1932

Abstract

The growing demand for sustainable and healthy food alternatives has led to a significant increase in interest in plant-based protein products. Among the various techniques used in creating meat analogs, high-moisture extrusion (HME) stands out as a promising technology for developing plant-based protein products that possess desirable texture and mouthfeel. During the extrusion process, plant proteins undergo a state transition, causing their rheological properties to change, thereby influencing the quality of the final extrudates. This review aims to delve into the fundamental aspects of texturizing plant proteins using HME, with a specific focus on the rheological behavior exhibited by these proteins throughout the process. Additionally, the review explores the future of HME from the perspective of novel raw materials and technologies. In summary, the objective of this review is to provide a comprehensive understanding of the potential of HME technology in the development of sustainable and nutritious plant-based protein products.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034346
2024-06-28
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034346.html?itemId=/content/journals/10.1146/annurev-food-072023-034346&mimeType=html&fmt=ahah

Literature Cited

  1. AACC. 1997.. Method 76–21.02. General pasting method for wheat or rye flour of starch using the Rapid Visco analyser. Rep. , AACC, St. Paul, MN:
    [Google Scholar]
  2. Abeykoon C. 2022.. Sensing technologies for process monitoring in polymer extrusion: a comprehensive review on past, present and future aspects. . Meas. Sens. 22::100381
    [Crossref] [Google Scholar]
  3. Akdogan H. 1999.. High moisture food extrusion. . Int. J. Food Sci. 34::195207
    [Crossref] [Google Scholar]
  4. Alghooneh A, Razavi SM, Kasapis S. 2019.. Classification of hydrocolloids based on small amplitude oscillatory shear, large amplitude oscillatory shear, and textural properties. . J. Texture Stud. 50::52038
    [Crossref] [Google Scholar]
  5. Allmendinger A, Fischer S, Huwyler J, Mahler H-C, Schwarb E, et al. 2014.. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions. . Eur. J. Pharm. Biopharm. 87::31828
    [Crossref] [Google Scholar]
  6. Alzagtat AA, Alli I. 2002.. Protein-lipid interactions in food systems: a review. . Int. J. Food Sci. Nutr. 53::24960
    [Crossref] [Google Scholar]
  7. Bagley E. 1961.. The separation of elastic and viscous effects in polymer flow. . Trans. Soc. Rheol. 5::35568
    [Crossref] [Google Scholar]
  8. Baird DG. 2008.. First normal stress difference measurements for polymer melts at high shear rates in a slit-die using hole and exit pressure data. . J. Non-Newton. Fluid Mech. 148::1323
    [Crossref] [Google Scholar]
  9. Barnes H, Hutton J, Walters K. 1989.. An Introduction to Rheology, Vol. 3. Amsterdam:: Elsevier
    [Google Scholar]
  10. Bhattacharya M, Hanna M. 1986.. Viscosity modelling of dough in extrusion. . Int. J. Food Sci. 21::16774
    [Crossref] [Google Scholar]
  11. Bingham EC. 1929.. Rheology. I. The nature of fluid flow. . J. Chem. Educ. 6::1113
    [Crossref] [Google Scholar]
  12. Bird RB, Carreau PJ. 1968.. A nonlinear viscoelastic model for polymer solutions and melts—I. . Chem. Eng. Sci. 23::42734
    [Crossref] [Google Scholar]
  13. Blair GS. 1969.. Rheology: a brief historical survey. . J. Texture Stud. 1:(1):1418
    [Crossref] [Google Scholar]
  14. Bowler AL, Pound MP, Watson NJ. 2022.. A review of ultrasonic sensing and machine learning methods to monitor industrial processes. . Ultrasonics 124::106776
    [Crossref] [Google Scholar]
  15. Brishti FH, Chay SY, Muhammad K, Ismail-Fitry MR, Zarei M, Saari N. 2021.. Texturized mung bean protein as a sustainable food source: effects of extrusion on its physical, textural and protein quality. . Innov. Food Sci. Emerg. Technol. 67::102591
