1932

Abstract

Our food production relies on the input of fossil fuels to create the high variety of different food products currently on the market. This reliance has caused challenges due to the inherent emissions generated by the combustion of fossil fuels and the dependence of many countries on only a small number of fossil fuel suppliers. This review aims to look at these challenges and discusses several mitigation strategies to reduce the usage of fossil fuels in the food processing part of the food value chain. In this specific step, there is substantial potential to change the type of energy that is used to transform the raw materials into an edible food matrix because the operations mainly include processes that rely often on natural gas for heating and electricity that is used for machine operation and cooling. Both energy sources can be replaced by clean and renewable alternatives, especially with alternative heating options such as geothermal heating and electrical boilers being installed and offered more frequently. However, short-term solutions like energy reduction through process optimization and the integration of smart sensors can also help to reduce the overall energy use in the short term. These strategies are outlined in this review along with in-depth analyses of the types of energy used in food processing, the available clean and renewable energy technologies that do not rely on fossil fuels, and the current hurdles and limitations. It becomes evident that most of the required technologies are already available on the market and that considerable investments are necessary to implement a comprehensive energy strategy that does not rely on fossil fuels in food manufacturing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034332
2024-06-28
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034332.html?itemId=/content/journals/10.1146/annurev-food-072023-034332&mimeType=html&fmt=ahah

Literature Cited

  1. ACER. 2021.. Transporting pure hydrogen by repurposing existing gas infrastructure: overview of existing studies and reflections on the conditions for repurposing. Rep. , ACER, Ljubljana, Slov.: https://acer.europa.eu/Official_documents/Acts_of_the_Agency/Publication/Transporting%20Pure%20Hydrogen%20by%20Repurposing%20Existing%20Gas%20Infrastructure_Overview%20of%20studies.pdf
    [Google Scholar]
  2. Almena A, Fryer PJ, Bakalis S, Lopez-Quiroga E. 2019.. Centralized and distributed food manufacture: a modeling platform for technological, environmental and economic assessment at different production scales. . Sustain. Prod. Consum. 19::18193
    [Crossref] [Google Scholar]
  3. Alvarez-Risco A, Del-Aguila-Arcentales S, Rosen MA. 2022.. Supply chain and circular economy. . In Towards a Circular Economy: Transdisciplinary Approach for Business, ed. A Alvarez-Risco, MA Rosen, S Del-Aguila-Arcentales , pp. 15167. Cham, Switz:.: Springer
    [Google Scholar]
  4. Ambikapathi R, Schneider KR, Davis B, Herrero M, Winters P, Fanzo JC. 2022.. Global food systems transitions have enabled affordable diets but had less favourable outcomes for nutrition, environmental health, inclusion and equity. . Nat. Food 3:(9):76479
    [Crossref] [Google Scholar]
  5. An N, Li D, Wang L, Wang Y. 2022.. Factors affecting energy efficiency of microwave drying of foods: an updated understanding. . Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2022.2124947
    [Google Scholar]
  6. Arpagaus C, Bless F, Uhlmann M, Schiffmann J, Bertsch SS. 2018.. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. . Energy 152::9851010
    [Crossref] [Google Scholar]
  7. Avila-Sierra A, Vicaria JM, Lechuga M, Martínez-Gallegos JF, Olivares-Arias V, et al. 2021.. Insights into the optimisation of the clean-in-place technique: cleaning, disinfection, and reduced environmental impact using ozone-based formulations. . Food Bioprod. Process. 129::12433
    [Crossref] [Google Scholar]
  8. Babatunde OM, Denwigwe IH, Adedoja OS, Babatunde DE, Gbadamosi SL. 2019.. Harnessing renewable energy for sustainable agricultural applications. . Int. J. Energy Econ. Policy 9:(5):30815
    [Crossref] [Google Scholar]
  9. Baldé H, Wagner-Riddle C, MacDonald D, VanderZaag A. 2022.. Fugitive methane emissions from two agricultural biogas plants. . Waste Manag. 151::12330
    [Crossref] [Google Scholar]
  10. Barma MC, Saidur R, Rahman SMA, Allouhi A, Akash BA, Sait SM. 2017.. A review on boilers energy use, energy savings, and emissions reductions. . Renew. Sustain. Energy Rev. 79::97083
    [Crossref] [Google Scholar]
  11. Beckers KF, Kolker A, Pauling H, McTigue JD, Kesseli D. 2021.. Evaluating the feasibility of geothermal deep direct-use in the United States. . Energy Convers. Manag. 243::114335
    [Crossref] [Google Scholar]
  12. Beringer T, Lucht W, Schaphoff S. 2011.. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. . GCB Bioenergy 3:(4):299312
    [Crossref] [Google Scholar]
  13. Bilotto F, Christie-Whitehead KM, Malcolm B, Harrison MT. 2023.. Carbon, cash, cattle and the climate crisis. . Sustain. Sci. 18::1795811
