides as efficient tissue engineering and drug delivery biopolymers. . J. Drug Deliv. Sci. Technol. 63::102431
    [Crossref] [Google Scholar]
  38. Kozlowska J, Prus-Walendziak W, Stachowiak N, Bajek A, Kazmierski L, Tylkowski B. 2020.. Modification of collagen/gelatin/hydroxyethyl cellulose-based materials by addition of herbal extract-loaded microspheres made from gellan gum and xanthan gum. . Materials 13:(16):3507
    [Crossref] [Google Scholar]
  39. Kulkarni RV, Nagathan VV, Biradar PR, Naikawadi AA. 2013.. Simvastatin loaded composite polyspheres of gellan gum and carrageenan: in vitro and in vivo evaluation. . Int. J. Biol. Macromol. 57::23844
    [Crossref] [Google Scholar]
  40. Kumar A, Rao KM, Han SS. 2018.. Application of xanthan gum as polysaccharide in tissue engineering: a review. . Carbohydr. Polym. 180::12844
    [Crossref] [Google Scholar]
  41. Kumar S, Kaur P, Bernela M, Rani R, Thakur R. 2016.. Ketoconazole encapsulated in chitosan-gellan gum nanocomplexes exhibits prolonged antifungal activity. . Int. J. Biol. Macromol. 93::98894
    [Crossref] [Google Scholar]
  42. Kuo SM, Chang SJ, Wang HY, Tang SC, Yang SW. 2014.. Evaluation of the ability of xanthan gum/gellan gum/hyaluronan hydrogel membranes to prevent the adhesion of postrepaired tendons. . Carbohydr. Polym. 114::23037
    [Crossref] [Google Scholar]
  43. Landreau M, Duthoit F, Claeys-Bruno M, Vandenabeele-Trambouze O, Aubry T, et al. 2016.. Entrapment of anaerobic thermophilic and hyperthermophilic marine micro-organisms in a gellan/xanthan matrix. . J. Appl. Microbiol. 120:(6):153141
    [Crossref] [Google Scholar]
  44. Lau MH, Tang J, Paulson AT. 2000.. Texture profile and turbidity of gellan/gelatin mixed gels. . Food Res. Int. 33:(8):66571
    [Crossref] [Google Scholar]
  45. Lee KY, Shim J, Bae IY, Cha J, Park CS, Lee HG. 2003.. Characterization of gellan/gelatin mixed solutions and gels. . LWT Food Sci. Technol. 36:(8):795802
    [Crossref] [Google Scholar]
  46. Lee MH, Baek MH, Cha DS, Park HJ, Lim ST. 2002.. Freeze-thaw stabilization of sweet potato starch gel by polysaccharide gums. . Food Hydrocoll. 16:(4):34552
    [Crossref] [Google Scholar]
  47. Lee MW, Tsai HF, Wen SM, Huang CH. 2012.. Photocrosslinkable gellan gum film as an anti-adhesion barrier. . Carbohydr. Polym. 90:(2):113238
    [Crossref] [Google Scholar]
  48. Lee S, Choi JH, Park A, Rim M, Youn J, et al. 2020.. Advanced gellan gum-based glycol chitosan hydrogel for cartilage tissue engineering biomaterial. . Int. J. Biol. Macromol. Struct. Funct. Interact. 158::45260
    [Crossref] [Google Scholar]
  49. Li D, Li J, Dong H, Li X, Zhang J, et al. 2021.. Pectin in biomedical and drug delivery applications: a review. . Int. J. Biol. Macromol. 185::4965
    [Crossref] [Google Scholar]
  50. Li W, Tian X, Wang P, Saleh ASM, Luo Q, et al. 2016.. Recrystallization characteristics of high hydrostatic pressure gelatinized normal and waxy corn starch. . Int. J. Biol. Macromol. 83::17177
    [Crossref] [Google Scholar]
  51. Li X, Guo C, Li P, Sun J, Yang X, Guo Y. 2021.. Structural characteristics of gluconic acid δ-lactone induced casein gels as regulated by gellan gum incorporation. . Food Hydrocoll. 120::106897
    [Crossref] [Google Scholar]
  52. Liang L, Lin X, Liu Y, Sun S, Chu H, et al. 2020.. Carboxymethyl konjac glucomannan mechanically reinforcing gellan gum microspheres for uranium removal. . Int. J. Biol. Macromol. 145::53546
    [Crossref] [Google Scholar]
  53. Lin KW, Huang HY. 2003.. Konjac/gellan gum mixed gels improve the quality of reduced-fat frankfurters. . Meat Sci. 65:(2):74955
    [Crossref] [Google Scholar]