    [Crossref] [Google Scholar]
  16. Bur AJ, Vangel MG, Roth SC. 2001.. Fluorescence based temperature measurements and applications to real-time polymer processing. . Polym. Eng. Sci. 41::138089
    [Crossref] [Google Scholar]
  17. Caporgno MP, Böcker L, Müssner C, Stirnemann E, Haberkorn I, et al. 2020.. Extruded meat analogues based on yellow, heterotrophically cultivated Auxenochlorella protothecoides microalgae. . Innov. Food Sci. Emerg. Technol. 59::102275
    [Crossref] [Google Scholar]
  18. Carreau PJ, Choplin L, Clermont JR. 1985.. Exit pressure effects in capillary die data. . Polym. Eng. Sci. 25::66976
    [Crossref] [Google Scholar]
  19. Cheftel J, Kitagawa M, Queguiner C. 1992.. New protein texturization processes by extrusion cooking at high moisture levels. . Food Rev. Int. 8::23575
    [Crossref] [Google Scholar]
  20. Chen FL, Wei YM, Zhang B. 2011.. Chemical cross-linking and molecular aggregation of soybean protein during extrusion cooking at low and high moisture content. . LWT 44::95762
    [Crossref] [Google Scholar]
  21. Chen FL, Wei YM, Zhang B, Ojokoh AO. 2010.. System parameters and product properties response of soybean protein extruded at wide moisture range. . J. Food Eng. 96::20813
    [Crossref] [Google Scholar]
  22. Chen Q, Zhang J, Zhang Y, Kaplan DL, Wang Q. 2022a.. Protein-amylose/amylopectin molecular interactions during high-moisture extruded texturization toward plant-based meat substitutes applications. . Food Hydrocoll. 127::107559
    [Crossref] [Google Scholar]
  23. Chen Q, Zhang J, Zhang Y, Meng S, Wang Q. 2021.. Rheological properties of pea protein isolate-amylose/amylopectin mixtures and the application in the high-moisture extruded meat substitutes. . Food Hydrocoll. 117::106732
    [Crossref] [Google Scholar]
  24. Chen Q, Zhang J, Zhang Y, Wang Q. 2022b.. Effect of fatty acid saturation degree on the rheological properties of pea protein and its high-moisture extruded product quality. . Food Chem. 390::133139
    [Crossref] [Google Scholar]
  25. Chen YP, Feng X, Blank I, Liu Y. 2022.. Strategies to improve meat-like properties of meat analogs meeting consumers’ expectations. . Biomaterials 287::121648
    [Crossref] [Google Scholar]
  26. Cho SY, Ryu GH. 2021.. Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog. . Food Sci. Nutr. 9::440819
    [Crossref] [Google Scholar]
  27. Cho SY, Ryu GH. 2022.. Effects of oyster mushroom addition on quality characteristics of full fat soy-based analog burger patty by extrusion process. . J. Food Process Eng. 46:(10):e14128
    [Crossref] [Google Scholar]
  28. Cornet SH, Snel SJ, Schreuders FK, van der Sman RG, Beyrer M, van der Goot AJ. 2022.. Thermo-mechanical processing of plant proteins using shear cell and high-moisture extrusion cooking. . Crit. Rev. Food Sci. Nutr. 62::326480
    [Crossref] [Google Scholar]
  29. Dalle Fratte E, D'hooge DR, Eeckhout M, Cardon L. 2022.. Principles and guidelines for in-line viscometry in cereal extrusion. . Polymers 14::2316
    [Crossref] [Google Scholar]
  30. Dekkers BL, Emin MA, Boom RM, van der Goot AJ. 2018.. The phase properties of soy protein and wheat gluten in a blend for fibrous structure formation. . Food Hydrocoll. 79::27381
    [Crossref] [Google Scholar]
  31. Emin MA. 2015.. Modeling extrusion processes. . In Modeling Food Processing Operations, ed. S Bakalis, K Knoerzer, PJ Fryer , pp. 23553. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  32. Emin MA. 2022.. Key technological advances of extrusion processing. . In Food Engineering Innovations Across the Food Supply Chain, ed. P Juliano, R Buckow, MH Nguyen, K Knoerzer, J Sellahewa , pp. 13148. Cambridge, MA:: Acad. Press
    [Google Scholar]