    [Crossref] [Google Scholar]
  14. Boakye-Yiadom KA, Duca D, Foppa Pedretti E, Ilari A. 2021.. Environmental performance of chocolate produced in Ghana using life cycle assessment. . Sustainability 13:(11):6155
    [Crossref] [Google Scholar]
  15. Bohlmann HR, Horridge JM, Inglesi-Lotz R, Roos EL, Stander L. 2019.. Regional employment and economic growth effects of South Africa's transition to low-carbon energy supply mix. . Energy Policy 128::83037
    [Crossref] [Google Scholar]
  16. Branca TA, Fornai B, Colla V, Pistelli MI, Faraci EL, et al. 2021.. Industrial symbiosis and energy efficiency in European process industries: a review. . Sustainability 13:(16):9159
    [Crossref] [Google Scholar]
  17. Brown TW, Bischof-Niemz T, Blok K, Breyer C, Lund H, Mathiesen BV. 2018.. Response to “Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems. .” Renew. Sustain. Energy Rev. 92::83447
    [Crossref] [Google Scholar]
  18. Caillat S, Vakkilainen E. 2013.. Large-scale biomass combustion plants: an overview. . In Biomass Combustion Science, Technology and Engineering, ed. L Rosendahl , pp. 189224. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  19. Canning P, Rehkamp S, Hitaj C, Peters C. 2020.. Resource requirements of food demand in the United States. Econ. Res. Serv. Rep. 273 , USDA, Washington, DC:. https://www.ers.usda.gov/webdocs/publications/98401/err-273.pdf?v=2086.9
    [Google Scholar]
  20. Canning P, Rehkamp S, Waters A, Etemadnia H. 2017.. The role of fossil fuels in the U.S. food system and the American diet. Econ. Res. Serv. Rep. 224 , USDA, Washington, DC:. https://www.ers.usda.gov/webdocs/publications/82194/err-224.pdf
    [Google Scholar]
  21. Chen S, Zhang Q, Li H, Mclellan B, Zhang T, Tan Z. 2019.. Investment decision on shallow geothermal heating & cooling based on compound options model: a case study of China. . Appl. Energy 254::113655
    [Crossref] [Google Scholar]
  22. Chua KJ, Chou SK, Yang WM. 2010.. Advances in heat pump systems: a review. . Appl. Energy 87:(12):361124
    [Crossref] [Google Scholar]
  23. Cleaver-Brooks. 2023.. Model MVE electrode boiler. . Cleaver-Brooks. https://cleaverbrooks.com/Product/electrode
    [Google Scholar]
  24. Compton M, Willis S, Rezaie B, Humes K. 2018.. Food processing industry energy and water consumption in the Pacific Northwest. . Innov. Food Sci. Emerg. Technol. 47::37183
    [Crossref] [Google Scholar]
  25. Correa-Baena J-P, Saliba M, Buonassisi T, Grätzel M, Abate A, et al. 2017.. Promises and challenges of perovskite solar cells. . Science 358:(6364):73944
    [Crossref] [Google Scholar]
  26. Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. 2021.. Food systems are responsible for a third of global anthropogenic GHG emissions. . Nat. Food 2:(3):198209
    [Crossref] [Google Scholar]
  27. Das J, Ravishankar H, Lens PNL. 2022.. Biological biogas purification: recent developments, challenges and future prospects. . J. Environ. Manag. 304::114198
    [Crossref] [Google Scholar]
  28. Denholm P, Arent DJ, Baldwin SF, Bilello DE, Brinkman GL, et al. 2021.. The challenges of achieving a 100% renewable electricity system in the United States. . Joule 5:(6):133152
    [Crossref] [Google Scholar]
  29. Denholm P, Mai T, Kenyon R, Kroposki B, O'Malley M. 2020.. Inertia and the power grid: a guide without the spin. Tech. Rep. NREL/TP-6A20-73856 , Natl. Renew. Energy Lab., Golden, CO:. https://www.nrel.gov/docs/fy20osti/73856.pdf
    [Google Scholar]
  30. Denney D. 2013.. Thin-oil-column extended-reach drilling at Sakhalin. . J. Pet. Technol. 65:(5):13135
    [Crossref] [Google Scholar]
  31. Dep. Energy. 2017.. Biomass boiler reduces natural gas consumption at food processing facility. Rep. , Dep. Energy, Washington, DC:. https://www.energy.gov/sites/prod/files/2017/05/f34/0489-Biomass%20Boiler-040717.pdf
    [Google Scholar]
  32. Dep. Energy. 2020.. Electricity storage technology review. Rep. , Dep. Energy, Washington, DC:. https://www.energy.gov/sites/default/files/2020/10/f79/Electricity%20Storage%20Technologies%20%20Report.pdf
    [Google Scholar]
  33. Dep. Energy. 2021.. Energy-efficient cooking for winter. . Energy.gov. https://www.energy.gov/energysaver/articles/energy-efficient-cooking-winter
    [Google Scholar]
  34. Dep. Environ. Qual. 2021.. Calculating greenhouse gas emissions from steam production. Rep. , State Or., Salem, OR:
    [Google Scholar]
  35. Dodds PE, Staffell I, Hawkes AD, Li F, Grünewald P, et al. 2015.. Hydrogen and fuel cell technologies for heating: a review. . Int. J. Hydrog. Energy 40:(5):206583
    [Crossref] [Google Scholar]
  36. Dumont M, Wang R, Wenzke D, Blok K, Heijungs R. 2023.. The techno-economic integrability of high-temperature heat pumps for decarbonizing process heat in the food and beverages industry. . Resour. Conserv. Recycl. 188::106605
    [Crossref] [Google Scholar]
  37. Durán-Sandoval D, Durán-Romero G, Uleri F. 2023.. How much food loss and waste do countries with problems with food security generate?. Agriculture 13:(5):966
    [Crossref] [Google Scholar]