  54. Liu L, Wang B, Gao Y, Bai T. 2013.. Chitosan fibers enhanced gellan gum hydrogels with superior mechanical properties and water-holding capacity. . Carbohydr. Polym. 97:(1):15258
    [Crossref] [Google Scholar]
  55. Ma YS, Pan Y, Xie QT, Li XM, Zhang B, Chen HQ. 2019.. Evaluation studies on effects of pectin with different concentrations on the pasting, rheological and digestibility properties of corn starch. . Food Chem. 274::31923
    [Crossref] [Google Scholar]
  56. Mahmood K, Kamilah H, Shang PL, Sulaiman S, Ariffin F, Alias AK. 2017.. A review: interaction of starch/non-starch hydrocolloid blending and the recent food applications. . Food Biosci. 19::11020
    [Crossref] [Google Scholar]
  57. Maiti S, Ranjit S, Mondol R, Ray S, Sa B. 2011.. Al+3 ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide. . Carbohydr. Polym. 85:(1):16472
    [Crossref] [Google Scholar]
  58. Mancebo CM, San Miguel , Martínez MM, Gómez M. 2015.. Optimisation of rheological properties of gluten-free doughs with HPMC, psyllium and different levels of water. . J. Cereal Sci. 61::815
    [Crossref] [Google Scholar]
  59. Marta H, Cahyana Y, Djali M. 2020.. The effect of starch-hydrocolloid interaction on starch digestibility, pasting and physicochemical properties: a review. . IOP Conf. Ser. Earth Environ. Sci. 443:(1):102084
    [Crossref] [Google Scholar]
  60. Meneguin AB, Beyssac E, Garrait G, Hsein H, Cury BSF. 2018.. Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: a technological platform for protection against enzymatic degradation and improvement of intestinal permeability. . Eur. J. Pharm. Biopharm. 123::8494
    [Crossref] [Google Scholar]
  61. Mettu S, Hathi Z, Athukoralalage S, Priya A, Lam TN, et al. 2021.. Perspective on constructing cellulose-hydrogel-based gut-like bioreactors for growth and delivery of multiple-strain probiotic bacteria. . J. Agric. Food Chem. 69:(17):494659
    [Crossref] [Google Scholar]
  62. Miyoshi E, Takaya T, Nishinari K. 1998.. Effects of glucose, mannose and konjac glucomannan on the gel-sol transition in gellan gum aqueous solutions by rheology and DSC. . Polym. Gels Netw. 6:(3–4):27390
    [Crossref] [Google Scholar]
  63. Miyoshi E, Takaya T, Williams PA, Nishinari K. 1997.. Rheological and DSC studies of mixtures of gellan gum and konjac glucomannan. . Macromol. Symp. 120::27180
    [Crossref] [Google Scholar]
  64. Muadklay J, Charoenrein S. 2008.. Effects of hydrocolloids and freezing rates on freeze-thaw stability of tapioca starch gels. . Food Hydrocoll. 22:(7):126872
    [Crossref] [Google Scholar]
  65. Muthukumar T, Song JE, Khang G. 2019.. Biological role of gellan gum in improving scaffold drug delivery, cell adhesion properties for tissue engineering applications. . Molecules 24:(24):4514
    [Crossref] [Google Scholar]
  66. Nakauma M, Funami T, Noda S, Ishihara S, Al-Assaf S, et al. 2008.. Comparison of sugar beet pectin, soybean soluble polysaccharide, and gum arabic as food emulsifiers. 1. Effect of concentration, pH, and salts on the emulsifying properties. . Food Hydrocoll. 22:(7):125467
    [Crossref] [Google Scholar]
  67. Nayak AK, Pal D, Santra K. 2014.. Artocarpus heterophyllus L. seed starch-blended gellan gum mucoadhesive beads of metformin HCl. . Int. J. Biol. Macromol. 65::32939
    [Crossref] [Google Scholar]
  68. Nishinari K, Miyoshi E, Takaya T, Williams PA. 1996.. Rheological and DSC studies on the interaction between gellan gum and konjac glucomannan. . Carbohydr. Polym. 30:(2–3):193207
    [Crossref] [Google Scholar]
  69. Nishinari K, Takahashi R. 2003.. Interaction in polysaccharide solutions and gels. . Curr. Opin. Colloid Interface Sci. 8:(4–5):396400
    [Crossref] [Google Scholar]
