1932

Abstract

This review discusses fundamental concepts of fat crystallization and how various processing conditions such as crystallization temperature, cooling rate, and shear or agitation affect this process. Traditional methods used to process fats, such as the use of scraped surface heat exchangers, fractionation, and interesterification, are described. Parameters that affect fat crystallization in these systems, such as shear, crystallization temperature, type of fat, and type of process, are discussed. In addition, the use of minor components to induce or delay fat crystallization based on their chemical composition is presented. The use of novel technologies, such as high-intensity ultrasound, oleogelation, and high-pressure crystallization is also reviewed. In these cases, acoustic and high-pressure process parameters, the various types of oleogels, and the use of oleogelators of differing chemical compositions are discussed. The combination of all these techniques and future trends is also presented.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034403
2024-06-28
2024-10-15
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034403.html?itemId=/content/journals/10.1146/annurev-food-072023-034403&mimeType=html&fmt=ahah

Literature Cited

  1. Abdollahi M, Goli SAH, Soltanizadeh N. 2020.. Physicochemical properties of foam-templated oleogel based on gelatin and xanthan gum. . Eur. J. Lipid Sci. Technol. 122:(2):1900196
    [Crossref] [Google Scholar]
  2. Ai H, Lee YY, Xie X, Tan CP, Lai OM, et al. 2023.. Structured lipids produced from palm-olein oil by interesterification: a controllable lipase-catalyzed approach in a solvent-free system. . Food Chem. 412::135558
    [Crossref] [Google Scholar]
  3. Bin Sintang MD, Danthine S, Patel AR, Rimaux T, Van De Walle D, Dewettinck K. 2017.. Mixed surfactant systems of sucrose esters and lecithin as a synergistic approach for oil structuring. . J. Colloid Interface Sci. 504::38796
    [Crossref] [Google Scholar]
  4. Blake AI, Co ED, Marangoni AG. 2014.. Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. . J. Am. Oil Chem. Soc. 91:(6):885903
    [Crossref] [Google Scholar]
  5. Blümer C, Mäder K. 2005.. Isostatic ultra-high-pressure effects on supercooled melts in colloidal triglyceride dispersions. . Pharm. Res. 22::170815
    [Crossref] [Google Scholar]
  6. Bootello MA, Hartel RW, Garcés R, Martínez-Force E, Salas JJ. 2012.. Evaluation of high oleic-high stearic sunflower hard stearins for cocoa butter equivalent formulation. . Food Chem. 134::140917
    [Crossref] [Google Scholar]
  7. Bot A, den Adel R, Roijers EC. 2008.. Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. . J. Am. Oil Chem. Soc. 85::112734
    [Crossref] [Google Scholar]
  8. Bot A, Flöter E. 2013.. Application of edible oils. . In Edible Oil Processing, ed. W Hamm, RJ Hamilton, G Calliauw , pp. 22349. Hoboken, NJ:: Wiley
    [Google Scholar]
  9. Bot A, Flöter E, Lammes J, Pelan EG. 2007.. The texture and microstructure of spreads. . In Understanding and Controlling the Microstructure of Complex Foods, ed. DJ McClements , pp. 57599. Sawston, UK:: Woodhead Publ.
    [Google Scholar]
  10. Brun M, Delample M, Harte E, Lecomte S, Leal-Calderon F. 2015.. Stabilization of air bubbles in oil by surfactant crystals: a route to produce air-in-oil foams and air-in-oil-in-water emulsions. . Food Res. Int. 67::36675
    [Crossref] [Google Scholar]
  11. Bund RK, Pandit AB. 2007.. Rapid lactose recovery from paneer whey using sonocrystallization: a process optimization. . Chem. Eng. Process. Process Intensif. 46::84650
    [Crossref] [Google Scholar]
  12. Callau M, Sow-Kébé K, Jenkins N, Fameau AL. 2020.. Effect of the ratio between fatty alcohol and fatty acid on foaming properties of whipped oleogels. . Food Chem. 333::127403
    [Crossref] [Google Scholar]
  13. Chai X, Meng Z, Jiang J, Cao P, Liang X, et al. 2018.. Non-triglyceride components modulate the fat crystal network of palm kernel oil and coconut oil. . Food Res. Int. 105::42331
    [Crossref] [Google Scholar]
  14. Chaves K, Jordânia Silva T, Aliciane Fontenele Domingues M, Barrera-Arellano D, Paula Badan Ribeiro A. 2019.. Conventional and unconventional crystallization mechanisms. . In Crystal Growth, ed. V Glebovsky , pp. 116. London:: InTech Open
    [Google Scholar]
  15. Chen F, Zhang H, Sun X, Wang X, Xu X. 2013.. Effects of ultrasonic parameters on the crystallization behavior of palm oil. . J. Am. Oil Chem. Soc. 90::94149
    [Crossref] [Google Scholar]
  16. Chikhoune A, Shashkov M, Piligaev AV, Lee J, Boudjellal A, Martini S. 2020.. Isothermal crystallization of palm oil-based fats with and without the addition of essential oils. . J. Am. Oil Chem. Soc. 97::86178
    [Crossref] [Google Scholar]
  17. Chow R, Blindt R, Chivers R, Povey M. 2003.. The sonocrystallisation of ice in sucrose solutions: primary and secondary nucleation. . Ultrasonics 41::595604
    [Crossref] [Google Scholar]
  18. Co ED, Marangoni AG. 2012.. Organogels: an alternative edible oil-structuring method. . J. Am. Oil Chem. Soc. 89::74980