  38. Dutilh CE, Kramer KJ. 2000.. Energy consumption in the food chain: comparing alternative options in food production and consumption. . Ambio 29:(2):98101
    [Crossref] [Google Scholar]
  39. Ecolab. 2023.. ECOLAB3D™ IIoT platform: intelligent water performance insights. . Ecolab. https://www.ecolab.com/nalco-water/expertise-and-innovation/ecolab3d-iiot-platform
    [Google Scholar]
  40. Eide MH, Homleid JP, Mattsson B. 2003.. Life cycle assessment (LCA) of cleaning-in-place processes in dairies. . LWT 36:(3):30314
    [Crossref] [Google Scholar]
  41. Emmanouilidis C, Bakalis S. 2020.. Digital technology enablers for resilient and customer driven food value chains. . In Advances in Production Management Systems. Towards Smart and Digital Manufacturing, ed. B Lalic, V Majstorovic, U Marjanovic, G von Cieminski, D Romero , pp. 64957. Cham, Switz.:: Springer
    [Google Scholar]
  42. Enerdata. 2021.. Denmark energy information. . Enerdata. https://www.enerdata.net/estore/energy-market/denmark/
    [Google Scholar]
  43. Energy Inf. Admin. 2022a.. How much carbon dioxide is produced per kilowatthour of U.S. electricity generation?. US Energy Information Administration. https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
    [Google Scholar]
  44. Energy Inf. Admin. 2022b.. How much electricity is lost in electricity transmission and distribution in the United States?. US Energy Information Administration. https://www.eia.gov/tools/faqs/faq.php?id=105&t=3
    [Google Scholar]
  45. Energy Inf. Admin. 2022c.. Levelized costs of new generation resources in the annual energy outlook 2022. Rep. , Energy Inf. Admin., Washington, DC:. https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf
    [Google Scholar]
  46. Energy Inf. Admin. 2023.. What is U.S. electricity generation by energy source?. US Energy Information Administration. https://www.eia.gov/tools/faqs/faq.php?id=427&t=3
    [Google Scholar]
  47. Environ. Prot. Agency. 2022.. Understanding global warming potentials. . EPA. https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
    [Google Scholar]
  48. Eur. Comm. 2020.. Energy consumption in households. . European Commission. https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_consumption_in_households
    [Google Scholar]
  49. Eur. Heat Pump Assoc. 2019.. Large scale heat pumps in Europe: vol. 2. Rep. , Eur. Heat Pump Assoc., Brussels, Belg:. https://www.ehpa.org/wp-content/uploads/2022/11/Large-heat-pumps-in-Europe-and-industrial-uses_2020.pdf
    [Google Scholar]
  50. Eur. Sci. Found. 2009.. European food systems in a changing world. Rep. , Eur. Sci. Found., Strasbourg, Fr:. http://archives.esf.org/fileadmin/Public_documents/Publications/food.pdf
    [Google Scholar]
  51. Fisher S, Knapp D. 2012.. Research, development and demonstration of bio-mass boiler for food industry. Tech. Rep. , Burns McDonnell, Inc., Kansas City, MO:
    [Google Scholar]
  52. Fryer PJ, Bakalis S, Lopez-Quiroga E. 2022.. Mapping water use in food manufacture: trends and reduction opportunities. Paper presented at the 36th European Federation of Food Science and Technology International Conference, Dublin:
    [Google Scholar]
  53. Fusi A, Bacenetti J, Fiala M, Azapagic A. 2016.. Life cycle environmental impacts of electricity from biogas produced by anaerobic digestion. . Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2016.00026
    [Google Scholar]
  54. García-Maraver A, Popov V, Zamorano M. 2011.. A review of European standards for pellet quality. . Renew. Energy 36:(12):353740
    [Crossref] [Google Scholar]
  55. Gavahian M, Majzoobi M, Farahnaky A. 2022.. Editorial overview on emerging thermal food processing technologies. . Foods 11:(11):1543
    [Crossref] [Google Scholar]
  56. Ghafghazi S, Sowlati T, Sokhansanj S, Bi X, Melin S. 2011.. Life cycle assessment of base-load heat sources for district heating system options. . Int. J. Life Cycle Assess. 16:(3):21223
    [Crossref] [Google Scholar]
  57. Gorjian S, Fakhraei O, Gorjian A, Sharafkhani A, Aziznejad A. 2022.. Sustainable food and agriculture: employment of renewable energy technologies. . Curr. Robot Rep. 3:(3):15363
    [Crossref] [Google Scholar]
  58. Grossmann L, Hinrichs J, Weiss J. 2022.. Technologies for sustainable heat generation in food processing. . Compr. Rev. Food Sci. Food Saf. 21:(6):49715003
    [Crossref] [Google Scholar]
  59. Hager TJ, Morawicki R. 2013.. Energy consumption during cooking in the residential sector of developed nations: a review. . Food Policy 40::5463
    [Crossref] [Google Scholar]
  60. Hamilton A, Balogh SB, Maxwell A, Hall CAS. 2013.. Efficiency of edible agriculture in Canada and the U.S. over the past three and four decades. . Energies 6:(3):176493
    [Crossref] [Google Scholar]
  61. Hansen K. 2019.. Decision-making based on energy costs: comparing levelized cost of energy and energy system costs. . Energy Strategy Rev. 24::6882
    [Crossref] [Google Scholar]
  62. Heller M, Keoleian G. 2000.. Life Cycle-Based Sustainability Indicators for Assessment of the U.S. Food System. Ann Arbor, MI:: Univ. Mich.
