1932

Abstract

Viruses are the leading cause of foodborne illness globally. Concentration of viruses from samples is important for detection because viral contamination of foods often occurs at low levels. In general, virus concentration methods can be classified as either nonspecific, exploiting the relatively homogeneous physicochemical properties of the virus to separate/concentrate it from the sample matrix, or specific, relying on recognition elements such as antibodies to specifically capture and separate viruses from foods. Numerous nonspecific and specific techniques for virus concentration have been reported, each with its own advantages and limitations. Factors to consider can include reagent and equipment costs, time-to-result, ease of use, and potential to eliminate matrix-associated inhibitors. The purpose of this review is to survey the different foodborne virus concentration techniques and their efficacy in various food and environmental matrices as well as discuss some emerging techniques for purification and concentration of viral pathogens from food samples.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034431
2024-06-28
2025-04-18
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034431.html?itemId=/content/journals/10.1146/annurev-food-072023-034431&mimeType=html&fmt=ahah

Literature Cited

  1. Abbaszadegan M, Alum A, Abbaszadegan H, Stout V. 2011.. Cell surface display of poliovirus receptor on Escherichia coli, a novel method for concentrating viral particles in water. . Appl. Environ. Microbiol. 77:(15):514148
    [Crossref] [Google Scholar]
  2. Almand EA, Moore MD, Jaykus LA. 2017a.. Norovirus binding to ligands beyond histo-blood group antigens. . Front. Microbiol. 8::2549
    [Crossref] [Google Scholar]
  3. Almand EA, Moore MD, Jaykus LA. 2019.. Characterization of human norovirus binding to gut-associated bacterial ligands. . BMC Res. Notes 12:(1):607
    [Crossref] [Google Scholar]
  4. Almand EA, Moore MD, Outlaw J, Jaykus LA. 2017b.. Human norovirus binding to select bacteria representative of the human gut microbiota. . PLOS ONE 12:(3):e0173124
    [Crossref] [Google Scholar]
  5. Amarasiri M, Hashiba S, Miura T, Nakagomi T, Nakagomi O, et al. 2015.. Bacterial histo-blood group antigens contributing to genotype-dependent removal of human noroviruses with a microfiltration membrane. . Water Res. 95::38391
    [Crossref] [Google Scholar]
  6. Atha DH, Ingham KC. 1981.. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. . J. Biol. Chem. 256:(23):1210817
    [Crossref] [Google Scholar]
  7. Atmar RL, Neill FH, Romalde JL, Le Guyader F, Woodley CM, et al. 1995.. Detection of Norwalk virus and hepatitis A virus in shellfish tissues with the PCR. . Appl. Environ. Microbiol. 61:(8):301418
    [Crossref] [Google Scholar]
  8. Barbé L, Le Moullac-Vaidye B, Echasserieau K, Bernardeau K, Carton T, et al. 2018.. Histo-blood group antigen-binding specificities of human rotaviruses are associated with gastroenteritis but not with in vitro infection. . Sci. Rep. 8:(1):12961
    [Crossref] [Google Scholar]
  9. Blanco A, Abid I, Al-Otaibi N, Pérez-Rodríguez FJ, Fuentes C, et al. 2019.. Glass wool concentration optimization for the detection of enveloped and non-enveloped waterborne viruses. . Food Environ. Virol. 11:(2):18492
    [Crossref] [Google Scholar]
  10. Bosch A, Pinto RM, Blanch AR, Jofre JT. 1988.. Detection of human rotavirus in sewage through two concentration procedures. . Water Res. 22:(3):34348