  70. Nižić L, Ugrina I, Špoljarić D, Saršon V, Kučuk MS, et al. 2019.. Innovative sprayable in situ gelling fluticasone suspension: development and optimization of nasal deposition. . Int. J. Pharm. 563::44556
    [Crossref] [Google Scholar]
  71. Nurakhmetova Z, Gussenov I, Aseyev V, Sigitov V, Kudaibergenov S. 2018.. Application of sol-gel transition of gellan and xanthan for enhanced oil recovery and as drilling fluids. . J. Chem. Technol. Metall. 53:(1):6878
    [Google Scholar]
  72. Oliveira JT, Martins L, Picciochi R, Malafaya PB, Sousa RA, et al. 2010.. Gellan gum: a new biomaterial for cartilage tissue engineering applications. . J. Biomed. Mater. Res. A 93:(3):85263
    [Crossref] [Google Scholar]
  73. Patil P, Chavanke D, Wagh MP. 2012.. A review on ionotropic gelation method: novel approach for controlled gastroretentive gelispheres. . Int. J. Pharm. Pharm. Sci. 4:(4):2732
    [Google Scholar]
  74. Pérez-Arauz ÁO, Rodríguez-Hernández AI, del Rocío López-Cuellar M, Martínez-Juárez VM, Chavarría-Hernández N. 2021.. Films based on pectin, gellan, EDTA, and bacteriocin-like compounds produced by Streptococcus infantarius for the bacterial control in fish packaging. . J. Food Process. Preserv. 45:(1):e15006
    [Crossref] [Google Scholar]
  75. Prezotti FG, Boni FI, Ferreira NN, de Souza e Silva D, Campana-Filho SP, et al. 2018.. Gellan gum/pectin beads are safe and efficient for the targeted colonic delivery of resveratrol. . Polymers 10:(1):50
    [Crossref] [Google Scholar]
  76. Prezotti FG, Cury BSF, Evangelista RC. 2014.. Mucoadhesive beads of gellan gum/pectin intended to controlled delivery of drugs. . Carbohydr. Polym. 113::28695
    [Crossref] [Google Scholar]
  77. Prezotti FG, Siedle I, Boni FI, Chorilli M, Müller I, Cury BSF. 2020.. Mucoadhesive films based on gellan gum/pectin blends as potential platform for buccal drug delivery. . Pharm. Dev. Technol. 25:(2):15967
    [Crossref] [Google Scholar]
  78. Ramburrun P, Kumar P, Choonara YE, du Toit LC, Pillay V. 2017.. Design and characterization of neurodurable gellan-xanthan pH-responsive hydrogels for controlled drug delivery. . Expert Opin. Drug Deliv. 14:(3):291306
    [Crossref] [Google Scholar]
  79. Ramu Ganesan A, Shanmugam M, Bhat R. 2018.. Producing novel edible films from semi refined carrageenan (SRC) and ulvan polysaccharides for potential food applications. . Int. J. Biol. Macromol. 112::116470
    [Crossref] [Google Scholar]
  80. Rivera-Hernández L, Chavarría-Hernández N, del Rocíp López Cuellar M, Martínez-Juárez VM, Rodríguez-Hernández AI. 2021.. Pectin-gellan films intended for active food packaging: release kinetics of nisin and physico-mechanical characterization. . J. Food Sci. Technol. 58:(8):297381
    [Crossref] [Google Scholar]
  81. Rodríguez-Hernández AI, Durand S, Garnier C, Tecante A, Doublier JL. 2006.. Rheology-structure properties of waxy maize starch-gellan mixtures. . Food Hydrocoll. 20:(8):122330
    [Crossref] [Google Scholar]
  82. Rodríguez-Hernández AI, Tecante A. 1999.. Dynamic viscoelastic behavior of gellan-ι-carrageenan and gellan-xanthan gels. . Food Hydrocoll. 13:(1):5964
    [Crossref] [Google Scholar]
  83. Sapper M, Bonet M, Chiralt A. 2019a.. Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. . LWT 116::108574
    [Crossref] [Google Scholar]
  84. Sapper M, Palou L, Pérez-Gago MB, Chiralt A. 2019b.. Antifungal starch-gellan edible coatings with thyme essential oil for the postharvest preservation of apple and persimmon. . Coatings 9:(5):333
    [Crossref] [Google Scholar]
  85. Sapper M, Talens P, Chiralt A. 2019c.. Improving functional properties of cassava starch-based films by incorporating xanthan, gellan, or pullulan gums. . Int. J. Polym. Sci. 2019:(6):5367164
    [Google Scholar]