    [Google Scholar]
  63. Heuberger CF, Mac Dowell N. 2018.. Real-world challenges with a rapid transition to 100% renewable power systems. . Joule 2:(3):36770
    [Crossref] [Google Scholar]
  64. Hoehn D, Margallo M, Laso J, García-Herrero I, Bala A, et al. 2019.. Energy embedded in food loss management and in the production of uneaten food: seeking a sustainable pathway. . Energies 12:(4):767
    [Crossref] [Google Scholar]
  65. Hrovatin N, Cagno E, Dolšak J, Zorić J. 2021.. How important are perceived barriers and drivers versus other contextual factors for the adoption of energy efficiency measures: an empirical investigation in manufacturing SMEs. . J. Clean. Prod. 323::129123
    [Crossref] [Google Scholar]
  66. Huang H, Gao Y, Chen H, Wu Y, Wang J, et al. 2023.. Biomass briquette fuel, boiler types and pollutant emissions of industrial biomass boiler: a review. . Particuology 77::7990
    [Crossref] [Google Scholar]
  67. IEA. 2019.. Electricity information: overview. Electricity consumption. . IEA. https://www.iea.org/reports/electricity-information-overview/electricity-consumption
    [Google Scholar]
  68. IEA. 2020.. Outlook for biogas and biomethane: prospects for organic growth. An introduction to biogas and biomethane. . IEA. https://www.iea.org/reports/outlook-for-biogas-and-biomethane-prospects-for-organic-growth/an-introduction-to-biogas-and-biomethane
    [Google Scholar]
  69. [Google Scholar]
  70. [Google Scholar]
  71. Ilari A, Duca D, Boakye-Yiadom KA, Gasperini T, Toscano G. 2022.. Carbon footprint and feedstock quality of a real biomass power plant fed with forestry and agricultural residues. . Resources 11:(2):7
    [Crossref] [Google Scholar]
  72. IPCC. 2011.. Geothermal energy. . In IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation. New York:: Cambridge Univ. Press
    [Google Scholar]
  73. IPCC. 2012.. Renewable energy sources and climate change mitigation: special report of the Intergovernmental Panel on Climate Change. Rep. , IPCC, Geneva, Switz:. https://www.ipcc.ch/site/assets/uploads/2018/03/SRREN_Full_Report-1.pdf
    [Google Scholar]
  74. IPCC. 2014.. Climate change 2014: mitigation of climate change: working group III contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Rep. , IPCC, Geneva, Switz:. https://www.ipcc.ch/site/assets/uploads/2018/02/ipcc_wg3_ar5_full.pdf
    [Google Scholar]
  75. Iten M, Fernandes U, Oliveira MC. 2021.. Framework to assess eco-efficiency improvement: case study of a meat production industry. . Energy Rep. 7::713448
    [Crossref] [Google Scholar]
  76. Jesper M, Schlosser F, Pag F, Walmsley TG, Schmitt B, Vajen K. 2021.. Large-scale heat pumps: uptake and performance modelling of market-available devices. . Renew. Sustain. Energy Rev. 137::110646
    [Crossref] [Google Scholar]
  77. Jeswani HK, Whiting A, Azapagic A. 2020.. Environmental and economic sustainability of biomass heat in the UK. . Energy Technol. 8:(11):1901044
    [Crossref] [Google Scholar]
  78. Jouhara H, Khordehgah N, Almahmoud S, Delpech B, Chauhan A, Tassou SA. 2018.. Waste heat recovery technologies and applications. . Therm. Sci. Eng. Prog. 6::26889
    [Crossref] [Google Scholar]
  79. Kadiyala A, Kommalapati R, Huque Z. 2016.. Evaluation of the life cycle greenhouse gas emissions from different biomass feedstock electricity generation systems. . Sustainability 8:(11):1181
    [Crossref] [Google Scholar]
  80. Karamanski S, Erfort G. 2023.. Wind energy supply profiling and offshore potential in South Africa. . Energies 16:(9):3668
    [Crossref] [Google Scholar]
  81. Karlsdottir MR, Lew JB, Palsson HP, Palsson OP. 2014.. Geothermal district heating system in Iceland: a life cycle perspective with focus on primary energy efficiency and CO2 emissions. Paper presented at the 14th Annual Symposium on District Heating and Cooling, Stockholm:
    [Google Scholar]
  82. Kaygusuz K. 2012.. Energy for sustainable development: a case of developing countries. . Renew. Sustain. Energy Rev. 16:(2):111626
    [Crossref] [Google Scholar]
  83. Kemp IC, Lim JS. 2020.. Pinch Analysis for Energy and Carbon Footprint Reduction: User Guide to Process Integration for the Efficient Use of Energy. Oxford, UK:: Butterworth-Heinemann
    [Google Scholar]
  84. Knobloch F, Hanssen SV, Lam A, Pollitt H, Salas P, et al. 2020.. Net emission reductions from electric cars and heat pumps in 59 world regions over time. . Nat. Sustain. 3:(6):43747
    [Crossref] [Google Scholar]
  85. Konstantas A, Jeswani HK, Stamford L, Azapagic A. 2018.. Environmental impacts of chocolate production and consumption in the UK. . Food Res. Int. 106::101225
    [Crossref] [Google Scholar]