  33. Emin MA, Quevedo M, Wilhelm M, Karbstein H. 2017.. Analysis of the reaction behavior of highly concentrated plant proteins in extrusion-like conditions. . Innov. Food Sci. Emerg. Technol. 44::1520
    [Crossref] [Google Scholar]
  34. Emin MA, Schuchmann HP. 2013.. Analysis of the dispersive mixing efficiency in a twin-screw extrusion processing of starch based matrix. . J. Food Eng. 115::13243
    [Crossref] [Google Scholar]
  35. Emin MA, Teumer T, Schmitt W, Rädle M, Schuchmann HP. 2016.. Measurement of the true melt temperature in a twin-screw extrusion processing of starch based matrices via infrared sensor. . J. Food Eng. 170::11924
    [Crossref] [Google Scholar]
  36. Emin MA, Wittek P, Schwegler Y. 2021.. Numerical analysis of thermal and mechanical stress profile during the extrusion processing of plasticized starch by non-isothermal flow simulation. . J. Food Eng. 294::110407
    [Crossref] [Google Scholar]
  37. Fang Y, Zhang B, Wei Y. 2014.. Effects of the specific mechanical energy on the physicochemical properties of texturized soy protein during high-moisture extrusion cooking. . J. Food Eng. 121::3238
    [Crossref] [Google Scholar]
  38. Fu J, Sun C, Chang Y, Li S, Zhang Y, Fang Y. 2022.. Structure analysis and quality evaluation of plant-based meat analogs. . J. Texture Stud. 54:(3):38393
    [Crossref] [Google Scholar]
  39. González RJ, Torres RL, De Greef DM, Guadalupe BA. 2006.. Effects of extrusion conditions and structural characteristics on melt viscosity of starchy materials. . J. Food Eng. 74::96107
    [Crossref] [Google Scholar]
  40. Gouda M, Bekhit AE-DA. 2022.. Allergenicity risks associated with novel proteins and rapid methods of detection. . In Alternative Proteins: Safety and Food Security Considerations, ed. M Gouda, AE-DA Bekhit , pp. 379406. Boca Raton, FL:: CRC Press
    [Google Scholar]
  41. Gunasekaran S, Ak MM. 2000.. Dynamic oscillatory shear testing of foods—selected applications. . Trends Food Sci. Technol. 11::11527
    [Crossref] [Google Scholar]
  42. Guyony V, Fayolle F, Jury V. 2022.. High moisture extrusion of vegetable proteins for making fibrous meat analogs: a review. . Food Rev. Int. 39:(7):426287
    [Crossref] [Google Scholar]
  43. Harper J, Rhodes TP, Wanninger L. 1971.. Viscosity model for cooked cereal doughs. Paper presented at AIChE Symposium Series, New York, NY:
    [Google Scholar]
  44. He J, Evans NM, Liu H, Shao S. 2020.. A review of research on plant-based meat alternatives: driving forces, history, manufacturing, and consumer attitudes. . Compr. Rev. Food Sci. Food Saf. 19::263956
    [Crossref] [Google Scholar]
  45. Hieber C, Chiang H. 1992.. Shear-rate-dependence modeling of polymer melt viscosity. . Polym. Eng. Sci. 32::93138
    [Crossref] [Google Scholar]
  46. Horvat M, Azad Emin M, Hochstein B, Willenbacher N, Schuchmann HP. 2013.. A multiple-step slit die rheometer for rheological characterization of extruded starch melts. . J. Food Eng. 116::398403
    [Crossref] [Google Scholar]
  47. Hossain Brishti F, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, et al. 2021.. Structural and rheological changes of texturized mung bean protein induced by feed moisture during extrusion. . Food Chem. 344::128643
    [Crossref] [Google Scholar]
  48. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, et al. 2011.. A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS). . Prog. Polym. Sci. 36::1697753
    [Crossref] [Google Scholar]
  49. Immonen M, Chandrakusuma A, Sibakov J, Poikelispää M, Sontag-Strohm T. 2021.. Texturization of a blend of pea and destarched oat protein using high-moisture extrusion. . Foods 10::1517
    [Crossref] [Google Scholar]
  50. Jao Y, Chen A, Lewandowski D, Irwin W. 1978.. Engineering analysis of soy dough rheology in extrusion. . J. Food Process Eng. 2::97112
    [Crossref] [Google Scholar]
