1932

Abstract

Elderberry, the fruit of , has become a popular inclusion in foods, beverages, supplements, and more in recent years. Although the European subspecies, . ssp. , has been widely studied for its composition, particularly for phenolic and volatile profiles, other subspecies, such as the American elderberry . ssp. and the blue elderberry . ssp. , have also become contenders in the elderberry supply chain. For the first time, the composition (including micronutrients, macronutrients, organic acids, titratable acid, soluble solids, phenolic compounds, and cyanogenic glycosides) of these three subspecies of elderberry is compared, highlighting the unique qualities of each subspecies and identifying gaps in the available data on the three subspecies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034423
2024-06-28
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034423.html?itemId=/content/journals/10.1146/annurev-food-072023-034423&mimeType=html&fmt=ahah

Literature Cited

  1. Ağalar HG. 2019.. Elderberry (Sambucus nigra L.). . In Nonvitamin and Nonmineral Nutritional Supplements, ed. SM Nabavi, A Sanches Silva , pp. 21115. Cambridge, MA:: Academic
    [Google Scholar]
  2. Ağalar HG, Demirci B, Hüsnü K, Başer C. 2014.. The volatile compounds of elderberries (Sambucus nigra L.). . Essent. Oils 1:(1):5154
    [Google Scholar]
  3. Akintonwa A, Tunwashe OL. 1992.. Fatal cyanide poisoning from cassava-based meal. . Hum. Exp. Toxicol. 11:(1):4749
    [Crossref] [Google Scholar]
  4. Akintonwa A, Tunwashe O, Onifade A. 1994.. Fatal and non-fatal acute poisoning attributed to cassava-based meal. . Acta Hortic. 375::28588
    [Crossref] [Google Scholar]
  5. Appenteng MK, Krueger R, Johnson MC, Ingold H, Bell R, et al. 2021.. Cyanogenic glycoside analysis in American elderberry. . Molecules 26:(5):1384
    [Crossref] [Google Scholar]
  6. Applequist WL. 2015.. A brief review of recent controversies in the taxonomy and nomenclature of Sambucus nigra sensu lato. . Acta Hortic. 1061::2534
    [Crossref] [Google Scholar]
  7. Bolli R. 1994.. Revision of the Genus Sambucus. Berlin:: J. Cramer
    [Google Scholar]
  8. Braga FG, Carvalho LM, Carvalho MJ, Guedes-Pinto H, Torres-Pereira JM, et al. 2002.. Variation of the anthocyanin content in Sambucus nigra L. populations growing in Portugal. . J. Herbs Spices Med. Plants 9:(4):28995
    [Crossref] [Google Scholar]
  9. Byers PL, Thomas AL, Cernusca MM, Godsey LD, Gold MA, et al. 2012.. Growing and marketing elderberries in Missouri. Rep. , Univ. Mo., Columbia:
    [Google Scholar]
  10. Cais-Sokolińska D, Walkowiak-Tomczak D. 2021.. Consumer-perception, nutritional, and functional studies of a yogurt with restructured elderberry juice. . J. Dairy Sci. 104::131835
    [Crossref] [Google Scholar]
  11. Charlebois D. 2007.. Elderberry as a medicinal plant. . In Issues in New Crops and New Uses, ed. J Janick, A Whipkey , pp. 28492. Alexandria, VA:: ASHS Press
    [Google Scholar]
  12. Cliff J, Coutinho J. 1995.. Acute intoxication from newly-introduced cassava during drought in Mozambique. . Trop. Dr. 25:(4):193193
    [Google Scholar]
  13. Costică N, Stratu A, Boz I, Gille E. 2019.. Characteristics of elderberry (Sambucus nigra L.) fruit. . Agric. Conspec. Sci. 84:(1):11522
    [Google Scholar]