  86. Kroposki B, Johnson B, Zhang Y, Gevorgian V, Denholm P, et al. 2017.. Achieving a 100% renewable grid: operating electric power systems with extremely high levels of variable renewable energy. . IEEE Power Energy Mag. 15:(2):6173
    [Crossref] [Google Scholar]
  87. Kubo MT, Siguemoto ÉS, Funcia ES, Augusto PE, Curet S, et al. 2020.. Non-thermal effects of microwave and ohmic processing on microbial and enzyme inactivation: a critical review. . Curr. Opin. Food Sci. 35::3648
    [Crossref] [Google Scholar]
  88. Kukkonen IT, Pentti M. 2021.. St1 Deep Heat Project: geothermal energy to the district heating network in Espoo. . IOP Conf. Ser. Earth Environ. Sci. 703:(1):012035
    [Crossref] [Google Scholar]
  89. Kulyal L, Jalal P. 2022.. Bioenergy, a finer alternative for India: scope, barriers, socio-economic benefits and identified solution. . Bioresour. Technol. Rep. 17::100947
    [Crossref] [Google Scholar]
  90. Kumar R, Singh RK, Dwivedi YK. 2020.. Application of industry 4.0 technologies in SMEs for ethical and sustainable operations: analysis of challenges. . J. Clean. Prod. 275::124063
    [Crossref] [Google Scholar]
  91. Ladha-Sabur A, Bakalis S, Fryer PJ, Lopez-Quiroga E. 2019.. Mapping energy consumption in food manufacturing. . Trends Food Sci. Technol. 86::27080
    [Crossref] [Google Scholar]
  92. Law R, Harvey A, Reay D. 2013.. Opportunities for low-grade heat recovery in the UK food processing industry. . Appl. Therm. Eng. 53:(2):18896
    [Crossref] [Google Scholar]
  93. Lazard. 2021.. Lazard's levelized cost of energy analysis—version 15.0. Rep. , Lazard, New York:. https://www.lazard.com/media/sptlfats/lazards-levelized-cost-of-energy-version-150-vf.pdf
    [Google Scholar]
  94. Lazou AE. 2022.. Food extrusion: an advanced process for innovation and novel product development. . Crit. Rev. Food Sci. Nutr. https://doi.org/10.1080/10408398.2022.2143474
    [Google Scholar]
  95. Le AT, Wang L, Wang Y, Li D. 2021.. Measurement investigation on the feasibility of shallow geothermal energy for heating and cooling applied in agricultural greenhouses of Shouguang City: ground temperature profiles and geothermal potential. . Inf. Process. Agric. 8:(2):25169
    [Google Scholar]
  96. Lee J, Kao H-A, Yang S. 2014.. Service innovation and smart analytics for industry 4.0 and big data environment. . Procedia CIRP 16::38
    [Crossref] [Google Scholar]
  97. Lee W, Okos MR. 2011.. Sustainable food processing systems—path to a zero discharge: reduction of water, waste and energy. . Procedia Food Sci. 1::176877
    [Crossref] [Google Scholar]
  98. Lewis M. 2022.. World's most powerful wind turbine's blades arrive for installation. . Electrek, Dec. 22. https://electrek.co/2022/12/22/worlds-most-powerful-wind-turbine-vestas/
    [Google Scholar]
  99. Liu H, Yu M-H, Lee C-C, Yu X, Li Y, et al. 2021.. Technical challenges and perspectives for the commercialization of solution-processable solar cells. . Adv. Mater. Technol. 6:(6):2000960
    [Crossref] [Google Scholar]
  100. Lopez-Quiroga E, Wang R, Gouseti O, Fryer PJ, Bakalis S. 2016.. Crystallisation in concentrated systems: a modelling approach. . Food Bioprod. Process. 100::52534
    [Crossref] [Google Scholar]
  101. Lovins AB. 2017.. Reliably integrating variable renewables: moving grid flexibility resources from models to results. . Electr. J. 30:(10):5863
    [Crossref] [Google Scholar]
  102. Lund JW, Huttrer GW, Toth AN. 2022.. Characteristics and trends in geothermal development and use, 1995 to 2020. . Geothermics 105::102522
    [Crossref] [Google Scholar]
  103. Maggiore S, Realini A, Zagano C, Bazzocchi F, Gobbi E, Borgarello M. 2021.. Energy efficiency in industry 4.0: assessing the potential of industry 4.0 to achieve 2030 decarbonisation targets. . Int. J. Energy Prod. Manag. 6:(4):37181
    [Google Scholar]
  104. Malik N, Muttakin S, Lopez-Quiroga E, Watson NJ, Fryer PJ, et al. 2020.. Microstructure and reconstitution of freeze-dried gum Arabic at a range of concentrations and primary drying temperatures. . Food Hydrocoll. 104::105712
    [Crossref] [Google Scholar]
  105. MAN Energy Solut. 2022.. MAN heat pump. Rep. , MAN Energy Solut., Houston, TX:. https://www.man-es.com/docs/default-source/document-sync/man-heat-pump-hpu-eng.pdf?sfvrsn=e83c2883_2
    [Google Scholar]
  106. McClements DJ, Grossmann L. 2022.. Next-Generation Plant-Based Foods: Design, Production, and Properties. Cham, Switz:.: Springer
    [Google Scholar]
  107. McLean K, Richardson I. 2016.. Greenhouse gas emissions from New Zealand geothermal power generation in context. Rep. , N. Z. Geotherm. Assoc., Auckland, N.Z:. https://geothermal-energy.org/pdf/IGAstandard/NZGW/2019/101.pdf
    [Google Scholar]