  51. Jasberg B, Mustakas G, Bagley E. 1982.. Effect of extruder retention time on capillary flow of soy dough 1. . J. Food Process Eng. 5::4356
    [Crossref] [Google Scholar]
  52. Kakani V, Nguyen VH, Kumar BP, Kim H, Pasupuleti VR. 2020.. A critical review on computer vision and artificial intelligence in food industry. . J. Agric. Res. 2::100033
    [Google Scholar]
  53. Kantanen K, Oksanen A, Edelmann M, Suhonen H, Sontag-Strohm T, et al. 2022.. Physical properties of extrudates with fibrous structures made of faba bean protein ingredients using high moisture extrusion. . Foods 11::1280
    [Crossref] [Google Scholar]
  54. Khabazian Esfahani M, Georgantopoulos CK, Naue IF, Sunder J, Wilhelm M. 2022.. A new slit-radial die for simultaneously measuring steady state shear viscosity and first normal stress difference of viscoelastic liquids via capillary rheometry. . J. Appl. Polym. Sci. 139::52094
    [Crossref] [Google Scholar]
  55. Kiiru SM, Kinyuru JN, Kiage BN, Martin A, Marel AK, Osen R. 2020.. Extrusion texturization of cricket flour and soy protein isolate: influence of insect content, extrusion temperature, and moisture-level variation on textural properties. . Food Sci. Nutr. 8::411220
    [Crossref] [Google Scholar]
  56. Klüver E, Meyer M. 2015.. Thermoplastic processing, rheology, and extrudate properties of wheat, soy, and pea proteins. . Polym. Eng. Sci. 55::191219
    [Crossref] [Google Scholar]
  57. Kostic MM, Reifschneider LG. 2006.. Design of extrusion dies. . Encycl. Chem. Process. 10::63349
    [Google Scholar]
  58. Kristiawan M, Della Valle G. 2020.. Transport phenomena and material changes during extrusion. . In Extrusion Cooking: Cereal Grains Processing, ed. GM Ganjyal , pp. 179204. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  59. Lee JS, Cho A-N, Jin Y, Kim J, Kim S, Cho S-W. 2018.. Bio-artificial tongue with tongue extracellular matrix and primary taste cells. . Biomaterials 151::2437
    [Crossref] [Google Scholar]
  60. Li P, Campanella O, Hardacre A. 2004.. Using an in-line slit-die viscometer to study the effects of extrusion parameters on corn melt rheology. . Cereal Chem. 81::7076
    [Crossref] [Google Scholar]
  61. Liu K, Hsieh F-H. 2008.. Protein–protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. . J. Agric. Food Chem. 56::268187
    [Crossref] [Google Scholar]
  62. Madeka H, Kokini J. 1996.. Effect of glass transition and cross-linking on rheological properties of zein: development of a preliminary state diagram. . Cereal Chem. 73::43338
    [Google Scholar]
  63. Maklad O, Poole RJ. 2021.. A review of the second normal-stress difference; its importance in various flows, measurement techniques, results for various complex fluids and theoretical predictions. . J. Non-Newton. Fluid Mech. 292::104522
    [Crossref] [Google Scholar]
  64. Mavani NR, Ali JM, Othman S, Hussain MA, Hashim H, Rahman NA. 2022.. Application of artificial intelligence in food industry—a guideline. . Food Eng. Rev. 14::13475
    [Crossref] [Google Scholar]
  65. McClements DJ. 2023.. Modeling the rheological properties of plant-based foods: soft matter physics principles. . Sustain. Food Proteins 1::101132
    [Crossref] [Google Scholar]
  66. Melito H, Daubert C, Foegeding E. 2013.. Relating large amplitude oscillatory shear and food behavior: correlation of nonlinear viscoelastic, rheological, sensory and oral processing behavior of whey protein isolate/κ-carrageenan gels. . J. Food Process Eng. 36::52134
    [Crossref] [Google Scholar]
  67. Meng A, Chen F, Zhao D, Wei Y, Zhang B. 2022.. Identifying changes in soybean protein properties during high-moisture extrusion processing using dead-stop operation. . Food Chem. 395::133599
    [Crossref] [Google Scholar]
  68. Mengucci C, Ferranti P, Romano A, Masi P, Picone G, Capozzi F. 2022.. Food structure, function and artificial intelligence. . Trends Food Sci. Technol. 123::25163