  14. Csorba V, Tóth M, László AM, Kardos L, Kovács S. 2020.. Cultivar and year effects on the chemical composition of elderberry (Sambucus nigra L.) fruits. . Not. Bot. Horti Agrobot. Cluj-Napoca 48:(2):77082
    [Crossref] [Google Scholar]
  15. da Silva RFR, Barreira JCM, Heleno SA, Barros L, Calhelha RC, Ferreira ICFR. 2019.. Anthocyanin profile of elderberry juice: a natural-based bioactive colouring ingredient with potential food application. . Molecules 24:(13):2359
    [Crossref] [Google Scholar]
  16. de Rus Jacquet A, Timmers M, Ma SY, Thieme A, McCabe GP, et al. 2017.. Lumbee traditional medicine: neuroprotective activities of medicinal plants used to treat Parkinson's disease-related symptoms. . J. Ethnopharmacol. 206::40825
    [Crossref] [Google Scholar]
  17. Del Rio D, Rodriguez-Mateos A, Spencer JPE, Tognolini M, Borges G, Crozier A. 2013.. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. . Antioxid. Redox Signal. 18:(14):181892
    [Crossref] [Google Scholar]
  18. DellaGreca M, Fiorentino A, Monaco P, Previtera L, Simonet AM. 2000.. Degraded cyanogenic glucosides from Sambucus nigra. . Tetrahedron Lett. 41:(33):650710
    [Crossref] [Google Scholar]
  19. Diviš P, Pořízka J, Vespalcov M, Matějíček A, Kaplan J, et al. 2015.. Elemental composition of fruits from different Black Elder (Sambucus nigra L.) cultivars grown in the Czech Republic. . J. Elementology 20:(3):54957
    [Google Scholar]
  20. Domínguez R, Zhang L, Rocchetti G, Lucini L, Pateiro M, et al. 2020.. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. . Food Chem. 330::127266
    [Crossref] [Google Scholar]
  21. Dulf F, Oroian I, Vodnar D, Socaciu C, Pintea A. 2013.. Lipid classes and fatty acid regiodistribution in triacylglycerols of seed oils of two Sambucus species (S. nigra L. and S. ebulus L.). . Molecules 18:(10):1176882
    [Crossref] [Google Scholar]
  22. Fazio A, Plastina P, Meijerink J, Witkamp RF, Gabriele B. 2013.. Comparative analyses of seeds of wild fruits of Rubus and Sambucus species from Southern Italy: fatty acid composition of the oil, total phenolic content, antioxidant and anti-inflammatory properties of the methanolic extracts. . Food Chem. 140:(4):81724
    [Crossref] [Google Scholar]
  23. Fernandez-Orozco R, Li L, Harflett C, Shewry PR, Ward JL. 2010.. Effects of environment and genotype on phenolic acids in wheat in the HEALTHGRAIN diversity screen. . J. Agric. Food Chem. 58:(17):934152
    [Crossref] [Google Scholar]
  24. Ferreira SS, Silva AM, Nunes FM. 2020.. Sambucus nigra L. fruits and flowers: chemical composition and related bioactivities. . Food Rev. Int. 38:(6):123765
    [Crossref] [Google Scholar]
  25. Festa J, Singh H, Hussain A, da Boit M. 2022.. Elderberries as a potential supplement to improve vascular function in a SARS-CoV-2 environment. . J. Food Biochem. 446:(11):e14091
    [Google Scholar]
  26. Gonçalves S, Gaivão I. 2021.. Natural ingredients common in the Trás-os-Montes region (Portugal) for use in the cosmetic industry: a review about chemical composition and antigenotoxic properties. . Molecules 26::5255
    [Crossref] [Google Scholar]
  27. Grbic J, Wexler I, Celenti R, Altman J, Saffer A. 2011.. A phase II trial of a transmucosal herbal patch for the treatment of gingivitis. . J. Am. Dental Assoc. 142:(10):116875
    [Crossref] [Google Scholar]