    [Crossref] [Google Scholar]
  19. Co ED, Marangoni AG. 2020.. The phase space of crystallization: modeling fat crystallization using thermodynamic and mass-transfer variables. . Cryst. Growth Des. 20::162837
    [Crossref] [Google Scholar]
  20. Cooney J, Hilton I, Marsh M, Jones A, Martini S. 2023.. Crystallization behavior of milk fat, palm oil, palm kernel oil, and cocoa butter with and without the addition of cannabidiol. . J. Am. Oil Chem. Soc. 100::22536
    [Crossref] [Google Scholar]
  21. Cooper Z, Simons C, Martini S. 2019.. Retardation of crystallization through the addition of dairy phospholipids. . J. Am. Oil Chem. Soc. 96::120518
    [Crossref] [Google Scholar]
  22. Costales-Rodríguez R, Gibon V, Verhé R, De Greyt W. 2009.. Chemical and enzymatic interesterification of a blend of palm stearin: soybean oil for low trans-margarine formulation. . J. Am. Oil Chem. Soc. 86::68197
    [Crossref] [Google Scholar]
  23. Cremer G, Danthine S, Blecker C, Gibon V. 2023.. Peculiar crystallisation behaviour of palm oil during dry fractionation. . J. Oil Palm Res. 35:(2):296306
    [Google Scholar]
  24. da Silva TLT, Arellano DB, Martini S. 2019a.. Interactions between candelilla wax and saturated triacylglycerols in oleogels. . Food Res. Int. 121::9009
    [Crossref] [Google Scholar]
  25. da Silva TLT, Barrera DA, Martini S. 2019b.. Use of high-intensity ultrasound to change the physical properties of oleogels and emulsion gels. . J. Am. Oil Chem. Soc. 96::68191
    [Crossref] [Google Scholar]
  26. da Silva TLT, Chaves KF, Fernandes GD, Rodrigues JB, Bolini HMA, Arellano DB. 2018.. Sensory and technological evaluation of margarines with reduced saturated fatty acid contents using oleogel technology. . J. Am. Oil Chem. Soc. 95:(6):67385
    [Crossref] [Google Scholar]
  27. da Silva TLT, Danthine S. 2021.. Effect of high-intensity ultrasound on the oleogelation and physical properties of high melting point monoglycerides and triglycerides oleogels. . J. Food Sci. 86::34356
    [Crossref] [Google Scholar]
  28. da Silva TLT, Danthine S. 2022a.. High-intensity ultrasound as a tool to form water in oleogels emulsions structured by lipids oleogelators. . Food Biophys. 17::36174
    [Crossref] [Google Scholar]
  29. da Silva TLT, Danthine S. 2022b.. Influence of sonocrystallization on lipid crystals multicomponent oleogels structuration and physical properties. . Food Res. Int. 154::110997
    [Crossref] [Google Scholar]
  30. da Silva TLT, Danthine S, Martini S. 2020a.. Effect of processing conditions as high-intensity ultrasound, agitation, and cooling temperature on the physical properties of a low saturated fat. . J. Food Sci. 85::338090
    [Crossref] [Google Scholar]
  31. da Silva TLT, Danthine S, Martini S. 2021a.. Influence of sonication, temperature, and agitation, on the physical properties of a palm-based fat crystallized in a continuous system. . Ultrason. Sonochem. 74::105550
    [Crossref] [Google Scholar]
  32. da Silva TLT, Danthine S, Martini S. 2021b.. Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger. . LWT Food Sci. Technol. 138::110593
    [Crossref] [Google Scholar]
  33. da Silva TLT, Domingues MAF, Chiu MC, Goncalves LAG. 2017.. Templating effects of dipalmitin on soft palm mid fraction crystals. . Int. J. Food Prop. 20::93547
    [Crossref] [Google Scholar]
  34. da Silva TLT, Giacomozzi A, Martini S. 2022.. Use of high-intensity ultrasound to structure edible fats. . In Development of Trans-Free Lipid Systems and Their Use in Food Products, ed. JF Toro-Vazquez , pp. 5390. London:: R. Soc. Chem.
    [Google Scholar]
  35. da Silva TLT, Marsh M, Gibon V, Martini S. 2020b.. Sonocrystallization as a tool to reduce oil migration by changing physical properties of a palm kernel fat. . J. Food Sci. 85::96471
    [Crossref] [Google Scholar]
  36. Daels E, Goderis B, Matton V, Foubert I. 2018.. Isothermal crystallization kinetics of palm oil as influenced by addition of a commercial phytosterol ester mixture. . J. Agric. Food Chem. 66::391021
    [Crossref] [Google Scholar]
  37. Danthine S, Closset S, Maes J, Mascrez S, Blecker C, et al. 2022.. Enzymatic interesterification to produce zero-trans and dialkylketones-free fats from rapeseed oil. . OCL 29::36
    [Crossref] [Google Scholar]
  38. Danthine S, Lefébure E, Trinh HN, Blecker C. 2014.. Effect of palm oil enzymatic interesterification on physicochemical and structural properties of mixed fat blends. . J. Am. Oil Chem. Soc. 91::147787
    [Crossref] [Google Scholar]
  39. Dassanayake LSK, Kodali DR, Ueno S, Sato K. 2009.. Physical properties of rice bran wax in bulk and organogels. . J. Am. Oil Chem. Soc. 86::116373
    [Crossref] [Google Scholar]
  40. de Oliveira IF, Grimaldi R, Gonçalves LAG. 2014.. Effect of diacylglycerols on crystallization of palm oil (Elaeis guineensis). . Eur. J. Lipid Sci. Technol. 116::9049
    [Crossref] [Google Scholar]
  41. de Souza Paglarini C, Martini S, Pollonio MAR. 2019.. Using emulsion gels made with sonicated soy protein isolate dispersions to replace fat in frankfurters. . LWT Food Sci. Technol. 99::45359