    [Crossref] [Google Scholar]
  69. Mighri F, Carreau P, Ajji A. 1998.. Influence of elastic properties on drop deformation and breakup in shear flow. . J. Rheol. 42::147790
    [Crossref] [Google Scholar]
  70. Mitchell J, Areas JAG. 1991.. Structural changes in biopolymers during extrusion. . In Food Extrusion: Science and Technology, ed. JL Kokini, CT Ho, MV Karwe , pp. 34571. New York:: Marcel Dekker
    [Google Scholar]
  71. Mitsoulis E, Abdali SS, Markatos NC. 1993.. Flow simulation of Herschel-Bulkley fluids through extrusion dies. . Can. J. Chem. Eng. 71::14760
    [Crossref] [Google Scholar]
  72. Opaluwa C, Lott T, Karbstein HP, Emin MA. 2023.. Encapsulation of oil in the high moisture extrusion of wheat gluten: interrelation between process parameters, matrix viscosity and oil droplet size. . Future Foods 7::100222
    [Crossref] [Google Scholar]
  73. Osen R, Schweiggert-Weisz U. 2016.. High-moisture extrusion: meat analogues. . In Reference Module in Food Science. Amsterdam:: Elsevier
    [Google Scholar]
  74. Osen R, Toelstede S, Wild F, Eisner P, Schweiggert-Weisz U. 2014.. High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. . J. Food Eng. 127::6774
    [Crossref] [Google Scholar]
  75. Padmanabhan M, Bhattacharya M. 1991.. Rheological measurement of fluid elasticity during extrusion cooking. . Trends Food Sci. Technol. 2::14951
    [Crossref] [Google Scholar]
  76. Padmanabhan M, Bhattacharya M. 1993.. Effect of extrusion processing history on the rheology of corn meal. . J. Food Eng. 18::33549
    [Crossref] [Google Scholar]
  77. Palanisamy M, Franke K, Berger RG, Heinz V, Töpfl S. 2019.. High moisture extrusion of lupin protein: influence of extrusion parameters on extruder responses and product properties. . J. Sci. Food Agric. 99::217585
    [Crossref] [Google Scholar]
  78. Peng H, Zhang J, Wang S, Qi M, Yue M, et al. 2022.. High moisture extrusion of pea protein: effect of l-cysteine on product properties and the process forming a fibrous structure. . Food Hydrocoll. 129::107633
    [Crossref] [Google Scholar]
  79. Phan-Thien N, Rossikhin Y. 2004.. Understanding viscoelasticity: basics of rheology. . Appl. Mech. Rev. 57::B4
    [Crossref] [Google Scholar]
  80. Pietsch VL, Bühler JM, Karbstein HP, Emin MA. 2019a.. High moisture extrusion of soy protein concentrate: influence of thermomechanical treatment on protein-protein interactions and rheological properties. . J. Food Eng. 251::1118
    [Crossref] [Google Scholar]
  81. Pietsch VL, Karbstein HP, Emin MA. 2018.. Kinetics of wheat gluten polymerization at extrusion-like conditions relevant for the production of meat analog products. . Food Hydrocoll. 85::1029
    [Crossref] [Google Scholar]
  82. Pietsch VL, Schöffel F, Rädle M, Karbstein HP, Emin MA. 2019b.. High moisture extrusion of wheat gluten: modeling of the polymerization behavior in the screw section of the extrusion process. . J. Food Eng. 246::6774
    [Crossref] [Google Scholar]
  83. Pietsch VL, Soergel F, Giannini M. 2021.. Combining extrusion, electron microscopy and rheology to study the product characteristics of meat analog products. ThermoFisher White Pap. No. WP04
    [Google Scholar]
  84. Pietsch VL, Werner R, Karbstein HP, Emin MA. 2019c.. High moisture extrusion of wheat gluten: relationship between process parameters, protein polymerization, and final product characteristics. . J. Food Eng. 259::311
    [Crossref] [Google Scholar]
  85. Pimentel D, Pimentel M. 2003.. Sustainability of meat-based and plant-based diets and the environment. . Am. J. Clin. Nutr. 78::660S63S
    [Crossref] [Google Scholar]
  86. Pöri P, Nisov A, Nordlund E. 2022.. Enzymatic modification of oat protein concentrate with trans- and protein-glutaminase for increased fibrous structure formation during high-moisture extrusion processing. . LWT 156::113035