  28. Harokopakis E, Albzreh MH, Haase EM, Scannapieco FA, Hajishengallis G. 2006.. Inhibition of proinflammatory activities of major periodontal pathogens by aqueous extracts from elder flower (Sambucus nigra). . J. Periodontol. 77:(2):27179
    [Crossref] [Google Scholar]
  29. Hawkins J, Baker C, Cherry L, Dunne E. 2019.. Black elderberry (Sambucus nigra) supplementation effectively treats upper respiratory symptoms: a meta-analysis of randomized, controlled clinical trials. . Complement. Ther. Med. 42::36165
    [Crossref] [Google Scholar]
  30. Ho G, Wangensteen H, Barsett H. 2017.. Elderberry and elderflower extracts, phenolic compounds, and metabolites and their effect on complement, RAW 264.7 macrophages and dendritic cells. . Int. J. Mol. Sci. 18:(3):584
    [Crossref] [Google Scholar]
  31. Jensen K, Christensen LP, Hansen M, Jørgensen U, Kaack K. 2001.. Olfactory and quantitative analysis of volatiles in elderberry (Sambucus nigra L) juice processed from seven cultivars. . J. Sci. Food Agric. 81:(2):23744
    [Crossref] [Google Scholar]
  32. Johnson MC, Dela M, Tres L, Thomas AL, Rottinghaus GE, Greenlief CM. 2017.. Discriminant analyses of the polyphenol content of American elderberry juice from multiple environments provide genotype fingerprint. . J. Agric. Food Chem. 65:(20):404450
    [Crossref] [Google Scholar]
  33. Johnson MC, Thomas AL, Greenlief CM. 2015.. Impact of frozen storage on the anthocyanin and polyphenol contents of American elderberry fruit juice. . J. Agric. Food Chem. 63:(23):565359
    [Crossref] [Google Scholar]
  34. Joint FAO/WHO Expert Comm. Food Addit., World Health Organ. 2011.. Evaluation of certain food additives and contaminants: seventy-fourth report of the Joint FAO/WHO Expert Committee on Food Additives. Rep. , World Health Organ., Rome:
    [Google Scholar]
  35. Kaack K. 2008.. Aroma composition and sensory quality of fruit juices processed from cultivars of elderberry (Sambucus nigra L.). . Eur. Food Res. Technol. 227:(1):4556
    [Crossref] [Google Scholar]
  36. Kaack K, Christensen LP, Hughes M, Eder R. 2005.. The relationship between sensory quality and volatile compounds in raw juice processed from elderberries (Sambucus nigra L.). . Eur. Food Res. Technol. 221::24454
    [Crossref] [Google Scholar]
  37. Kiprovski B, Malenčić Đ, Ljubojević M, Ognjanov V, Veberic R, et al. 2021.. Quality parameters change during ripening in leaves and fruits of wild growing and cultivated elderberry (Sambucus nigra) genotypes. . Sci. Hortic. 277::109792
    [Crossref] [Google Scholar]
  38. Kolodziej B, Maksymiec N, Drozdzal K, Antonkiewicz J. 2012.. Effect of traffic pollution on chemical composition of raw elderberry (Sambucus nigra L.). . J. Elementology 17:(1):6778
    [Google Scholar]
  39. Krüger S, Mirgos M, Morlock GE. 2015.. Effect-directed analysis of fresh and dried elderberry (Sambucus nigra L.) via hyphenated planar chromatography. . J. Chromatogr. A 1426::20919
    [Crossref] [Google Scholar]
  40. Lamy S, Muhire É, Annabi B. 2018.. Antiproliferative efficacy of elderberries and elderflowers (Sambucus canadensis) on glioma and brain endothelial cells under normoxic and hypoxic conditions. . J. Funct. Foods 40::16479
    [Crossref] [Google Scholar]