    [Crossref] [Google Scholar]
  11. Brinkman NE, Haffler TD, Cashdollar JL, Rhodes ER. 2013.. Evaluation of methods using celite to concentrate norovirus, adenovirus and enterovirus from wastewater. . J. Virol. Methods 193:(1):14046
    [Crossref] [Google Scholar]
  12. Calder L, Simmons G, Thornley C, Taylor P, Pritchard K, et al. 2003.. An outbreak of hepatitis A associated with consumption of raw blueberries. . Epidemiol. Infect. 131:(1):74551
    [Crossref] [Google Scholar]
  13. Cashdollar JL, Wymer L. 2013.. Methods for primary concentration of viruses from water samples: a review and meta-analysis of recent studies. . J. Appl. Microbiol. 115:(1):111
    [Crossref] [Google Scholar]
  14. CDC (Cent. Dis. Control). 2019.. Preventing norovirus outbreaks. . CDC. https://www.cdc.gov/vitalsigns/norovirus/index.html
    [Google Scholar]
  15. CDC (Cent. Dis. Control). 2023.. Foodborne germs and illnesses. . CDC. https://www.cdc.gov/foodsafety/foodborne-germs.html
    [Google Scholar]
  16. Dancho BA, Chen H, Kingsley DH. 2012.. Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. . Int. J. Food Microbiol. 155:(3):22226
    [Crossref] [Google Scholar]
  17. Deli K, Yavir K, Kloskowski A. 2021.. Ionic liquids in extraction techniques: determination of pesticides in food and environmental samples. . Trends Anal. Chem. 143::116396
    [Crossref] [Google Scholar]
  18. Dubois E, Agier C, Ousmane T, Hennechart C, Merle G, et al. 2002.. Modified concentration method for the detection of enteric viruses on fruits and vegetables by reverse transcriptase-polymerase chain reaction or cell culture. . J. Food Prot. 65:(12):196269
    [Crossref] [Google Scholar]
  19. Dubois E, Hennechart C, Deboosère N, Merle G, Legeay O, et al. 2006.. Intra-laboratory validation of a concentration method adapted for the enumeration of infectious F-specific RNA coliphage, enterovirus, and hepatitis A virus from inoculated leaves of salad vegetables. . Int. J. Food Microbiol. 108:(2):16471
    [Crossref] [Google Scholar]
  20. Dubois E, Hennechart C, Merle G, Burger C, Hmila N, et al. 2007.. Detection and quantification by real-time RT-PCR of hepatitis A virus from inoculated tap waters, salad vegetables, and soft fruits: characterization of the method performances. . Int. J. Food Microbiol. 117:(2):14149
    [Crossref] [Google Scholar]
  21. Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus L-A. 2014.. Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. . PLOS ONE 9:(9):e106805
    [Crossref] [Google Scholar]
  22. Estes MK, Ettayebi K, Tenge VR, Murakami K, Karandikar U, et al. 2019.. Human norovirus cultivation in nontransformed stem cell-derived human intestinal enteroid cultures: success and challenges. . Viruses 11:(7):638
    [Crossref] [Google Scholar]
  23. Ettayebi K, Crawford SE, Murakami K, Broughman JR, Karandikar U, et al. 2016.. Replication of human noroviruses in stem cell-derived human enteroids. . Science 353:(6306):138793
    [Crossref] [Google Scholar]
  24. Farkas K, McDonald JE, Malham SK, Jones DL. 2018.. Two-step concentration of complex water samples for the detection of viruses. . Methods Protoc. 1:(3):35
    [Crossref] [Google Scholar]
  25. Fister S, Fuchs S, Mester P, Kilpeläinen I, Wagner M, Rossmanith P. 2015.. The use of ionic liquids for cracking viruses for isolation of nucleic acids. . Sep. Purif. Technol. 155::3844
    [Crossref] [Google Scholar]