    [Crossref] [Google Scholar]
  87. Rao MA. 1977.. Rheology of liquid foods: a review. . J. Texture Stud. 8::13568
    [Crossref] [Google Scholar]
  88. Rao MA. 2010.. Introduction: food rheology and structure. . In Rheology of Fluid and Semisolid Foods: Principles and Applications, pp. 123. New York:: Springer
    [Google Scholar]
  89. Remsen CH, Clark JP. 1978.. A viscosity model for a cooking dough. . J. Food Process Eng. 2::3964
    [Crossref] [Google Scholar]
  90. Riazi F, Tehrani MM, Lammers V, Heinz V, Savadkoohi S. 2023.. Unexpected morphological modifications in high moisture extruded pea-flaxseed proteins: part I, topological and conformational characteristics, textural attributes, and viscoelastic phenomena. . Food Hydrocoll. 136::108304
    [Crossref] [Google Scholar]
  91. Robin G. 2001.. Extrusion Cooking: Technology and Applications. Boca Raton, FL:: CRC Press
    [Google Scholar]
  92. Sahni V, Srivastava S, Khan R. 2021.. Modelling techniques to improve the quality of food using artificial intelligence. . J. Food Qual. 2021::2140010
    [Crossref] [Google Scholar]
  93. Saldanha do Carmo C, Knutsen SH, Malizia G, Dessev T, Geny A, et al. 2021.. Meat analogues from a faba bean concentrate can be generated by high moisture extrusion. . Future Foods 3::100014
    [Crossref] [Google Scholar]
  94. Samard S, Gu BY, Ryu GH. 2019.. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. . J. Sci. Food Agric. 99::492231
    [Crossref] [Google Scholar]
  95. Sandoval Murillo JL, Osen R, Hiermaier S, Ganzenmüller G. 2019.. Towards understanding the mechanism of fibrous texture formation during high-moisture extrusion of meat substitutes. . J. Food Eng. 242::820
    [Crossref] [Google Scholar]
  96. Schreuders FKG, Sagis LMC, Bodnár I, Erni P, Boom RM, van der Goot AJ. 2021.. Mapping the texture of plant protein blends for meat analogues. . Food Hydrocoll. 118::106753
    [Crossref] [Google Scholar]
  97. Seetapan N, Raksa P, Limparyoon N, Srirajan S, Makmoon T, et al. 2023.. High moisture extrusion of meat analogues using mung bean (Vigna radiata L.) protein and flour blends: investigations on morphology, texture and rheology. . Int. J. Food Sci. 58::192230
    [Crossref] [Google Scholar]
  98. Senouci A, Smith A. 1988.. An experimental study of food melt rheology. . Rheol. Acta 27::54654
    [Crossref] [Google Scholar]
  99. Shrestha S, Mahat J. 2022.. Sustainable food security: how to feed an increasing population? A review. . INWASCON Technol. Mag. 4::1518
    [Crossref] [Google Scholar]
  100. Siqin L, Min W, Donglin Z, Yi L, Yang S, Dong L. 2017.. Rheological properties of flaxseed meal and soybean protein isolate blend by extrusion. . Int. J. Agric. Biol. Eng. 10::22433
    [Google Scholar]
  101. Smetana S, Larki NA, Pernutz C, Franke K, Bindrich U, et al. 2018.. Structure design of insect-based meat analogs with high-moisture extrusion. . J. Food Eng. 229::8385
    [Crossref] [Google Scholar]
  102. Smetana S, Pernutz C, Toepfl S, Heinz V, Van Campenhout L. 2019.. High-moisture extrusion with insect and soy protein concentrates: cutting properties of meat analogues under insect content and barrel temperature variations. . J. Insects Food Feed 5::2934
    [Crossref] [Google Scholar]
  103. Stirnemann E. 2022.. Viscoelastic flow of plant protein melts under high moisture extrusion conditions. PhD Thesis , ETH Zurich
    [Google Scholar]
  104. Sui X, Zhang T, Jiang L. 2021.. Soy protein: molecular structure revisited and recent advances in processing technologies. . Annu. Rev. Food Sci. Technol. 12::11947
    [Crossref] [Google Scholar]
  105. Sun D, Wu M, Zhou C, Wang B. 2022.. Transformation of high moisture extrusion on pea protein isolate in melting zone during: from the aspects of the rheological property, physicochemical attributes and modification mechanism. . Food Hydrocoll. 133::108016