  41. Lee J, Finn CE. 2007.. Anthocyanins and other polyphenolics in American elderberry (Sambucus canadensis) and European elderberry (S. nigra) cultivars. . J. Sci. Food Agric. 87::266575
    [Crossref] [Google Scholar]
  42. Liu D, He X-Q, Wu D-T, Li H-B, Feng Y-B, et al. 2022.. Elderberry (Sambucus nigra L.): bioactive compounds, health functions, and applications. . J. Agric. Food Chem. 70:(14):420220
    [Crossref] [Google Scholar]
  43. Lv L, Yao Y, Zhao G, Zhu G. 2018.. Rutin inhibits coronary heart disease through ERK1/2 and Akt signaling in a porcine model. . Exp. Ther. Med. 15:(1):50612
    [Google Scholar]
  44. Mahboubi M. 2021.. Sambucus nigra (Black Elder) as alternative treatment for cold and flu. . Adv. Tradit. Med. 21:(3):40514
    [Crossref] [Google Scholar]
  45. Maughan T, Black B. 2014.. Elderberry in the garden. Hortic. Rep. , Utah State Univ., Logan:. https://digitalcommons.usu.edu/cgi/viewcontent.cgi?article=1630&context=extension_curall
    [Google Scholar]
  46. Mikulic-Petkovsek M, Ivancic A, Schmitzer V, Veberic R, Stampar F. 2016.. Comparison of major taste compounds and antioxidative properties of fruits and flowers of different Sambucus species and interspecific hybrids. . Food Chem. 200::13440
    [Crossref] [Google Scholar]
  47. Mikulic-Petkovsek M, Ivancic A, Todorovic B, Veberic R, Stampar F. 2015.. Fruit phenolic composition of different elderberry species and hybrids. . J. Food Sci. 80:(10):C218090
    [Crossref] [Google Scholar]
  48. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Todorovic B, Veberic R, et al. 2014.. Investigation of anthocyanin profile of four elderberry species and interspecific hybrids. . J. Agric. Food Chem. 62::557380
    [Crossref] [Google Scholar]
  49. Młynarczyk K, Walkowiak-Tomczak D, Łysiak GP. 2018.. Bioactive properties of Sambucus nigra L. as a functional ingredient for food and pharmaceutical industry. . J. Funct. Foods 40::37790
    [Crossref] [Google Scholar]
  50. Młynarczyk K, Walkowiak-Tomczak D, Staniek H, Kidoń M, Łysiak GP. 2020.. The content of selected minerals, bioactive compounds, and the antioxidant properties of the flowers and fruit of selected cultivars and wildly growing plants of Sambucus nigra L. . Molecules 25:(4):876
    [Crossref] [Google Scholar]
  51. Mudge E, Applequist WL, Finley J, Lister P, Townesmith AK, et al. 2016.. Variation of select flavonols and chlorogenic acid content of elderberry collected throughout the eastern United States. . J. Food Compos. Anal. 47::5259
    [Crossref] [Google Scholar]
  52. Najar B, Ferri B, Cioni PL, Pistelli L. 2021.. Volatile emission and essential oil composition of Sambucus nigra L. organs during different developmental stages. . Plant Biosyst. 155:(4):72129
    [Crossref] [Google Scholar]
  53. Neves CMB, Pinto A, Gonçalves F, Wessel DF, Cappello F, Gorska-Ponikowska M. 2021.. Changes in elderberry (Sambucus nigra L.) juice concentrate polyphenols during storage. . Appl. Sci. 11:(15):6941
    [Crossref] [Google Scholar]
  54. Ozgen M, Scheerens JC, Reese RN, Miller RA. 2010.. Total phenolic, anthocyanin contents and antioxidant capacity of selected elderberry (Sambucus canadensis L.) accessions. . Pharmacogn. Mag. 6:(23):198203
    [Crossref] [Google Scholar]
  55. Ozola B, Duma M. 2020.. Antioxidant content of dark colored berries. . Agron. Res. 18:(S3):184452
    [Google Scholar]