  26. Fumian TM, Leite JPG, Castello AA, Gaggero A, De Caillou MSL, Miagostovich MP. 2010.. Detection of rotavirus A in sewage samples using multiplex qPCR and an evaluation of the ultracentrifugation and adsorption-elution methods for virus concentration. . J. Virol. Methods 170:(1–2):4246
    [Crossref] [Google Scholar]
  27. Fumian TM, Leite JPG, Marin VA, Miagostovich MP. 2009.. A rapid procedure for detecting noroviruses from cheese and fresh lettuce. . J. Virol. Methods 155:(1):3943
    [Crossref] [Google Scholar]
  28. Gajardo R, Díez JM, Jofre J, Bosch A. 1991.. Adsorption-elution with negatively and positively-charged glass powder for the concentration of hepatitis A virus from water. . J. Virol. Methods 31:(2–3):34551
    [Crossref] [Google Scholar]
  29. Gilpatrick SG, Schwab KJ, Estes MK, Atmar RL. 2000.. Development of an immunomagnetic capture reverse transcription-PCR assay for the detection of Norwalk virus. . J. Virol. Methods 90:(1):6978
    [Crossref] [Google Scholar]
  30. Givens CE, Kolpin DW, Borchardt MA, Duris JW, Moorman TB, Spencer SK. 2016.. Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams. . Sci. Total Environ. 566–567::104252
    [Crossref] [Google Scholar]
  31. Guévremont E, Brassard J, Houde A, Simard C, Trottier Y-L. 2006.. Development of an extraction and concentration procedure and comparison of RT-PCR primer systems for the detection of hepatitis A virus and norovirus GII in green onions. . J. Virol. Methods 134:(1–2):13035
    [Crossref] [Google Scholar]
  32. Gyawali P, Sanjaya KC, Beale DJ, Hewitt J. 2019.. Current and emerging technologies for the detection of norovirus from shellfish. . Foods 8:(6):187
    [Crossref] [Google Scholar]
  33. Häfliger D, Gilgen M, Lüthy J, Hübner P. 1997.. Seminested RT-PCR systems for small round structured viruses and detection of enteric viruses in seafood. . Int. J. Food Microbiol. 37:(1):2736
    [Crossref] [Google Scholar]
  34. Haramoto E, Katayama H, Oguma K, Ohgaki S. 2005.. Application of cation-coated filter method to detection of noroviruses, enteroviruses, adenoviruses, and torque teno viruses in the Tamagawa River in Japan. . Appl. Environ. Microbiol. 71:(5):240311
    [Crossref] [Google Scholar]
  35. Harrington PR, Vinjé J, Moe CL, Baric RS. 2004.. Norovirus capture with histo-blood group antigens reveals novel virus-ligand interactions. . J. Virol. 78:(6):303545
    [Crossref] [Google Scholar]
  36. Hata A, Matsumori K, Kitajima M, Katayama H. 2015.. Concentration of enteric viruses in large volumes of water using a cartridge-type mixed cellulose ester membrane. . Food Environ. Virol. 7::713
    [Crossref] [Google Scholar]
  37. Hice SA, Clark KD, Anderson JL, Brehm-Stecher BF. 2019.. Capture, concentration, and detection of Salmonella in foods using magnetic ionic liquids and recombinase polymerase amplification. . Anal. Chem. 91:(1):111320
    [Crossref] [Google Scholar]
  38. Huang R, Ye M, Li X, Ji L, Karwe M, Chen H. 2016.. Evaluation of high hydrostatic pressure inactivation of human norovirus on strawberries, blueberries, raspberries and in their purees. . Int. J. Food Microbiol. 223::1724
    [Crossref] [Google Scholar]
  39. ISO. 2013.. Microbiology of food and animal feed—horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR. Tech. Specif. ISO/TS 15216-1
    [Google Scholar]
  40. ISO. 2019.. Microbiology of the food chain—horizontal method for determination of hepatitis A virus and norovirus in food using real-time RT-PCR- Part 2: Method of Detection. Tech. Specif. ISO/TS 15216-2