  108. Melaina MW, Antonia O, Penev M. 2013.. Blending hydrogen into natural gas pipeline networks: a review of key issues. Tech. Rep. TP-5600-51995 , Natl. Renew. Energy Lab., Golden, CO:. https://www.nrel.gov/docs/fy13osti/51995.pdf
    [Google Scholar]
  109. Meng B, Gu C, Zhang L, Zhou C, Li X, et al. 2017.. Hydrogen effects on X80 pipeline steel in high-pressure natural gas/hydrogen mixtures. . Int. J. Hydrog. Energy 42:(11):740412
    [Crossref] [Google Scholar]
  110. Mitali J, Dhinakaran S, Mohamad AA. 2022.. Energy storage systems: a review. . Energy Storage Sav. 1:(3):166216
    [Crossref] [Google Scholar]
  111. Monforti-Ferrario F, Dallemand JF, Pineda Pascua I, Motola V, Banja M, et al. 2015.. Energy use in the EU food sector: state of play and opportunities for improvement. JRC Sci. Policy Rep., Joint Res. Cent., Brussels, Belg:. https://data.europa.eu/doi/10.2790/158316
    [Google Scholar]
  112. Morató T, Vaezi M, Kumar A. 2020.. Techno-economic assessment of biomass combustion technologies to generate electricity in South America: a case study for Bolivia. . Renew. Sustain. Energy Rev. 134::110154
    [Crossref] [Google Scholar]
  113. Neumann J, Petranikova M, Meeus M, Gamarra JD, Younesi R, et al. 2022.. Recycling of lithium-ion batteries—current state of the art, circular economy, and next generation recycling. . Adv. Energy Mater. 12:(17):2102917
    [Crossref] [Google Scholar]
  114. Notarnicola B, Tassielli G, Renzulli PA, Monforti F. 2017.. Energy flows and greenhouses gases of EU (European Union) national breads using an LCA (life cycle assessment) approach. . J. Clean. Prod. 140::45569
    [Crossref] [Google Scholar]
  115. Oikonomou V, Becchis F, Steg L, Russolillo D. 2009.. Energy saving and energy efficiency concepts for policy making. . Energy Policy 37:(11):478796
    [Crossref] [Google Scholar]
  116. Ononogbo C, Nwosu EC, Nwakuba NR, Nwaji GN, Nwufo OC, et al. 2023.. Opportunities of waste heat recovery from various sources: review of technologies and implementation. . Heliyon 9:(2):e13590
    [Crossref] [Google Scholar]
  117. Our World Data. 2021.. Global primary energy consumption by source. . Our World in Data. https://ourworldindata.org/grapher/global-energy-substitution
    [Google Scholar]
  118. Panwar NL, Kaushik SC, Kothari S. 2011.. Role of renewable energy sources in environmental protection: a review. . Renew. Sustain. Energy Rev. 15:(3):151324
    [Crossref] [Google Scholar]
  119. Parsaee M, Kiani Deh Kiani M, Karimi K. 2019.. A review of biogas production from sugarcane vinasse. . Biomass Bioenergy 122::11725
    [Crossref] [Google Scholar]
  120. Pawar SB, Pratape VM. 2017.. Fundamentals of infrared heating and its application in drying of food materials: a review. . J. Food Process Eng. 40:(1):e12308
    [Crossref] [Google Scholar]
  121. Peters IM, Breyer C, Jaffer SA, Kurtz S, Reindl T, et al. 2021.. The role of batteries in meeting the PV terawatt challenge. . Joule 5:(6):135370
    [Crossref] [Google Scholar]
  122. Pettifor H, Wilson C. 2020.. Low carbon innovations for mobility, food, homes and energy: a synthesis of consumer attributes. . Renew. Sustain. Energy Rev. 130::109954
    [Crossref] [Google Scholar]
  123. Pucker J, Jungmeier G, Siegl S, Pötsch EM. 2013.. Anaerobic digestion of agricultural and other substrates: implications for greenhouse gas emissions. . Animal 7:(S2):28391
    [Crossref] [Google Scholar]
  124. Qu H, Masud MH, Islam M, Khan MIH, Ananno AA, Karim A. 2022.. Sustainable food drying technologies based on renewable energy sources. . Crit. Rev. Food Sci. Nutr. 62:(25):687286
    [Crossref] [Google Scholar]
  125. Rahman MM, Khan I, Field DL, Techato K, Alameh K. 2022.. Powering agriculture: present status, future potential, and challenges of renewable energy applications. . Renew. Energy 188::73149
    [Crossref] [Google Scholar]
  126. Rai AK, Al Makishah NH, Wen Z, Gupta G, Pandit S, Prasad R. 2022.. Recent developments in lignocellulosic biofuels, a renewable source of bioenergy. . Fermentation 8:(4):161
    [Crossref] [Google Scholar]
  127. Rehfuess E, World Health Organ. 2006.. Fuel for life: household energy and health. Rep. , World Health Organ., Geneva, Switz:. https://iris.who.int/bitstream/handle/10665/43421/9241563168_eng.pdf?sequence=1
    [Google Scholar]
  128. Röder M, Whittaker C, Thornley P. 2015.. How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. . Biomass Bioenergy 79::5063
    [Crossref] [Google Scholar]
  129. Rodin V, Moser S. 2021.. The perfect match? 100 reasons why energy cooperation is not realized in industrial parks. . Energy Res. Soc. Sci. 74::101964
    [Crossref] [Google Scholar]