    [Crossref] [Google Scholar]
  42. Di Bari V, Norton JE, Norton IT. 2014.. Effect of processing on the microstructural properties of water-in-cocoa butter emulsions. . J. Food Eng. 122::814
    [Crossref] [Google Scholar]
  43. Do TAL, Vieira J, Hargreaves JM, Wolf B, Mitchell JR. 2008.. Impact of limonene on the physical properties of reduced fat chocolate. . J. Am. Oil Chem. Soc. 85::91120
    [Crossref] [Google Scholar]
  44. Dollah S, Abdulkarim SM, Ahmad SH, Khoramnia A, Ghazali HM. 2015.. Enzymatic interesterification on the physicochemical properties of Moringa oleifera seed oil blended with palm olein and virgin coconut oil. . Grasas Aceites 66:(2). https://doi.org/10.3989/gya.0695141
    [Google Scholar]
  45. Domingues MAF, da Silva TLT, Chiu MC, Ribeiro APB, Gonçalves LAG. 2022.. Tailoring crystallization and physical properties of palm mid-fraction with sorbitan tristearate and sucrose stearate. . Food Chem. 369::130943
    [Crossref] [Google Scholar]
  46. Estevez AC, Toro-Vazquez JF, Hartel RW. 2013.. Effects of processing and composition on the crystallization and mechanical properties of water-in-oil emulsions. . J. Am. Oil Chem. Soc. 90::1195201
    [Crossref] [Google Scholar]
  47. Fasolin LH, Martins AJ, Cerqueira MA, Vicente AA. 2021.. Modulating process parameters to change physical properties of bigels for food applications. . Food Struct. 28::100173
    [Crossref] [Google Scholar]
  48. Ferstl P, Eder C, Ruß W, Wierschem A. 2011.. Pressure-induced crystallization of triacylglycerides. . High Press. Res. 31::33949
    [Crossref] [Google Scholar]
  49. Ferstl P, Gillig S, Kaufmann C, Dürr C, Eder C, et al. 2010.. Pressure-induced phase transitions in triacylglycerides. . Ann. N. Y. Acad. Sci. 1189::6267
    [Crossref] [Google Scholar]
  50. Giacomozzi A, Palla C, Carrin ME, Martini S. 2020.. Tailoring physical properties of monoglycerides oleogels using high-intensity ultrasound. . Food Res. Int. 134::109231
    [Crossref] [Google Scholar]
  51. Gibon VJ, Jacquet B, Blecker C, Danthine S. 2022.. Isothermal crystallization of palm olein with different seeding method. Paper presented at the 2022 AOCS Annual Meeting & Expo, Atlanta, GA:, May 2
    [Google Scholar]
  52. Gibon VJ, Kellens M. 2022.. Fractionation of palm and palm kernel oils for designing high quality commodity and specialty fats. Paper presented at the 2022 AOCS Annual Meeting & Expo, Atlanta, GA:, May 2
    [Google Scholar]
  53. Goibier L, Pillement C, Monteil J, Faure C, Leal-Calderon F. 2019.. Emulsification of non-aqueous foams stabilized by fat crystals: towards novel air-in-oil-in-water food colloids. . Food Chem. 293::4956
    [Crossref] [Google Scholar]
  54. Gomes da Silva M, Ramponi Rodrigues de Godoi K, Pavie Cardoso L, Paula Badan Ribeiro A. 2022.. Effect of stabilization and fatty acids chain length on the crystallization behavior of interesterified blends during storage. . Food Res. Int. 157::111208
    [Crossref] [Google Scholar]
  55. Gravelle AJ, Barbut S, Marangoni AG. 2012.. Ethylcellulose oleogels: manufacturing considerations and effects of oil oxidation. . Food Res. Int. 48::57883
    [Crossref] [Google Scholar]
  56. Gregersen SB, Frydenberg RP, Hammershøj M, Dalsgaard TK, Andersen U, Wiking L. 2019.. Application of high intensity ultrasound to accelerate crystallization of anhydrous milk fat and rapeseed oil blends. . Eur. J. Lipid Sci. Technol. 121:(1):1800200
    [Crossref] [Google Scholar]
  57. Grossi M, Fang B, Rao J, Chen B. 2023.. Oleofoams stabilized by monoacylglycerides: impact of chain length and concentration. . Food Res. Int. 169::112914
    [Crossref] [Google Scholar]
  58. Guedes AMM, Antoniassi R, Galdeano MC, Grimaldi R, de Carvalho MG, et al. 2017.. Length-scale specific crystalline structural changes induced by molecular randomization of pequi oil. . J. Oleo Sci. 66::46978
    [Crossref] [Google Scholar]
  59. Gunes DZ, Murith M, Godefroid J, Pelloux C, Deyber H, et al. 2017.. Oleofoams: properties of crystal-coated bubbles from whipped oleogels: evidence for Pickering stabilization. . Langmuir 33::156375
    [Crossref] [Google Scholar]
  60. Haque Akanda MJ, Norazlina MR, Azzatul FS, Shaarani S, Mamat H, et al. 2020.. Hard fats improve the physicochemical and thermal properties of seed fats for applications in confectionery products. . Food Rev. Int. 36::60125
    [Crossref] [Google Scholar]
  61. Hartel RW. 2001.. Crystallization in Foods. New York:: Springer
    [Google Scholar]
  62. Higaki K, Ueno S, Koyano T, Sato K. 2001.. Effects of ultrasonic irradiation on crystallization behavior of tripalmitoylglycerol and cocoa butter. . J. Am. Oil Chem. Soc. 78::51318
    [Crossref] [Google Scholar]
  63. Hishamuddin E, Nagy ZK, Stapley AGF. 2020.. Thermodynamic analysis of the isothermal fractionation of palm oil using a novel method for entrainment correction. . J. Food Eng. 273::109806
    [Crossref] [Google Scholar]