    [Google Scholar]
  41. Jones MK, Almand EA, Soorneedi A, Moore MD. 2022.. Eukaryotic virus interactions with bacteria: implications for pathogenesis and control. . In The Biological Role of a Virus, ed. CJ Hurst , pp. 34367. Cham, Switz.:: Springer
    [Google Scholar]
  42. Jones TH, Brassard J, Johns MW, Gagné M-J. 2009.. The effect of pre-treatment and sonication of centrifugal ultrafiltration devices on virus recovery. . J. Virol. Methods 161:(2):199204
    [Crossref] [Google Scholar]
  43. Joret JC, Block JC, Lucena-Gutierrez F, Schwartzbrod L, Hugues B, Plissier M. 1980.. Virus concentration from secondary wastewater: comparative study between epoxy fiberglass and glass powder adsorbents. . Eur. J. Appl. Microbiol. Biotechnol. 10:(3):24552
    [Crossref] [Google Scholar]
  44. Junter G-A, Lebrun L. 2017.. Cellulose-based virus-retentive filters: a review. . Rev. Environ. Sci. Biotechnol. 16::45589
    [Crossref] [Google Scholar]
  45. Katayama H, Shimasaki A, Ohgaki S. 2002.. Development of a virus concentration method and its application to detection of enterovirus and Norwalk virus from coastal seawater. . Appl. Environ. Microbiol. 68:(3):103339
    [Crossref] [Google Scholar]
  46. Kingsley DH. 2007.. An RNA extraction protocol for shellfish-borne viruses. . J. Virol. Methods 141:(1):5862
    [Crossref] [Google Scholar]
  47. Kingsley DH, Vincent EM, Meade GK, Watson CL, Fan X. 2013.. Inactivation of human norovirus using chemical sanitizers. . Int. J. Food Microbiol. 171::9499
    [Crossref] [Google Scholar]
  48. Kobayashi S, Natori K, Takeda N, Sakae K. 2004.. Immunomagnetic capture RT-PCR for detection of norovirus from foods implicated in a foodborne outbreak. . Microbiol. Immunol. 48:(3):2014
    [Crossref] [Google Scholar]
  49. Lambertini E, Spencer SK, Bertz PD, Loge FJ, Kieke BA, Borchardt MA. 2008.. Concentration of enteroviruses, adenoviruses, and noroviruses from drinking water by use of glass wool filters. . Appl. Environ. Microbiol. 74:(10):299096
    [Crossref] [Google Scholar]
  50. Le Guyader FS, Mittelholzer C, Haugarreau L, Hedlund K-O, Alsterlund R, et al. 2004.. Detection of noroviruses in raspberries associated with a gastroenteritis outbreak. . Int. J. Food Microbiol. 97:(2):17986
    [Crossref] [Google Scholar]
  51. Lee KB, Lee H, Ha S-D, Cheon DS, Choi C. 2012.. Comparative analysis of viral concentration methods for detecting the HAV genome using real-time RT-PCR amplification. . Food Environ. Virol. 4:(2):6872
    [Crossref] [Google Scholar]
  52. Leggitt PR, Jaykus LA. 2000.. Detection methods for human enteric viruses in representative foods. . J. Food Prot. 63:(12):173844
    [Crossref] [Google Scholar]
  53. Li X, Huang R, Chen H. 2017.. Evaluation of assays to quantify infectious human norovirus for heat and high-pressure inactivation studies using Tulane virus. . Food Environ. Virol. 9:(3):31425
    [Crossref] [Google Scholar]
  54. Liu D, Zhang Z, Yin Y, Jia F, Wu Q, et al. 2019.. Development and evaluation of a novel in situ target-capture approach for aptamer selection of human noroviruses. . Talanta 193::199205
    [Crossref] [Google Scholar]
  55. Liu L, Moore MD. 2020.. A survey of analytical techniques for noroviruses. . Foods 9::318
    [Crossref] [Google Scholar]
  56. Lopman BA, Steele D, Kirkwood CD, Parashar UD. 2016.. The vast and varied global burden of norovirus: prospects for prevention and control. . PLOS Med. 13:(4):e1001999