  86. Sapper M, Wilcaso P, Santamarina MP, Roselló J, Chiralt A. 2018.. Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. . Food Control 92::50515
    [Crossref] [Google Scholar]
  87. Schiavi A, Cuccaro R, Troia A. 2016.. Strain-rate and temperature dependent material properties of agar and gellan gum used in biomedical applications. . J. Mech. Behav. Biomed. Mater. 53::11930
    [Crossref] [Google Scholar]
  88. Sehgal RR, Roohani-Esfahani SI, Zreiqat H, Banerjee R. 2017.. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. . J. Tissue Eng. Regen. Med. 11:(4):1195211
    [Crossref] [Google Scholar]
  89. Song JY, Kim YC, Shin M. 2008.. Textural properties and structures of wheat and maize starch-gum mixed gels during storage. . Food Sci. Biotechnol. 17:(1):2025
    [Google Scholar]
  90. Song JY, Kwon JY, Choi J, Kim YC, Shin M. 2006.. Pasting properties of non-waxy rice starch-hydrocolloid mixtures. . Starch 58:(5):22330
    [Crossref] [Google Scholar]
  91. Song R, Huang M, Li B, Zhou B. 2012.. The effect of three gums on the retrogradation of indica rice starch. . Nutrients 4:(6):42535
    [Crossref] [Google Scholar]
  92. Souza Almeida F, Guedes Silva KC, Kawazoe Sato AC. 2021.. Polysaccharide-peptides-based microgels: characterization, in vitro digestibility, and rheological behavior of their suspensions. . Food Biophys. 16:(4):44050
    [Crossref] [Google Scholar]
  93. Ta LP, Bujna E, Antal O, Ladányi M, Juhász R, et al. 2021.. Effects of various polysaccharides (alginate, carrageenan, gums, chitosan) and their combination with prebiotic saccharides (resistant starch, lactosucrose, lactulose) on the encapsulation of probiotic bacteria Lactobacillus casei 01 strain. . Int. J. Biol. Macromol. 183::113644
    [Crossref] [Google Scholar]
  94. Tan TC, Foo WT, Liong MT, Easa AM. 2014.. Comparative assessment of rheological properties of gelatin or gellan in maize starch-egg white composite gels. . J. King Saud Univ. Sci. 26:(4):31122
    [Crossref] [Google Scholar]
  95. Tan TC, Foo WT, Liong MT, Easa AM. 2015a.. Comparative assessment of dynamic oscillatory measurements on network development and mechanical spectra of gelatine or gellan in maize starch-egg white composite gels. . Food Hydrocoll. 45::93101
    [Crossref] [Google Scholar]
  96. Tan TC, Foo WT, Liong MT, Easa AM. 2015b.. Comparative assessment of textural properties and microstructure of composite gels prepared from gelatine or gellan with maize starch and/or egg white. . Int. J. Food Sci. Technol. 50:(3):592604
    [Crossref] [Google Scholar]
  97. Tester RF, Karkalas J, Qi X. 2004.. Starch—composition, fine structure and architecture. . J. Cereal Sci. 39:(2):15165
    [Crossref] [Google Scholar]
  98. Trejo-González L, Rodríguez-Hernández AI, López-Cuellar MDR, Martínez-Juárez VM, Chavarría-Hernández N. 2018.. Antimicrobial pectin-gellan films: effects on three foodborne pathogens in a meat medium, and selected physical-mechanical properties. . CYTA J. Food 16:(1):46976
    [Crossref] [Google Scholar]
  99. Tu W, Shi W, Li H, Wang Y, Qiao D, et al. 2022.. Xanthan gum inclusion optimizes the sol-gel and mechanical properties of agar/konjac glucomannan system for designing core-shell structural capsules. . Food Hydrocoll. 122::107101
    [Crossref] [Google Scholar]
  100. Varela MS, Navarro AS, Yamul DK. 2016.. Effect of hydrocolloids on the properties of wheat/potato starch mixtures. . Starch 68:(7–8):75361
    [Crossref] [Google Scholar]
  101. Wang F, Wen Y, Bai T. 2016.. The composite hydrogels of polyvinyl alcohol-gellan gum-Ca2+ with improved network structure and mechanical property. . Mater. Sci. Eng. C 69::26875
    [Crossref] [Google Scholar]