  64. Holey SA, Sekhar KPC, Mishra SS, Kanjilal S, Nayak RR. 2021.. Effect of oil unsaturation and wax composition on stability, properties and food applicability of oleogels. . J. Am. Oil Chem. Soc. 98:(12):1189203
    [Crossref] [Google Scholar]
  65. Hubbes SS, Danzl W, Foerst P. 2018.. Crystallization kinetics of palm oil of different geographic origins and blends thereof by the application of the Avrami model. . LWT Food Sci. Technol. 93::18996
    [Crossref] [Google Scholar]
  66. Hwang HS, Singh M, Bakota EL, Winkler-Moser JK, Kim S, Liu SX. 2013.. Margarine from organogels of plant wax and soybean oil. . J. Am. Oil Chem. Soc. 90::170512
    [Crossref] [Google Scholar]
  67. Jadhav HB, Pratap AP, Gogate PR, Annapure US. 2022.. Ultrasound-assisted synthesis of highly stable MCT based oleogel and evaluation of its baking performance. . Appl. Food Res. 2::100156
    [Crossref] [Google Scholar]
  68. Jana S, Martini S. 2016.. Phase behavior of binary blends of four different waxes. . J. Am. Oil Chem. Soc. 93::54354
    [Crossref] [Google Scholar]
  69. Jin J, Mu H, Wang Y, Pembe W, Liu Y, et al. 2017.. Production of high-melting symmetrical monounsaturated triacylglycerol-rich fats from mango kernel fat by acetone fractionation. . J. Am. Oil Chem. Soc. 94::20113
    [Crossref] [Google Scholar]
  70. Kadamne JV, Ifeduba EA, Akoh CC, Martini S. 2017.. Sonocrystallization of interesterified fats with 20 and 30% of stearic acid at the sn-2 position and their physical blends. . J. Am. Oil Chem. Soc. 94::104562
    [Crossref] [Google Scholar]
  71. Kadamne JV, Martini S. 2018.. Sonocrystallization of interesterified soybean oil with and without agitation. . J. Am. Oil Chem. Soc. 95::57182
    [Crossref] [Google Scholar]
  72. Kadivar S, De Clercq N, Van de Walle D, Dewettinck K. 2014.. Optimisation of enzymatic synthesis of cocoa butter equivalent from high oleic sunflower oil. . J. Sci. Food Agric. 94::132531
    [Crossref] [Google Scholar]
  73. Kamal-Eldin A. 2005.. Minor components of fats and oils. . In Bailey's Industrial Oil and Fat Products, Vol. 3, ed. F Shahidi , pp. 31959. Hoboken, NJ:: Wiley. , 6th ed..
    [Google Scholar]
  74. Kerr RM, Tombokan X, Ghosh S, Martini S. 2011.. Crystallization behavior of anhydrous milk fat–sunflower oil wax blends. . J. Agric. Food Chem. 59::268995
    [Crossref] [Google Scholar]
  75. Kirimlidou M, Flöter E. 2021.. On the feasibility of continuous fat fractionation by combination of scraped surface heat exchangers and decanter centrifuge. Paper presented at the 18th Euro Fed Lipid Congress and Expo: Fats, Oils and Lipids: For a Healthy and Sustainable World, Online, Oct. 19
    [Google Scholar]
  76. Korma SA, Zou X, Ali AH, Abed SM, Jin Q, Wang X. 2018.. Preparation of structured lipids enriched with medium- and long-chain triacylglycerols by enzymatic interesterification for infant formula. . Food Bioprod. Process. 107::12130
    [Crossref] [Google Scholar]
  77. Kościesza R, Kulisiewicz L, Delgado A. 2010.. Observations of a high-pressure phase creation in oleic acid. . High Press. Res. 30::11823
    [Crossref] [Google Scholar]
  78. Lee J, Youngs J, Birkin P, Truscott T, Martini S. 2020.. Potential effect of cavitation on the physical properties of interesterified soybean oil using high-intensity ultrasound: a long-term storage study. . J. Am. Oil Chem. Soc. 97::110517
    [Crossref] [Google Scholar]
  79. Lefébure É, Ronkart S, Brostaux Y, Béra F, Blecker C, Danthine S. 2013.. Investigation of the influence of processing parameters on physicochemical properties of puff pastry margarines using surface response methodology. . LWT Food Sci. Technol. 51::22532
    [Crossref] [Google Scholar]
  80. Liao Z, Dong L, Lu M, Zheng S, Cao Y, et al. 2023.. Construction of interfacial crystallized oleogel emulsion with improved thermal stability. . Food Chem. 420::136029
    [Crossref] [Google Scholar]
  81. Liu C, Zheng Z, Meng Z, Chai X, Cao C, Liu Y. 2019.. Beeswax and carnauba wax modulate the crystallization behavior of palm kernel stearin. . LWT Food Sci. Technol. 115::108446
    [Crossref] [Google Scholar]
  82. Liu Y, Binks BP. 2021.. A novel strategy to fabricate stable oil foams with sucrose ester surfactant. . J. Colloid Interface Sci. 594::20416
    [Crossref] [Google Scholar]
  83. Liu Y, Binks BP. 2022.. Fabrication of stable oleofoams with sorbitan ester surfactants. . Langmuir 38::1477988
    [Crossref] [Google Scholar]
  84. Lopez-Martínez A, Charó-Alonso MA, Marangoni AG, Toro-Vazquez JF. 2015.. Monoglyceride organogels developed in vegetable oil with and without ethylcellulose. . Food Res. Int. 72::3746
    [Crossref] [Google Scholar]
  85. Maeda K, Naito Y, Kuramochi H, Arafune K, Itoh K, et al. 2021.. High-pressure crystallization of binary unsaturated fatty acids in cylindrical cell. . J. Cryst. Growth 576::126380
    [Crossref] [Google Scholar]
  86. Magalhães KT, de Sousa Tavares T, Nunes CA. 2020.. The chemical, thermal and textural characterization of fractions from Macauba kernel oil. . Food Res. Int. 130::108925
    [Crossref] [Google Scholar]
  87. Marangoni AG, Rousseau D. 1998.. Chemical and enzymatic modification of butterfat and butterfat-canola oil blends. . Food Res. Int. 31::59599