    [Crossref] [Google Scholar]
  57. Lou F, DiCaprio E, Li X, Dai X, Ma Y, et al. 2016.. Variable high-pressure-processing sensitivities for genogroup II human noroviruses. . Appl. Environ. Microbiol. 82:(19):603745
    [Crossref] [Google Scholar]
  58. Mäde D, Trübner K, Neubert E, Höhne M, Johne R. 2013.. Detection and typing of norovirus from frozen strawberries involved in a large-scale gastroenteritis outbreak in Germany. . Food Environ. Virol. 5:(3):16268
    [Crossref] [Google Scholar]
  59. Manuel CS, Moore MD, Jaykus L-A. 2018.. Predicting human norovirus infectivity: recent advances and continued challenges. . Food Microbiol. 76::33745
    [Crossref] [Google Scholar]
  60. Marionneau S, Cailleau-Thomas A, Rocher J, Le Moullac-Vaidye B, Ruvoën N, et al. 2001.. ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. . Biochimie 83:(7):56573
    [Crossref] [Google Scholar]
  61. Marionneau S, Ruvoën N, Le Moullac-Vaidye B, Clement M, Cailleau-Thomas A, et al. 2002.. Norwalk virus binds to histo-blood group antigens present on gastroduodenal epithelial cells of secretor individuals. . Gastroenterology 122:(7):196777
    [Crossref] [Google Scholar]
  62. Martín-Calero A, Pino V, Afonso AM. 2011.. Ionic liquids as a tool for determination of metals and organic compounds in food analysis. . Trends Anal. Chem. 30:(10):1598619
    [Crossref] [Google Scholar]
  63. Michen B, Meder F, Rust A, Fritsch J, Aneziris C, Graule T. 2012.. Virus removal in ceramic depth filters based on diatomaceous earth. . Environ. Sci. Technol. 46:(2):117377
    [Crossref] [Google Scholar]
  64. Miura T, Sano D, Suenaga A, Yoshimura T, Fuzawa M, et al. 2013.. Histo-blood group antigen-like substances of human enteric bacteria as specific adsorbents for human noroviruses. . J. Virol. 87:(17):944151
    [Crossref] [Google Scholar]
  65. Moore MD, Bobay BG, Mertens B, Jaykus L. 2016.. Human norovirus aptamer exhibits high degree of target conformation-dependent binding similar to that of receptors and discriminates particle functionality. . mSphere 1:(6):e00298-16
    [Crossref] [Google Scholar]
  66. Moore MD, Escudero-Abarca BI, Suh SH, Jaykus L-A. 2015.. Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. . J. Biotechnol. 209::4149
    [Crossref] [Google Scholar]
  67. Morales-Rayas R, Wolffs PFG, Griffiths MW. 2010.. Simultaneous separation and detection of hepatitis A virus and norovirus in produce. . Int. J. Food Microbiol. 139:(1–2):4855
    [Crossref] [Google Scholar]
  68. Mullendore JL, Sobsey MD, Carol Shieh YS. 2001.. Improved method for the recovery of hepatitis A virus from oysters. . J. Virol. Methods 94:(1–2):2535
    [Crossref] [Google Scholar]
  69. Nour I, Hanif A, Alanazi F, Zakri AM, Al-Ashkar I, et al. 2021.. Evaluation of three different concentration and extraction methods for recovery efficiency of human adenovirus and human rotavirus virus A. . J. Virol. Methods 295::114212
    [Crossref] [Google Scholar]
  70. Papafragkou E, Plante M, Mattison K, Bidawid S, Karthikeyan K, et al. 2008.. Rapid and sensitive detection of hepatitis A virus in representative food matrices. . J. Virol. Methods 147:(1):17787
    [Crossref] [Google Scholar]
  71. Park H, Kim M, Ko G. 2010.. Evaluation of various methods for recovering human norovirus and murine norovirus from vegetables and ham. . J. Food Prot. 73:(9):165157
    [Crossref] [Google Scholar]