    [Crossref] [Google Scholar]
  106. Thiébaud M, Dumay E, Cheftel JC. 1996.. Influence of process variables on the characteristics of a high moisture fish soy protein mix texturized by extrusion cooking. . LWT 29::52635
    [Crossref] [Google Scholar]
  107. Tolstoguzov VB. 1993.. Thermoplastic extrusion—the mechanism of the formation of extrudate structure and properties. . J. Am. Oil Chem. Soc. 70::41724
    [Crossref] [Google Scholar]
  108. Trozzi C, Ciccotti G. 1984.. Stationary nonequilibrium states by molecular dynamics. II. Newton's law. . Phys. Rev. A 29::916
    [Crossref] [Google Scholar]
  109. Tuccillo F, Kantanen K, Wang Y, Martin Ramos Diaz J, Pulkkinen M, et al. 2022.. The flavor of faba bean ingredients and extrudates: chemical and sensory properties. . Food Res. Int. 162::112036
    [Crossref] [Google Scholar]
  110. Tuna NY, Finlayson BA. 1984.. Exit pressure calculations from numerical extrudate swell results. . J. Rheol. 28::7993
    [Crossref] [Google Scholar]
  111. Ulhas RS, Ravindran R, Malaviya A, Priyadarshini A, Tiwari BK, Rajauria G. 2023.. A review of alternative proteins for vegan diets: sources, physico-chemical properties, nutritional equivalency, and consumer acceptance. . Food Res. Int. 173::113479
    [Crossref] [Google Scholar]
  112. van der Sman R, van der Goot A. 2023.. Hypotheses concerning structuring of extruded meat analogs. . Curr. Res. Nutr. Food Sci. 6::10051
    [Google Scholar]
  113. van Dijk E, Hoogeveen A, Abeln S. 2015.. The hydrophobic temperature dependence of amino acids directly calculated from protein structures. . PLOS Comput. Biol. 11::e1004277
    [Crossref] [Google Scholar]
  114. Verbeek CJ, van den Berg LE. 2010.. Extrusion processing and properties of protein-based thermoplastics. . Macromol. Mater. Eng. 295::1021
    [Crossref] [Google Scholar]
  115. Volkin DB, Klibanov AM. 1987.. Thermal destruction processes in proteins involving cystine residues. . J. Biol. Chem. 262::294550
    [Crossref] [Google Scholar]
  116. Wang Q, Shi A, Shah F. 2019.. Rheology instruments for food quality evaluation. . In Evaluation Technologies for Food Quality, ed. J Zhong, X Wang , pp. 46590. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  117. Wang Y, Lyu B, Fu H, Li J, Ji L, et al. 2023.. The development process of plant-based meat alternatives: raw material formulations and processing strategies. . Food Res. Int. 167::112689
    [Crossref] [Google Scholar]
  118. Wang Y, Tuccillo F, Lampi AM, Knaapila A, Pulkkinen M, et al. 2022.. Flavor challenges in extruded plant-based meat alternatives: a review. . Compr. Rev. Food Sci. Food Saf. 21::2898929
    [Crossref] [Google Scholar]
  119. Wei X, Qin C, Gu C, He C, Yuan Q, et al. 2019.. A novel bionic in vitro bioelectronic tongue based on cardiomyocytes and microelectrode array for bitter and umami detection. . Biosens. Bioelectron. 145::111673
    [Crossref] [Google Scholar]
  120. Wittek P, Ellwanger F, Karbstein HP, Emin MA. 2021a.. Morphology development and flow characteristics during high moisture extrusion of a plant-based meat analogue. . Foods 10::1753
    [Crossref] [Google Scholar]
  121. Wittek P, Karbstein HP, Emin MA. 2021b.. Blending proteins in high moisture extrusion to design meat analogues: rheological properties, morphology development and product properties. . Foods 10::1509
    [Crossref] [Google Scholar]
  122. Wittek P, Walther G, Karbstein HP, Emin MA. 2021c.. Comparison of the rheological properties of plant proteins from various sources for extrusion applications. . Foods 10::1700
    [Crossref] [Google Scholar]
  123. Wu M, Huang X, Gao F, Sun Y, Duan H, Li D. 2019.. Dynamic mechanical properties and fractal analysis of texturized soybean protein/wheat gluten composite produced by high moisture extrusion. . Int. J. Food Sci. 54::499508