    [Crossref] [Google Scholar]
  88. Martinez RM, Magalhães WV, da Silva Sufi B, Padovani G, Nazato LIS, et al. 2021.. Vitamin E-loaded bigels and emulsions: physicochemical characterization and potential biological application. . Colloids Surfaces B 201::111651
    [Crossref] [Google Scholar]
  89. Martini S, Herrera ML. 2008.. Physical properties of shortenings with low-trans fatty acids as affected by emulsifiers and storage conditions. . Eur. J. Lipid Sci. Technol. 110::17282
    [Crossref] [Google Scholar]
  90. Martini S, Herrera ML, Hartel RW. 2002.. Effect of processing conditions on microstructure of milk fat fraction/sunflower oil blends. . J. Am. Oil Chem. Soc. 79::106368
    [Crossref] [Google Scholar]
  91. Martins AJ, Guimarães A, Fuciños P, Sousa P, Venâncio A, et al. 2023.. Food-grade bigels: evaluation of hydrogel:oleogel ratio and gelator concentration on their physicochemical properties. . Food Hydrocoll. 143::108893
    [Crossref] [Google Scholar]
  92. Maruyama JM, Wagh A, Gioielli LA, da Silva RC, Martini S. 2016.. Effects of high intensity ultrasound and emulsifiers on crystallization behavior of coconut oil and palm olein. . Food Res. Int. 86::5463
    [Crossref] [Google Scholar]
  93. Mayamol PN, Samuel T, Balachandran C, Sundaresan A, Arumughan C. 2004.. Zero-trans shortening using palm stearin and rice bran oil. . J. Am. Oil Chem. Soc. 81::40713
    [Crossref] [Google Scholar]
  94. Mello NA, Cardoso LP, Ribeiro APB, Bicas JL. 2021a.. Effect of limonene on modulation of palm stearin crystallization. . Food Biophys. 16::114
    [Crossref] [Google Scholar]
  95. Mello NA, Ribeiro APB, Bicas JL. 2021b.. Delaying crystallization in single fractionated palm olein with limonene addition. . Food Res. Int. 145::110387
    [Crossref] [Google Scholar]
  96. Metin S, Hartel RW. 2005.. Crystallization of fats and oils. . In Bailey's Industrial Oil and Fat Products, Vol. 3, ed. F Shahidi , pp. 4576. Hoboken, NJ:: Wiley. , 6th ed..
    [Google Scholar]
  97. Mishra K, Kummer N, Bergfreund J, Kämpf F, Bertsch P, et al. 2023.. Controlling lipid crystallization across multiple length scales by directed shear flow. . J. Colloid Interface Sci. 630::73141
    [Crossref] [Google Scholar]
  98. Miskandar MS, Noor Lida HMD. 2011.. Formulation of trans-free and low saturated margarine. . J. Oil Palm Res. 23::95867
    [Google Scholar]
  99. Miskandar MS, Omar Z, Habi Mat Dian NL, Abd Hamid R, Kanagaratnam S, Osman R. 2018.. Quality soft table margarine with minimal post-crystallisation through high pressure pin-rotor unit. . J. Oil Palm Res. 30::61734
    [Google Scholar]
  100. Moreira DKT, Santos PS, Gambero A, Macedo GA. 2017.. Evaluation of structured lipids with behenic acid in the prevention of obesity. . Food Res. Int. 95::5258
    [Crossref] [Google Scholar]
  101. Morselli Ribeiro MDM, Ming CC, Lopes TIB, Grimaldi R, Marsaioli AJ, Gonçalves LAG. 2017.. Synthesis of structured lipids containing behenic acid from fully hydrogenated Crambe abyssinica oil by enzymatic interesterification. . J. Food Sci. Technol. 54::114657
    [Crossref] [Google Scholar]
  102. Nguyen V, Rimaux T, Truong V, Dewettinck K, Van Bockstaele F. 2020.. Fat crystallization of blends of palm oil and anhydrous milk fat: a comparison between static and dynamic-crystallization. . Food Res. Int. 137::109412
    [Crossref] [Google Scholar]
  103. Nguyen V, Rimaux T, Truong V, Dewettinck K, Van Bockstaele F. 2021.. The effect of cooling on crystallization and physico-chemical properties of puff pastry shortening made of palm oil and anhydrous milk fat blends. . J. Food Eng. 291::110245
    [Crossref] [Google Scholar]
  104. Nicholson RA, Marangoni AG. 2020.. Enzymatic glycerolysis converts vegetable oils into structural fats with the potential to replace palm oil in food products. . Nat. Food 1::68492
    [Crossref] [Google Scholar]
  105. Nikiforidis CV, Scholten E. 2014.. Self-assemblies of lecithin and α-tocopherol as gelators of lipid material. . RSC Adv. 4::246673
    [Crossref] [Google Scholar]
  106. Norazlina MR, Jahurul MHA, Hasmadi M, Sharifudin MS, Patricia M, et al. 2020.. Effects of fractionation technique on triacylglycerols, melting and crystallisation and the polymorphic behavior of bambangan kernel fat as cocoa butter improver. . LWT Food Sci. Technol. 129::109558
    [Crossref] [Google Scholar]
  107. Nutter J, Shi X, Lamsal B, Acevedo NC. 2023.. Designing and characterizing multicomponent, plant-based bigels of rice bran wax, gums, and monoglycerides. . Food Hydrocoll. 138::108425
    [Crossref] [Google Scholar]
  108. Okuro PK, Malfatti-Gasperini AA, Vicente AA, Cunha RL. 2018a.. Lecithin and phytosterols-based mixtures as hybrid structuring agents in different organic phases. . Food Res. Int. 111::16877
    [Crossref] [Google Scholar]
  109. Okuro PK, Tavernier I, Bin Sintang MD, Skirtach AG, Vicente AA, et al. 2018b.. Synergistic interactions between lecithin and fruit wax in oleogel formation. . Food Funct. 9::175567
    [Crossref] [Google Scholar]