  130. Rogner H-H, Aguilera RF, Archer CL, Bertani R, Bhattacharya SC, et al. 2012.. Energy resources and potentials. . In Global Energy Assessment: Toward a Sustainable Future, ed. Global Energy Assessment Writing Team , pp. 425512. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  131. Roser M. 2021.. The ‘energy ladder’: What energy sources do people on different incomes rely on?. Our World in Data, Dec. 1. https://ourworldindata.org/energy-ladder
    [Google Scholar]
  132. S3FOOD. 2023.. Digital monitoring finds easy energy savings. . S3FOOD. https://s3food.eu/digital-monitoring-finds-easy-energy-savings/
    [Google Scholar]
  133. Salehi F. 2020.. Recent applications and potential of infrared dryer systems for drying various agricultural products: a review. . Int. J. Fruit Sci. 20:(3):586602
    [Crossref] [Google Scholar]
  134. Schoeneberger C, Zhang J, McMillan C, Dunn JB, Masanet E. 2022.. Electrification potential of U.S. industrial boilers and assessment of the GHG emissions impact. . Adv. Appl. Energy 5::100089
    [Crossref] [Google Scholar]
  135. Schramski JR, Woodson CB, Brown JH. 2020.. Energy use and the sustainability of intensifying food production. . Nat. Sustain. 3:(4):25759
    [Crossref] [Google Scholar]
  136. Shahsavari A, Akbari M. 2018.. Potential of solar energy in developing countries for reducing energy-related emissions. . Renew. Sustain. Energy Rev. 90::27591
    [Crossref] [Google Scholar]
  137. Shiva Kumar S, Himabindu V. 2019.. Hydrogen production by PEM water electrolysis: a review. . Mater. Sci. Energy Technol. 2:(3):44254
    [Google Scholar]
  138. Siemens. 2023.. Optimize production processes with Industrial Edge. . Siemens. https://www.siemens.com/global/en/products/automation/topic-areas/industrial-edge/production-machines.html
    [Google Scholar]
  139. Simeone A, Luo Y, Woolley E, Rahimifard S, Boër C. 2016.. A decision support system for waste heat recovery in manufacturing. . CIRP Ann. 65:(1):2124
    [Crossref] [Google Scholar]
  140. Sims R, Flammini A, Puri M, Bracco S. 2015.. Opportunities for agri-food chains to become energy-smart. Rep. , FAO, Rome:. https://www.fao.org/3/i5125e/i5125e.pdf
    [Google Scholar]
  141. Singh S, Sarkar P, Dutta K. 2022.. Bioenergy: an overview of bioenergy as a sustainable and renewable source of energy. . In Bioprospecting of Microbial Diversity, ed. P Verma, MP Shah , pp. 483502. Amsterdam:: Elsevier
    [Google Scholar]
  142. Singh Sikarwar V, Zhao M, Clough P, Yao J, Zhong X, et al. 2016.. An overview of advances in biomass gasification. . Energy Environ. Sci. 9:(10):293977
    [Crossref] [Google Scholar]
  143. Soltani M, Moradi Kashkooli F, Souri M, Rafiei B, Jabarifar M, et al. 2021.. Environmental, economic, and social impacts of geothermal energy systems. . Renew. Sustain. Energy Rev. 140::110750
    [Crossref] [Google Scholar]
  144. Sowmy DS, Prado RTA. 2008.. Assessment of energy efficiency in electric storage water heaters. . Energy Build. 40:(12):212832
    [Crossref] [Google Scholar]
  145. Statista. 2015.. Cooking: hours spent by country 2014. . Statista. https://www.statista.com/statistics/420719/time-spent-cooking-per-week-among-consumers-by-country/
    [Google Scholar]
  146. Statista. 2022a.. Global electric car sales doubled in 2021. . Statista. https://cdn.statcdn.com/Infographic/images/normal/26845.jpeg
    [Google Scholar]
  147. Statista. 2022b.. On average, how much time are you happy to spend cooking a weeknight meal?. Statista. https://www.statista.com/statistics/1085305/time-spent-cooking-weeknight-in-the-us/
    [Google Scholar]
  148. Sterman J, Moomaw W, Rooney-Varga JN, Siegel L. 2022.. Does wood bioenergy help or harm the climate?. Bull. Atomic Sci. 78:(3):12838
    [Crossref] [Google Scholar]
  149. Syvitski J, Waters CN, Day J, Milliman JD, Summerhayes C, et al. 2020.. Extraordinary human energy consumption and resultant geological impacts beginning around 1950 CE initiated the proposed Anthropocene Epoch. . Commun. Earth Environ. 1:(1):113
    [Crossref] [Google Scholar]
  150. Technavio. 2017.. Industrial heat pumps market by end-user, type and geography—forecast and analysis 2017–2021. . Technavio. https://www.technavio.com/report/industrial-heat-pumps-market-industry-analysis
    [Google Scholar]
  151. Tesch da Silva FS, da Costa CA, Paredes Crovato CD, da Rosa Righi R. 2020.. Looking at energy through the lens of industry 4.0: a systematic literature review of concerns and challenges. . Comput. Ind. Eng. 143::106426
    [Crossref] [Google Scholar]
  152. Tezer Ö, Karabağ N, Öngen A, Çolpan , Ayol A. 2022.. Biomass gasification for sustainable energy production: a review. . Int. J. Hydrog. Energy 47:(34):1541933