  72. Peinetti AS, Lake RJ, Cong W, Cooper L, Wu Y, et al. 2021.. Direct detection of human adenovirus or SARS-CoV-2 with ability to inform infectivity using DNA aptamer-nanopore sensors. . Sci. Adv. 7:(39):eabh2848
    [Crossref] [Google Scholar]
  73. Prado T, de Carvalho Pereira Bonet Guilayn W, Coimbra Gaspar AM, Miagostovich MP. 2013.. The efficiency of concentration methods used to detect enteric viruses in anaerobically digested sludge. . Mem. Inst. Oswaldo Cruz 108:(1):7783
    [Crossref] [Google Scholar]
  74. Prado T, Gaspar AMC, Miagostovich MP. 2014.. Detection of enteric viruses in activated sludge by feasible concentration methods. . Braz. J. Microbiol. 45:(1):34349
    [Crossref] [Google Scholar]
  75. Prata C, Ribeiro A, Cunha Â, Gomes NCM, Almeida A. 2012.. Ultracentrifugation as a direct method to concentrate viruses in environmental waters: virus-like particle enumeration as a new approach to determine the efficiency of recovery. . J. Environ. Monit. 14:(1):6470
    [Crossref] [Google Scholar]
  76. Raymond P, Paul S, Perron A, Deschênes L. 2021a.. Norovirus extraction from frozen raspberries using magnetic silica beads. . Food Environ. Virol. 13:(2):24858
    [Crossref] [Google Scholar]
  77. Raymond P, Paul S, Perron A, Deschênes L, Hara K. 2021b.. Extraction of human noroviruses from leafy greens and fresh herbs using magnetic silica beads. . Food Microbiol. 99::103827
    [Crossref] [Google Scholar]
  78. Richards GP. 1999.. Limitations of molecular biological techniques for assessing the virological safety of foods. . J. Food Prot. 62:(6):69197
    [Crossref] [Google Scholar]
  79. Rutjes SA, Lodder-Verschoor F, Van Der Poel WHM, Van Duijnhoven YTHP, De Roda Husman AM. 2006.. Detection of noroviruses in foods: a study on virus extraction procedures in foods implicated in outbreaks of human gastroenteritis. . J. Food Prot. 69:(8):194956
    [Crossref] [Google Scholar]
  80. Rzezutka A, D'Agostino M, Cook N. 2006.. An ultracentrifugation-based approach to the detection of hepatitis A virus in soft fruits. . Int. J. Food Microbiol. 108:(3):31520
    [Google Scholar]
  81. Schilling KB, DeGrasse J, Woods JW. 2018.. The influence of food matrices on aptamer selection by SELEX (systematic evolution of ligands by exponential enrichment) targeting the norovirus P-domain. . Food Chem. 258:( Febr. ):12936
    [Crossref] [Google Scholar]
  82. Schilling-Loeffler K, Rodriguez R, Williams-Woods J. 2021.. Target affinity and structural analysis for a selection of norovirus aptamers. . Int. J. Mol. Sci. 22:(16):8868
    [Crossref] [Google Scholar]
  83. Shi H, Pasco EV, Tarabara VV. 2017.. Membrane-based methods of virus concentration from water: a review of process parameters and their effects on virus 2 recovery 3. . Environ. Sci. Water Res. Technol. 3::77892
    [Crossref] [Google Scholar]
  84. Sommer J, Bromberger B, Robben C, Kalb R, Rossmanith P, Mester PJ. 2021.. Liquid-liquid extraction of viral particles with ionic liquids. . Sep. Purif. Technol. 254::117591
    [Crossref] [Google Scholar]
  85. Son NR, Seo DJ, Lee MH, Seo S, Wang X, et al. 2014.. Optimization of the elution buffer and concentration method for detecting hepatitis E virus in swine liver using a nested reverse transcription-polymerase chain reaction and real-time reverse transcription-polymerase chain reaction. . J. Virol. Methods 206::99104
    [Crossref] [Google Scholar]
  86. Stals A, Baert L, Van Coillie E, Uyttendaele M. 2012.. Extraction of food-borne viruses from food samples: a review. . Int. J. Food Microbiol. 153:(1–2):19