  110. Oliveira PD, Rodrigues AMC, Bezerra CV, Silva LHM. 2017.. Chemical interesterification of blends with palm stearin and patawa oil. . Food Chem. 215::36976
    [Crossref] [Google Scholar]
  111. Omar Z, Rashid NA, Fauzi SHM, Shahrim Z, Marangoni AG. 2015.. Fractal dimension in palm oil crystal networks during storage by image analysis and rheological measurements. . LWT Food Sci. Technol. 64::48389
    [Crossref] [Google Scholar]
  112. Patel AR, Babaahmadi M, Lesaffer A, Dewettinck K. 2015a.. Rheological profiling of organogels prepared at critical gelling concentrations of natural waxes in a triacylglycerol solvent. . J. Agric. Food Chem. 63::486269
    [Crossref] [Google Scholar]
  113. Patel AR, Dewettinck K. 2015.. Comparative evaluation of structured oil systems: shellac oleogel, HPMC oleogel, and HIPE gel. . Eur. J. Lipid Sci. Technol. 117::177281
    [Crossref] [Google Scholar]
  114. Perederic OA, Mansouri SS, Appel S, Sarup B, Gani R, et al. 2020.. Process analysis of shea butter solvent fractionation using a generic systematic approach. . Ind. Eng. Chem. Res. 59::915264
    [Crossref] [Google Scholar]
  115. Pérez-Martínez JD, Reyes-Hernández J, Dibildox-Alvarado E, Toro-Vazquez JF. 2012.. Physical properties of cocoa butter/vegetable oil blends crystallized in a scraped surface heat exchanger. . J. Am. Oil Chem. Soc. 89::199209
    [Crossref] [Google Scholar]
  116. Pernetti M, van Malssen K, Kalnin D, Floter E. 2007.. Structuring edible oil with lecithin and sorbitan tri-stearate. . Food Hydrocoll. 21::85561
    [Crossref] [Google Scholar]
  117. Podchong P, Aumpai K, Sonwai S, Rousseau D. 2022.. Rice bran wax effects on cocoa butter crystallisation and tempering. . Food Chem. 397::133635
    [Crossref] [Google Scholar]
  118. Podmaniczky F, Gránásy L. 2022.. Molecular scale hydrodynamic theory of crystal nucleation and polycrystalline growth. . J. Cryst. Growth 597::136854
    [Crossref] [Google Scholar]
  119. Qiu C, Lei M, Lee WJ, Zhang N, Wang Y. 2021.. Fabrication and characterization of stable oleofoam based on medium-long chain diacylglycerol and β-sitosterol. . Food Chem. 350::129275
    [Crossref] [Google Scholar]
  120. Rao CS, Hartel RW. 2006.. Scraped surface heat exchangers. . Crit. Rev. Food Sci. Nutr. 46::20719
    [Crossref] [Google Scholar]
  121. Ray J, MacNaughtan W, Chong PS, Vieira J, Wolf B. 2012.. The effect of limonene on the crystallization of cocoa butter. . J. Am. Oil Chem. Soc. 89::43745
    [Crossref] [Google Scholar]
  122. Reyes-Hernández J, Pérez-Martínez JD, Toro-Vazquez JF. 2014.. Influence of processing conditions on the physicochemical properties of complex fat systems. . J. Am. Oil Chem. Soc. 91::124759
    [Crossref] [Google Scholar]
  123. Rigolle A, Goderis B, Van Den Abeele K, Foubert I. 2016.. Isothermal crystallization behavior of cocoa butter at 17 and 20°C with and without limonene. . J. Agric. Food Chem. 64::340516
    [Crossref] [Google Scholar]
  124. Rincón-Cardona JA, Agudelo-Laverde LM, Martini S, Candal RJ, Herrera ML. 2014.. In situ synchrotron radiation X-ray scattering study on the effect of a stearic sucrose ester on polymorphic behavior of a new sunflower oil variety. . Food Res. Int. 64::917
    [Crossref] [Google Scholar]
  125. Rocha JCB, Lopes JD, Mascarenhas MCN, Arellano DB, Guerreiro LMR, da Cunha RL. 2013.. Thermal and rheological properties of organogels formed by sugarcane or candelilla wax in soybean oil. . Food Res. Int. 50::31823
    [Crossref] [Google Scholar]
  126. Rodríguez-Negrette AC, Rodríguez-Batiller MJ, García-Londoño VA, Borroni V, Candal RJ, Herrera ML. 2022.. Effect of sucrose esters on polymorphic behavior and crystallization kinetics of cupuassu fat and its fractions. . J. Am. Oil Chem. Soc. 99::2741
    [Crossref] [Google Scholar]
  127. Rogers MA, Wright AJ, Marangoni AG. 2009a.. Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid/canola oil organogels. . Curr. Opin. Colloid Interface Sci. 14::3342
    [Crossref] [Google Scholar]
  128. Rogers MA, Wright AJ, Marangoni AG. 2009b.. Oil organogels: the fat of the future?. Soft Matter 5::159496
    [Crossref] [Google Scholar]
  129. Rønholt S, Madsen AS, Kirkensgaard JJK, Mortensen K, Knudsen JC. 2014.. Effect of churning temperature on water content, rheology, microstructure and stability of butter during four weeks of storage. . Food Struct. 2::1426
    [Crossref] [Google Scholar]
  130. Roßbach A, Bahr LA, Gäbel S, Braeuer AS, Wierschem A. 2019.. Growth rate of pressure-induced triolein crystals. . J. Am. Oil Chem. Soc. 96::2533
    [Crossref] [Google Scholar]
  131. Ruan X, Zhu XM, Xiong H, Wang S, Bai C, Zhao Q. 2014.. Characterisation of zero-trans margarine fats produced from camellia seed oil, palm stearin and coconut oil using enzymatic interesterification strategy. . Int. J. Food Sci. Technol. 49::9197
    [Crossref] [Google Scholar]
  132. Rye GG, Litwinenko JW, Marangoni AG. 2005.. Fat crystal networks. . In Bailey's Industrial Oil and Fat Products, Vol. 3, ed. F Shahidi , pp. 369414. Hoboken, NJ:: Wiley. , 6th ed..