  102. Wang P, Luo Z, Xiao Z. 2021.. Preparation, physicochemical characterization and in vitro release behavior of resveratrol-loaded oxidized gellan gum/resistant starch hydrogel beads. . Carbohydr. Polym. 260::117794
    [Crossref] [Google Scholar]
  103. Xiao G, Zhu Y, Wang L, You Q, Huo P, You Y. 2011.. Production and storage of edible film using gellan gum. . Procedia Environ. Sci. 8::75663
    [Crossref] [Google Scholar]
  104. Xie W, Du Y, Yuan S, Pang J. 2021.. Dihydromyricetin incorporated active films based on konjac glucomannan and gellan gum. . Int. J. Biol. Macromol. 180::38591
    [Crossref] [Google Scholar]
  105. Xing J, Peng X, Li A, Chen M, Li J. 2021.. Gellan gum/alginate-based Ca-enriched acellular bilayer hydrogel with robust interface bonding for effective osteochondral repair. . Carbohydr. Polym. 270::118382
    [Crossref] [Google Scholar]
  106. Xu X, Li B, Kennedy JF, Xie BJ, Huang M. 2007.. Characterization of konjac glucomannan-gellan gum blend films and their suitability for release of nisin incorporated therein. . Carbohydr. Polym. 70:(2):19297
    [Crossref] [Google Scholar]
  107. Xu XJ, Li YH, Fang S, Chen J, Yuan Y, et al. 2018.. Effects of different acyl gellan gums on the rheological properties and colloidal stability of blueberry cloudy juice. . J. Food Sci. 83:(5):121520
    [Crossref] [Google Scholar]
  108. Yan B, Zhao Z, Zhang N, Ruan H, Yu X, et al. 2022.. 3D food printing curing technology based on gellan gum. . J. Food Eng. 327::111036
    [Crossref] [Google Scholar]
  109. Yang D, Yuan Y, Wang L, Wang X, Mu R, et al. 2017.. A review on konjac glucomannan gels: microstructure and application. . Int. J. Mol. Sci. 18:(11):2250
    [Crossref] [Google Scholar]
  110. Yang X, Hou Y, Gong T, Sun L, Xue J, Guo Y. 2019.. Concentration-dependent rheological behavior and gelation mechanism of high acyl gellan aqueous solutions. . Int. J. Biol. Macromol. 131::95970
    [Crossref] [Google Scholar]
  111. Yang Z, Peng H, Wang W, Liu T. 2010.. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. . J. Appl. Polym. Sci. 116:(5):265867
    [Crossref] [Google Scholar]
  112. Yuan Y, Xiao J, Zhang P, Ma M, Wang D, Xu Y. 2021.. Development of pH-driven zein/tea saponin composite nanoparticles for encapsulation and oral delivery of curcumin. . Food Chem. 364::130401
    [Crossref] [Google Scholar]
  113. Zhang L, Zheng T, Wu L, Han Q, Chen S, et al. 2021.. Fabrication and characterization of 3D-printed gellan gum/starch composite scaffold for Schwann cells growth. . Nanotechnol. Rev. 10:(1):5061
    [Crossref] [Google Scholar]
  114. Zhang N, Li X, Ye J, Yang Y, Huang Y, et al. 2020.. Effect of gellan gum and xanthan gum synergistic interactions and plasticizers on physical properties of plant-based enteric polymer films. . Polymers 12:(1):121
    [Crossref] [Google Scholar]
  115. Zheng M, Su H, You Q, Zeng S, Zheng B, et al. 2019a.. An insight into the retrogradation behaviors and molecular structures of lotus seed starch-hydrocolloid blends. . Food Chem. 295::54855
    [Crossref] [Google Scholar]
  116. Zheng M, You Q, Lin Y, Lan F, Luo M, et al. 2019b.. Effect of guar gum on the physicochemical properties and in vitro digestibility of lotus seed starch. . Food Chem. 272:(15):28691
    [Crossref] [Google Scholar]
  117. Zhu F. 2021.. Polysaccharide based films and coatings for food packaging: effect of added polyphenols. . Food Chem. 359::129871
    [Crossref] [Google Scholar]
  118. Zia KM, Tabasum S, Khan MF, Akram N, Akhter N, et al. 2018.. Recent trends on gellan gum blends with natural and synthetic polymers: a review. . Int. J. Biol. Macromol. 109::106887
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034318
Loading
/content/journals/10.1146/annurev-food-072023-034318
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error