  56. Petruț GSM, Mureșan V, Vlaic RMM, Mureșan CC, Pop CR, et al. 2021.. The physicochemical and antioxidant properties of Sambucus nigra L. and Sambucus nigra Haschberg during growth phases: from buds to ripening. . Antioxidants 10:(7):1093
    [Crossref] [Google Scholar]
  57. Pliszka B. 2017.. Polyphenolic content, antiradical activity, stability and microbiological quality of elderberry (Sambucus nigra L.) extracts. . Acta Sci. Pol. Technol. Aliment. 16:(4):393401
    [Google Scholar]
  58. Pliszka B. 2020.. Content and correlation of polyphenolic compounds, bioelements and antiradical activity in Black Elder berries. . J. Elementology 25:(2):595605
    [Google Scholar]
  59. Radojković M, Vujanović M, Majkić T, Zengin G, Beara I, et al. 2021.. Evaluation of Sambucus nigra L. biopotential as an unused natural resource. . Appl. Sci. 11:(23):11207
    [Crossref] [Google Scholar]
  60. Ribeiro AM, Estevinho BN, Rocha F. 2020.. Edible films prepared with different biopolymers, containing polyphenols extracted from elderberry (Sambucus nigra L.), to protect food products and to improve food functionality. . Food Bioproc. Technol. 13:(10):174254
    [Crossref] [Google Scholar]
  61. Ricci A, Cirlini M, Calani L, Bernini V, Neviani E, et al. 2019.. In vitro metabolism of elderberry juice polyphenols by lactic acid bacteria. . Food Chem. 276::69299
    [Crossref] [Google Scholar]
  62. Rodrigues S, de Brito ES, de Oliveira Silva E. 2018.. Elderberry—Sambucus nigra L. . In Exotic Fruits, ed. S Rodrigues, E de Oliveira Silva, ES de Brito , pp. 18185. Cambridge, MA:: Academic
    [Google Scholar]
  63. Rosendal Jensen S, Juhl Nielsen B. 1973.. Cyanogenic glucosides in Sambucus nigra L. . Acta Chem. Scand. 27::266185
    [Crossref] [Google Scholar]
  64. Rupasinghe HPV, Clegg S. 2007.. Total antioxidant capacity, total phenolic content, mineral elements, and histamine concentrations in wines of different fruit sources. . J. Food Compos. Anal. 20:(2):13337
    [Crossref] [Google Scholar]
  65. Sahin S. 2011.. Cyanide poisoning in children caused by apricot seeds. . J. Health Med. Inform. 2::1
    [Google Scholar]
  66. Salamon I, Grulova D. 2015.. Elderberry (Sambucus nigra): from natural medicine in ancient times to protection against witches in the Middle Ages—a brief historical overview. . Acta Hortic. 1061::3540
    [Crossref] [Google Scholar]
  67. Salvador ÂC, Rocha SM, Silvestre AJD. 2015.. Lipophilic phytochemicals from elderberries (Sambucus nigra L.): influence of ripening, cultivar and season. . Ind. Crops Prod. 71::1523
    [Crossref] [Google Scholar]
  68. Salvador ÂC, Rudnitskaya A, Silvestre AJD, Rocha SM. 2016.. Metabolomic-based strategy for fingerprinting of Sambucus nigra L. berry volatile terpenoids and norisoprenoids: influence of ripening and cultivar. . J. Agric. Food Chem. 64::542838
    [Crossref] [Google Scholar]
  69. Sanchez-Verlaan P, Geeraerts T, Buys S, Riu-Poulenc B, Cabot C, et al. 2011.. An unusual cause of severe lactic acidosis: cyanide poisoning after bitter almond ingestion. . Intensive Care Med. 37:(1):16869
    [Crossref] [Google Scholar]
  70. Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, et al. 2019.. Evaluation of the health risks related to the presence of cyanogenic glycosides in foods other than raw apricot kernels. . EFSA J. 17:(4):5662
    [Google Scholar]