    [Crossref] [Google Scholar]
  153. Trainer T. 2017.. Some problems in storing renewable energy. . Energy Policy 110::38693
    [Crossref] [Google Scholar]
  154. Tsai J-H, Huang J-Y, Wilson DI. 2021.. Life cycle assessment of cleaning-in-place operations in egg yolk powder production. . J. Clean. Prod. 278::123936
    [Crossref] [Google Scholar]
  155. Turconi R, Boldrin A, Astrup T. 2013.. Life cycle assessment (LCA) of electricity generation technologies: overview, comparability and limitations. . Renew. Sustain. Energy Rev. 28::55565
    [Crossref] [Google Scholar]
  156. Twinomunuji E, Kemausuor F, Black M, Roy A, Sadhukhan ROJ, et al. 2000.. The potential for bottled biogas for clean cooking in Africa. Rep. , Mod. Energy Cook. Serv., Loughborough, UK:. https://www.mecs.org.uk/wp-content/uploads/2020/12/Potential-for-bottled-biogas-for-clean-cooking-in-Africa_Feb-2020-working-paper.pdf
    [Google Scholar]
  157. UK. 2022.. Energy consumption in the UK 2022. . GOV.UK. https://www.gov.uk/government/statistics/energy-consumption-in-the-uk-2022
    [Google Scholar]
  158. Ullah Khan I, Hafiz Dzarfan Othman M, Hashim H, Matsuura T, Ismail AF, et al. 2017.. Biogas as a renewable energy fuel: a review of biogas upgrading, utilisation and storage. . Energy Convers. Manag. 150::27794
    [Crossref] [Google Scholar]
  159. Vadiee A. 2022.. Solar heating and cooling applications in agriculture and food processing systems. . In Solar Energy Advancements in Agriculture and Food Production Systems, ed. S Gorjian, PE Campana , pp. 23770. Cambridge, MA:: Academic
    [Google Scholar]
  160. van der Meer F, Hecker C, van Ruitenbeek F, van der Werff H, de Wijkerslooth C, Wechsler C. 2014.. Geologic remote sensing for geothermal exploration: a review. . Int. J. Appl. Earth Obs. Geoinf. 33::25569
    [Google Scholar]
  161. Van Nguyen M, Arason S, Gissurarson M, Pálsson PG. 2015.. Uses of geothermal energy in food and agriculture: opportunities for developing countries. Rep. , FAO, Rome:. https://www.fao.org/3/i4233e/I4233E.pdf
    [Google Scholar]
  162. Wagner S. 2021.. Industrial Edge: bridging the gap between process and data. . Siemens Blog. https://blog.siemens.com/2021/06/industrial-edge-bridging-the-gap-between-process-and-data/
    [Google Scholar]
  163. Wang J, Belusko M, Evans M, Liu M, Zhao C, Bruno F. 2022.. A comprehensive review and analysis on CO2 heat pump water heaters. . Energy Conv. Manag. X 15::100277
    [Google Scholar]
  164. Wang L. 2013.. Energy consumption and reduction strategies in food processing. . In Sustainable Food Processing, ed. BK Tiwari, T Norton, NM Holden , pp. 377400. Chichester, UK:: John Wiley & Sons
    [Google Scholar]
  165. Wang R, Gouseti O, Lopez-Quiroga E, Fryer PJ, Bakalis S. 2019.. Water crystallization in highly concentrated carbohydrate-based systems. . Crystal Growth Design 19:(4):208188
    [Crossref] [Google Scholar]
  166. Wang Y, Li K, Gan S, Cameron C. 2019.. Analysis of energy saving potentials in intelligent manufacturing: a case study of bakery plants. . Energy 172::47786
    [Crossref] [Google Scholar]
  167. Willem H, Lin Y, Lekov A. 2017.. Review of energy efficiency and system performance of residential heat pump water heaters. . Energy Build. 143::191201
    [Crossref] [Google Scholar]
  168. Wilson DI, Christie G, Fryer PJ, Hall IM, Landel JR, Whitehead KA. 2022.. Lessons to learn from roadmapping in cleaning and decontamination. . Food Bioprod. Process. 135::15661
    [Crossref] [Google Scholar]
  169. Wojdalski J, Grochowicz J, Dróżdż B, Bartoszewska K, Zdanowska P, et al. 2015.. Energy efficiency of a confectionery plant: case study. . J. Food Eng. 146::18291
    [Crossref] [Google Scholar]
  170. World Bank. 2021.. State and Trends of Carbon Pricing 2021. Washington, DC:: World Bank
    [Google Scholar]
  171. Xia ZH, Jia GS, Ma ZD, Wang JW, Zhang YP, Jin LW. 2021.. Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments. . Appl. Energy 303::117671
    [Crossref] [Google Scholar]
  172. Yeni O, Teoman Ö. 2022.. The agriculture-environment relationship and environment-based agricultural support instruments in Turkey. . Eur. Rev. 30:(2):194218
    [Crossref] [Google Scholar]
  173. Zarrouk SJ, Moon H. 2014.. Efficiency of geothermal power plants: a worldwide review. . Geothermics 51::14253
    [Crossref] [Google Scholar]
  174. Zhu X-G, Long SP, Ort DR. 2008.. What is the maximum efficiency with which photosynthesis can convert solar energy into biomass?. Curr. Opin. Biotechnol. 19:(2):15359
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034332
Loading
/content/journals/10.1146/annurev-food-072023-034332
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error