    [Google Scholar]
  133. Saffold AC, Acevedo NC. 2022.. The effect of mono-diglycerides on the mechanical properties, microstructure, and physical stability of an edible rice bran wax-gelatin biphasic gel system. . J. Am. Oil Chem. Soc. 99::103343
    [Crossref] [Google Scholar]
  134. Samui T, Goldenisky D, Rosen-Kligvasser J, Davidovich-Pinhas M. 2021.. The development and characterization of novel in-situ bigel formulation. . Food Hydrocoll. 113::106416
    [Crossref] [Google Scholar]
  135. Sato K, García LB, Calvet T, Cuevas-Diarte ÀM, Ueno S. 2013.. External factors affecting polymorphic crystallization of lipids. . Eur. J. Lipid Sci. Technol. 115::122438
    [Crossref] [Google Scholar]
  136. Sato K, Ueno S. 2011.. Crystallization, transformation and microstructures of polymorphic fats in colloidal dispersion states. . Curr. Opin. Colloid Interface Sci. 16::38490
    [Crossref] [Google Scholar]
  137. Scharfe M, Prange D, Flöter E. 2022.. The composition of edible oils modifies β-sitosterol/γ-oryzanol oleogels. Part II: addition of selected minor oil components. . J. Am. Oil Chem. Soc. 99::5777
    [Crossref] [Google Scholar]
  138. Sebben DA, Gao N, Gillies G, Beattie DA, Krasowska M. 2019.. Fractionation and characterisation of hard milk fat crystals using atomic force microscopy. . Food Chem. 279::98104
    [Crossref] [Google Scholar]
  139. Senanayake SPJN, Shahidi F. 2005.. Modification of fats and oils via chemical and enzymatic methods. . In Bailey's Industrial Oil and Fat Products, Vol. 3, ed. F Shahidi , pp. 55584. Hoboken, NJ:: Wiley. , 6th ed..
    [Google Scholar]
  140. Si X, Zhu H, Zhu P, Wang Y, Pang X, et al. 2023.. Triacylglycerol composition and thermodynamic profiles of fractions from dry fractionation of anhydrous milk fat. . J. Food Compos. Anal. 115::104916
    [Crossref] [Google Scholar]
  141. Silva RC, Cotting LN, Poltronieri TP, Balcão VM, de Almeida DB, et al. 2009.. The effects of enzymatic interesterification on the physical-chemical properties of blends of lard and soybean oil. . LWT Food Sci. Technol. 42::127582
    [Crossref] [Google Scholar]
  142. Silva RC, Lee J, Gibon V, Martini S. 2017.. Effects of high intensity ultrasound frequency and high-speed agitation on fat crystallization. . J. Am. Oil Chem. Soc. 94::106376
    [Crossref] [Google Scholar]
  143. Singh VK, Banerjee I, Agarwal T, Pramanik K, Bhattacharya MK, Pal K. 2014.. Guar gum and sesame oil based novel bigels for controlled drug delivery. . Colloids Surfaces B 123::58292
    [Crossref] [Google Scholar]
  144. Smith KW, Bhaggan K, Talbot G, van Malssen KF. 2011.. Crystallization of fats: influence of minor components and additives. . J. Am. Oil Chem. Soc. 88::1085101
    [Crossref] [Google Scholar]
  145. Sonwai S, Ornla-ied P, Martini S, Hondoh H, Ueno S. 2021.. High-intensity ultrasound-induced crystallization of mango kernel fat. . J. Am. Oil Chem. Soc. 98::4352
    [Crossref] [Google Scholar]
  146. Speranza P, Ribeiro APB, Macedo GA. 2016.. Application of lipases to regiospecific interesterification of exotic oils from an Amazonian area. . J. Biotechnol. 218::1320
    [Crossref] [Google Scholar]
  147. Subroto E, Supriyanto Utami T, Hidayat C. 2019.. Enzymatic glycerolysis-interesterification of palm stearin-olein blend for synthesis structured lipid containing high mono- and diacylglycerol. . Food Sci. Biotechnol. 28:(2):51117
    [Crossref] [Google Scholar]
  148. Suzuki AH, Lee J, Padilla SG, Martini S. 2010.. Altering functional properties of fats using power ultrasound. . Food Eng. Phys. Prop. 75::20814
    [Google Scholar]
  149. Tanti R, Barbut S, Marangoni AG. 2016.. Hydroxypropyl methylcellulose and methylcellulose structured oil as a replacement for shortening in sandwich cookie creams. . Food Hydrocoll. 61::32937
    [Crossref] [Google Scholar]
  150. Tavernier I, Doan CD, Van de Walle D, Danthine S, Rimaux T, Dewettinck K. 2017.. Sequential crystallization of high and low melting waxes to improve oil structuring in wax-based oleogels. . R. Soc. Chem. 7::1211325
    [Google Scholar]
  151. Tong SC, Tang TK, Lee YY. 2021.. A review on the fundamentals of palm oil fractionation: processing conditions and seeding agents. . Eur. J. Lipid Sci. Technol. 123::2100132
    [Crossref] [Google Scholar]
  152. Ueno S, Ristic RI, Higaki K, Sato K. 2003.. In situ studies of ultrasound-stimulated fat crystallization using synchrotron radiation. . J. Phys. Chem. B 107::492735
    [Crossref] [Google Scholar]
  153. Urbánková L, Sedláček T, Kašpárková V, Bordes R. 2021.. Formation of oleogels based on emulsions stabilized with cellulose nanocrystals and sodium caseinate. . J. Colloid Interface Sci. 596::24556