  71. Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M. 2016.. Processed elderberry (Sambucus nigra L.) products: a beneficial or harmful food alternative?. LWT 72::18288
    [Crossref] [Google Scholar]
  72. Senica M, Stampar F, Veberic R, Mikulic-Petkovsek M. 2017.. The higher the better? Differences in phenolics and cyanogenic glycosides in Sambucus nigra leaves, flowers and berries from different altitudes. . J. Sci. Food Agric. 97:(8):262332
    [Crossref] [Google Scholar]
  73. Sidor A, Gramza-Michałowska A. 2015.. Advanced research on the antioxidant and health benefit of elderberry (Sambucus nigra) in food: a review. . J. Funct. Foods 18::94158
    [Crossref] [Google Scholar]
  74. Silva P, Ferreira S, Nunes FM. 2017.. Elderberry (Sambucus nigra L.) by-products a source of anthocyanins and antioxidant polyphenols. . Ind. Crops Prod. 95::22734
    [Crossref] [Google Scholar]
  75. Smith T, Majid F, Eckl V, Morton Reynolds C. 2021.. Herbal supplement sales in US increase by record-breaking 17.3% in 2020. Rep. , Am. Bot. Counc., Austin, TX:. https://www.herbalgram.org/resources/herbalgram/issues/131/table-of-contents/hg131-mkrpt/
    [Google Scholar]
  76. Tańska M, Roszkowska B, Czaplicki S, Borowska EJ, Bojarska J, Dąbrowska A. 2016.. Effect of fruit pomace addition on shortbread cookies to improve their physical and nutritional values. . Plant Foods Hum. Nutr. 71::30713
    [Crossref] [Google Scholar]
  77. Thole JM, Burns Kraft TF, Sueiro LA, Kang Y-H, Gills JJ, et al. 2006.. A comparative evaluation of the anticancer properties of European and American elderberry fruits. . J. Med. Food 9:(4):498504
    [Crossref] [Google Scholar]
  78. Thomas AL, Byers PL, Gu S, Avery JD, Kaps M, et al. 2015.. Occurrence of polyphenols, organic acids, and sugars among diverse elderberry genotypes grown in three Missouri (USA) locations. . Acta Hortic. 1061::14754
    [Crossref] [Google Scholar]
  79. Thomas AL, Byers PL, Vincent PL, Applequist WL, Thomas AL, et al. 2020.. Medicinal attributes of American elderberry. . In Medicinal and Aromatic Plants of North America, ed. Á Máthé , pp. 11939. Cham, Switz:.: Springer
    [Google Scholar]
  80. Thomas AL, Perkins-Veazie P, Byers PL, Finn CE, Lee J. 2013.. A comparison of fruit characteristics among diverse elderberry genotypes grown in Missouri and Oregon. . J. Berry Res. 3:(3):15968
    [Crossref] [Google Scholar]
  81. Torabian G, Valtchev P, Adil Q, Dehghani F. 2019.. Anti-influenza activity of elderberry (Sambucus nigra). . J. Funct. Foods 54::35360
    [Crossref] [Google Scholar]
  82. Tundis R, Loizzo MR, Bonesi M, Sicari V, Ursino C, et al. 2018.. Concentration of bioactive compounds from elderberry (Sambucus nigra L.) juice by nanofiltration membranes. . Plant Foods Hum. Nutr. 73::33643
    [Crossref] [Google Scholar]
  83. Uhl K. 2022.. Don't be blue, there's a new elderberry on the scene: exploring the fruit and flower of the blue elderberry (Sambucus nigra ssp. cerulea). PhD Diss. , Univ. Calif., Davis:
    [Google Scholar]
  84. Uhl KR, Fyhrie KJ, Brodt SB, Mitchell AE. 2022.. Blue elderberry (Sambucus nigra ssp. cerulea): a robust and underutilized fruit for value-added products. . ACS Food Sci. Technol. 2:(2):34758
    [Crossref] [Google Scholar]