    [Crossref] [Google Scholar]
  87. Stegmaier T, Oellingrath E, Himmel M, Fraas S. 2020.. Differences in epidemic spread patterns of norovirus and influenza seasons of Germany: an application of optical flow analysis in epidemiology. . Sci. Rep. 10:(1):14125
    [Crossref] [Google Scholar]
  88. Summa M, von Bonsdorff C-H, Maunula L. 2012.. Evaluation of four virus recovery methods for detecting noroviruses on fresh lettuce, sliced ham, and frozen raspberries. . J. Virol. Methods 183:(2):15460
    [Crossref] [Google Scholar]
  89. Suñén E, Casas N, Moreno B, Zigorraga C. 2004.. Comparison of two methods for the detection of hepatitis A virus in clam samples (Tapes spp.) by reverse transcription-nested PCR. . Int. J. Food Microbiol. 91:(2):14754
    [Crossref] [Google Scholar]
  90. Suresh M, Harlow J, Nasheri N. 2019.. Evaluation of porcine gastric mucin assay for detection and quantification of human norovirus in fresh herbs and leafy vegetables. . Food Microbiol. 84:(March):103254
    [Crossref] [Google Scholar]
  91. Tian P, Engelbrektson AL, Jiang X, Zhong W, Mandrell RE. 2007.. Norovirus recognizes histo-blood group antigens on gastrointestinal cells of clams, mussels, and oysters: a possible mechanism of bioaccumulation. . J. Food Prot. 70:(9):214047
    [Crossref] [Google Scholar]
  92. Tian P, Engelbrektson A, Mandrell R. 2008.. Two-log increase in sensitivity for detection of norovirus in complex samples by concentration with porcine gastric mucin conjugated to magnetic beads. . Appl. Environ. Microbiol. 74:(14):427176
    [Crossref] [Google Scholar]
  93. Tian P, Yang D, Jiang X, Zhong W, Cannon JL, et al. 2010.. Specificity and kinetics of norovirus binding to magnetic bead-conjugated histo-blood group antigens. . J. Appl. Microbiol. 109:(5):175362
    [Google Scholar]
  94. Torii S, Oishi W, Zhu Y, Thakali O, Malla B, et al. 2022.. Comparison of five polyethylene glycol precipitation procedures for the RT-qPCR based recovery of murine hepatitis virus, bacteriophage phi6, and pepper mild mottle virus as a surrogate for SARS-CoV-2 from wastewater. . Sci. Total Environ. 807::150722
    [Crossref] [Google Scholar]
  95. Wang D, Xu S, Yang D, Young GM, Tian P. 2014.. New in situ capture quantitative (real-time) reverse transcription-PCR method as an alternative approach for determining inactivation of Tulane virus. . Appl. Environ. Microbiol. 80:(7):212024
    [Crossref] [Google Scholar]
  96. Williams-Woods J, Rodriguez R, Marchant J, Swinford AG, Burkhardt WB III. 2022.. Concentration, extraction and detection of enteric viruses from food. . In Bacteriological Analytical Manual. Washington, DC:: FDA
    [Google Scholar]
  97. Ye M, Li X, Kingsley DH, Jiang X, Chen H. 2014.. Inactivation of human norovirus in contaminated oysters and clams by high hydrostatic pressure. . Appl. Environ. Microbiol. 80:(7):224853
    [Crossref] [Google Scholar]
  98. Zhang Z, Liu D, Wu Q, Lu Y, Tian P, et al. 2020.. Characterization of a histo-blood group antigen-like substance in romaine lettuce that contributes to human norovirus attachment. . J. Agric. Food Chem. 68:(5):120712
    [Crossref] [Google Scholar]
  99. Zheng Y, Hu Y. 2017.. Development of a fast and efficient method for hepatitis A virus concentration from green onion. . J. Virol. Methods 249::16164
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034431
Loading
/content/journals/10.1146/annurev-food-072023-034431
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error