    [Crossref] [Google Scholar]
  154. Vázquez L, González N, Reglero G, Torres C. 2016.. Solvent-free lipase-catalyzed synthesis of diacylgycerols as low-calorie food ingredients. . Front. Bioeng. Biotechnol. 4::6
    [Crossref] [Google Scholar]
  155. Verret C, El Moueffak A, Largeteau A, Frimigacci M, Demazeau G, et al. 2009.. Effects of high pressure on anhydrous milk fat crystallization in emulsion. . High Press. Res. 29::5760
    [Crossref] [Google Scholar]
  156. Wagh A, Walsh MK, Martini S. 2013.. Effect of lactose monolaurate and high intensity ultrasound on crystallization behavior of anhydrous milk fat. . J. Am. Oil Chem. Soc. 90::97787
    [Crossref] [Google Scholar]
  157. Watanabe S, Yoshikawa S, Sato K. 2021.. Formation and properties of dark chocolate prepared using fat mixtures of cocoa butter and symmetric/asymmetric stearic-oleic mixed-acid triacylglycerols: impact of molecular compound crystals. . Food Chem. 339::127808
    [Crossref] [Google Scholar]
  158. West R, Rousseau D. 2020.. Tripalmitin-driven crystallization of palm oil: the role of shear and dispersed particles. . J. Am. Oil Chem. Soc. 97::98999
    [Crossref] [Google Scholar]
  159. Whitby CP. 2020.. Structuring edible oils with fumed silica particles. . Front. Sustain. Food Syst. 4::585160
    [Crossref] [Google Scholar]
  160. Wijarnprecha K, de Vries A, Santiwattana P, Sonwai S, Rosseau D. 2019.. Microstructure and rheology of oleogel-stabilized water-in-oil emulsions containing crystal-stabilized droplets as active fillers. . LWT Food Sci. Technol. 115::108058
    [Crossref] [Google Scholar]
  161. Wijarnprecha K, de Vries A, Sonwai S, Rousseau D. 2021.. Water-in-oleogel emulsions—from structure design to functionality. . Front. Sustain. Food Syst. 4::566455
    [Crossref] [Google Scholar]
  162. Winkler-Moser JK, Anderson J, Byars JA, Singh M, Hwang HS. 2019.. Evaluation of beeswax, candelilla wax, rice bran wax, and sunflower wax as alternative stabilizers for peanut butter. . J. Am. Oil Chem. Soc. 96::123548
    [Crossref] [Google Scholar]
  163. Wright AJ, Marangoni AG. 2006.. Crystallization and rheological properties of milk fat. . In Advanced Dairy Chemistry, Vol. 2: Lipids, ed. PF Fox, PLH McSweeney , pp. 24591. New York:: Springer. , 3rd ed..
    [Google Scholar]
  164. Yamoneka J, Malumba P, Lognay G, Béra F, Blecker C, Danthine S. 2018.. Enzymatic inter-esterification of binary blends containing Irvingia gabonensis seed fat to produce cocoa butter substitute. . Eur. J. Lipid Sci. Technol. 120:(4):1700423
    [Crossref] [Google Scholar]
  165. Zampouni K, Mouzakitis CK, Lazaridou A, Moschakis T, Katsanidis E. 2023.. Physicochemical properties and microstructure of bigels formed with gelatin and κ-carrageenan hydrogels and monoglycerides in olive oil oleogels. . Food Hydrocoll. 140::108636
    [Crossref] [Google Scholar]
  166. Zhang Z, Xie X, Lee WJ, Zhao G, Li C, Wang Y. 2022.. The effects of interesterification on the physicochemical properties of Pangasius bocourti oil and its fractions. . Food Chem. 371::131177
    [Crossref] [Google Scholar]
  167. Zhang Z, Ye J, Lee WJ, Akoh CC, Li A, Wang Y. 2021.. Modification of palm-based oil blend via interesterification: physicochemical properties, crystallization behaviors and oxidative stabilities. . Food Chem. 347::129070
    [Crossref] [Google Scholar]
  168. Zhu T, Zhang X, Wu H, Li B. 2019.. Comparative study on crystallization behaviors of physical blend- and interesterified blend-based special fats. . J. Food Eng. 241::3340
    [Crossref] [Google Scholar]
  169. Zhuang X, Clark S, Acevedo N. 2021.. Bigels—oleocolloid matrices—as probiotic protective systems in yogurt. . J. Food Sci. 86::4892900
    [Crossref] [Google Scholar]
  170. Zulkurnain M, Balasubramaniam VM, Maleky F. 2017.. Thermal effects on lipids crystallization kinetics under high pressure. . Cryst. Growth Des. 17::483543
    [Crossref] [Google Scholar]
  171. Zulkurnain M, Maleky F, Balasubramaniam VM. 2016a.. High pressure crystallization of binary fat blend: a feasibility study. . Innov. Food Sci. Emerg. Technol. 38::30211
    [Crossref] [Google Scholar]
  172. Zulkurnain M, Maleky F, Balasubramaniam VM. 2016b.. High pressure processing effects on lipids thermophysical properties and crystallization kinetics. . Food Eng. Rev. 8::393413
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034403
Loading
/content/journals/10.1146/annurev-food-072023-034403
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error