  85. Uhl KR, Mitchell AE. 2022.. Headspace volatile organic and phenolic compounds in elderflowers and elderflower teas of blue elderberry (Sambucus nigra ssp. cerulea). . ACS Food Sci. Technol. 2::153545
    [Crossref] [Google Scholar]
  86. Ulbricht C, Basch E, Cheung L, Goldberg H, Hammerness P, et al. 2014.. An evidence-based systematic review of elderberry and elderflower (Sambucus nigra) by the natural standard research collaboration. . J. Diet. Suppl. 11:(1):80120
    [Crossref] [Google Scholar]
  87. Uncini Manganelli RE, Zaccaro L, Tomei PE. 2005.. Antiviral activity in vitro of Urtica dioica L., Parietaria diffusa M. et K. and Sambucus nigra L. . J. Ethnopharmacol. 98:(3):32327
    [Crossref] [Google Scholar]
  88. Univ. Calif. Agric. Nat. Resourc. 2023.. California elderberries. . University of California Agriculture and Natural Resources. https://ucanr.edu/sites/Elderberry/
    [Google Scholar]
  89. USDA. 2019.. Elderberries, raw. . FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/171727/nutrients
    [Google Scholar]
  90. Vaghti MG, Holyoak M, Williams A, Talley TS, Fremier AK, Greco SE. 2009.. Understanding the ecology of blue elderberry to inform landscape restoration in semiarid river corridors. . Environ. Manag. 43:(1):2837
    [Crossref] [Google Scholar]
  91. Veberic R, Jakopic J, Stampar F, Schmitzer V. 2009.. European elderberry (Sambucus nigra L.) rich in sugars, organic acids, anthocyanins and selected polyphenols. . Food Chem. 114:(2):51115
    [Crossref] [Google Scholar]
  92. Vetter J. 2000.. Plant cyanogenic glycosides. . Toxicon 38::1136
    [Crossref] [Google Scholar]
  93. Vitova E, Divisova R, Sukalova K, Matejicek A. 2013.. Determination and quantification of volatile compounds in fruits of selected elderberry cultivars grown in Czech Republic. . J. Food Nutr. Res. 52:(1):111
    [Google Scholar]
  94. Vujanović M, Majkić T, Zengin G, Beara I, Tomović V, et al. 2020.. Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. . RSC Adv. 10:(73):4480514
    [Crossref] [Google Scholar]
  95. Vulić JJ, Vračar LO, Šumić ZM. 2008.. Chemical characteristics of cultivated elderberry fruit. . Acta Period. Technol. 39::8590
    [Crossref] [Google Scholar]
  96. Warmund M, Kwasniewski M, Elmore J, Thomas A, Adhikari K. 2016.. Sensory attributes of juice from North American-grown elderberry cultivars. . HortScience 51:(12):156165
    [Crossref] [Google Scholar]
  97. Waswa EN, Li J, Mkala EM, Okelo Wanga V, Mutinda ES, et al. 2022.. Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). . J. Ethnopharmacol. 292::115102
    [Crossref] [Google Scholar]
  98. Wu H, Johnson MC, Lu C-H, Fritsche KL, Thomas AL, et al. 2015.. Determination of anthocyanins and total polyphenols in a variety of elderberry juices by UPLC-MS/MS and other methods. . Acta Hortic. 1061::4351
    [Google Scholar]
  99. Yulvianti M, Zidorn C. 2021.. Chemical diversity of plant cyanogenic glycosides: an overview of reported natural products. . Molecules 26:(3):719
    [Crossref] [Google Scholar]
  100. Zhou Y, Gao YG, Giusti MM. 2020.. Accumulation of anthocyanins and other phytochemicals in American elderberry cultivars during fruit ripening and its impact on color expression. . Plants 9:(12):1721
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034423
Loading
/content/journals/10.1146/annurev-food-072023-034423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error