    [Crossref] [Google Scholar]
  124. Xia S, Xue Y, Xue C, Jiang X, Li J. 2022.. Structural and rheological properties of meat analogues from Haematococcus pluvialis residue-pea protein by high moisture extrusion. . LWT 154::112756
    [Crossref] [Google Scholar]
  125. Yang Y, Yang W, Zhong H. 2008.. Temperature distribution measurement and control of extrusion process by tomography. Paper presented at the 2008 IEEE International Workshop on Imaging Systems and Techniques, Chania, Greece:
    [Google Scholar]
  126. Zahari I, Ferawati F, Helstad A, Ahlström C, Östbring K, et al. 2020.. Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. . Foods 9::772
    [Crossref] [Google Scholar]
  127. Zahari I, Ferawati F, Purhagen JK, Rayner M, Ahlström C, et al. 2021.. Development and characterization of extrudates based on rapeseed and pea protein blends using high-moisture extrusion cooking. . Foods 10::2397
    [Crossref] [Google Scholar]
  128. Zhang JC, Chen Q, Kaplan DL, Wang Q. 2022a.. High-moisture extruded protein fiber formation toward plant-based meat substitutes applications: science, technology, and prospect. . Trends Food Sci. Technol. 128::20216
    [Crossref] [Google Scholar]
  129. Zhang JC, Chen QL, Liu L, Zhang YJ, He N, Wang Q. 2021.. High-moisture extrusion process of transglutaminase-modified peanut protein: effect of transglutaminase on the mechanics of the process forming a fibrous structure. . Food Hydrocoll. 112::106346
    [Crossref] [Google Scholar]
  130. Zhang JC, Liu L, Jiang YR, Shah F, Xu YJ, Wang Q. 2020.. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: effect of different exogenous polysaccharides on the process forming a fibrous structure. . Food Hydrocoll. 99::105311
    [Crossref] [Google Scholar]
  131. Zhang JC, Liu L, Liu HZ, Yoon A, Rizvi SS, Wang Q. 2019.. Changes in conformation and quality of vegetable protein during texturization process by extrusion. . Crit. Rev. Food Sci. Nutr. 59::326780
    [Crossref] [Google Scholar]
  132. Zhang JC, Liu L, Zhu S, Wang Q. 2018.. Texturisation behaviour of peanut–soy bean/wheat protein mixtures during high moisture extrusion cooking. . Int. J. Food Sci. Technol. 53::253541
    [Crossref] [Google Scholar]
  133. Zhang JC, Meng Z, Cheng QL, Li QZ, Zhang YJ, et al. 2022b.. Plant-based meat substitutes by high-moisture extrusion: visualizing the whole process in data systematically from raw material to the products. . J. Integr. Agric. 21::243544
    [Crossref] [Google Scholar]
  134. Zhang TY, Dou W, Zhang X, Zhao Y, Zhang Y, et al. 2021.. The development history and recent updates on soy protein-based meat alternatives. . Trends Food Sci. Technol. 109::70210
    [Crossref] [Google Scholar]
  135. Zhang W, Zhao DL, Dong ZY, Li J, Zhang B, Yu WH. 2022.. The consistency factor and the viscosity exponent of soybean-protein-isolate/wheat-gluten/corn-starch blends by using a capillary rheometry. . Molecules 27::6693
    [Crossref] [Google Scholar]
  136. Zhang X, Zhao Y, Zhang TY, Zhang Y, Jiang LZ, Sui XN. 2022a.. High moisture extrusion of soy protein and wheat gluten blend: an underlying mechanism for the formation of fibrous structures. . LWT 163::113561
    [Crossref] [Google Scholar]
  137. Zhang X, Zhao Y, Zhao XH, Sun P, Zhao DS, et al. 2022b.. The texture of plant protein-based meat analogs by high moisture extrusion: a review. . J. Texture Stud. 54:(3):35164
    [Crossref] [Google Scholar]
  138. Zhang ZY, Zhang LJ, He SD, Li XJ, Jin R, et al. 2022.. High-moisture extrusion technology application in the processing of textured plant protein meat analogues: a review. . Food Rev. Int. 39:(8):4873908
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034346
Loading
/content/journals/10.1146/annurev-food-072023-034346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error