1932

Abstract

Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034440
2024-06-28
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034440.html?itemId=/content/journals/10.1146/annurev-food-072023-034440&mimeType=html&fmt=ahah

Literature Cited

  1. Ab Latip R, Lee Y-Y, Tang T-K, Phuah E-T, Lee C-M, et al. 2013.. Palm-based diacylglycerol fat dry fractionation: effect of crystallisation temperature, cooling rate and agitation speed on physical and chemical properties of fractions. . PeerJ 1::e72
    [Crossref] [Google Scholar]
  2. Ai H, Lee Y-Y, Xie X, Tan CP, Lai OM, et al. 2023.. Structured lipids produced from palm-olein oil by interesterification: a controllable lipase-catalyzed approach in a solvent-free system. . Food Chem. 412::135558
    [Crossref] [Google Scholar]
  3. Alireza S, Tan CP, Hamed M, Che Man YB. 2010.. Effect of frying process on fatty acid composition and iodine value of selected vegetable oils and their blends. . Int. Food Res. J. 17::295302
    [Google Scholar]
  4. Anand A, Hattemer JM, Jaeschke AH, Allgeier AM, Albers CJ, Weatherley LR. 2021.. The influence of oriented external electric field on lipase catalyzed triglyceride hydrolysis. . Chem. Eng. Process. Process Intensif. 165::108452
    [Crossref] [Google Scholar]
  5. Arroyo C, Eslami S, Brunton NP, Arimi JM, Noci F, Lyng JG. 2015.. An assessment of the impact of pulsed electric fields processing factors on oxidation, color, texture, and sensory attributes of turkey breast meat. . Poult. Sci. 94::108895
    [Crossref] [Google Scholar]
  6. Arslan FN, Şapçı AN, Duru F, Kara H. 2017.. A study on monitoring of frying performance and oxidative stability of cottonseed and palm oil blends in comparison with original oils. . Int. J. Food Prop. 20::70417
    [Crossref] [Google Scholar]
  7. Bakhshabadi H, Mirzaei H, Ghodsvali A, Jafari SM, Ziaiifar AM. 2018.. The influence of pulsed electric fields and microwave pretreatments on some selected physicochemical properties of oil extracted from black cumin seed. . Food Sci. Nutr. 6::11118
    [Crossref] [Google Scholar]
  8. Bansode SR, Rathod VK. 2017.. An investigation of lipase catalysed sonochemical synthesis: a review. . Ultrason. Sonochem. 38::50329
    [Crossref] [Google Scholar]
  9. Bootello MA, Garcés R, Martínez-Force E, Salas JJ. 2011.. Dry fractionation and crystallization kinetics of high-oleic high-stearic sunflower oil. . J. Am. Oil Chem. Soc. 88::151119
    [Crossref] [Google Scholar]
  10. Bootello MA, Garcés R, Martínez-Force E, Salas JJ. 2015.. Effect of solvents on the fractionation of high oleic–high stearic sunflower oil. . Food Chem. 172::71017
    [Crossref] [Google Scholar]
  11. Calliauw GH, Gibon V, De Greyt WFJ. 2007.. Principles of palm olein fractionation: a bit of science behind the technology. . Lipid Technol. 19::15255
    [Crossref] [Google Scholar]
  12. Chandrapala J, Leong T. 2015.. Ultrasonic processing for dairy applications: recent advances. . Food Eng. Rev. 7::14358
    [Crossref] [Google Scholar]
  13. Chen Y, Wang Y, Jin J, Jin Q, Akoh CC, Wang X. 2022.. Formation of dark chocolate fats with improved heat stability and desirable miscibility by blending cocoa butter with mango kernel fat stearin and hard palm-mid fraction. . LWT Food Sci. Technol. 156::113066
    [Crossref] [Google Scholar]
  14. Cheong L-Z, Tan C-P, Long K, Affandi Yusoff MS, Arifin N, et al. 2007.. Production of a diacylglycerol-enriched palm olein using lipase-catalyzed partial hydrolysis: optimization using response surface methodology. . Food Chem. 105::161422
    [Crossref] [Google Scholar]
  15. Criegee R. 1975.. Mechanism of ozonolysis. . Angew. Chem. Int. Ed. 14::74552
    [Crossref] [Google Scholar]
  16. da Silva TLT, Arellano DB, Martini S. 2019.. Use of high-intensity ultrasound to change the physical properties of oleogels and emulsion gels. . J. Am. Oil Chem. Soc. 96::68191
    [Crossref] [Google Scholar]
  17. da Silva TLT, Cooper Z, Lee J, Gibon V, Martini S. 2020.. Tailoring crystalline structure using high-intensity ultrasound to reduce oil migration in a low saturated fat. . J. Am. Oil Chem. Soc. 97::14155
    [Crossref] [Google Scholar]
  18. da Silva TLT, Danthine S. 2021.. Effect of high-intensity ultrasound on the oleogelation and physical properties of high melting point monoglycerides and triglycerides oleogels. . J. Food Sci. 86::34356
    [Crossref] [Google Scholar]
  19. da Silva TLT, Danthine S, Martini S. 2021.. Palm-based fat crystallized at different temperatures with and without high-intensity ultrasound in batch and in a scraped surface heat exchanger. . LWT Food Sci. Technol. 138::110593
    [Crossref] [Google Scholar]
  20. da Silva TLT, Martini S. 2019.. Crystallization of interesterified soybean oil using a scraped surface heat exchanger with high intensity ultrasound. . J. Food Eng. 263::34147
    [Crossref] [Google Scholar]
  21. de Almeida Kogawa NR, de Arruda EJ, Micheletti AC, de Fatima Cepa Matos M, de Oliveira LCS, et al. 2015.. Synthesis, characterization, thermal behavior, and biological activity of ozonides from vegetable oils. . RSC Adv. 5::6542736
    [Crossref] [Google Scholar]
  22. de Oliveira P, de Almeida N, Conda-Sheridan M, do Prado Apparecido R, Micheletti AC, et al. 2017.. Ozonolysis of neem oil: preparation and characterization of potent antibacterial agents against multidrug resistant bacterial strains. . RSC Adv. 7::3435665
    [Crossref] [Google Scholar]
  23. Deora NS, Misra NN, Deswal A, Mishra HN, Cullen PJ, Tiwari BK. 2013.. Ultrasound for improved crystallisation in food processing. . Food Eng. Rev. 5::3644
    [Crossref] [Google Scholar]
  24. Díaz MF, Hernández R, Martínez G, Vidal G, Gómez M, et al. 2006.. Comparative study of ozonized olive oil and ozonized sunflower oil. . J. Braz. Chem. Soc. 17::4037
    [Crossref] [Google Scholar]
  25. Díaz MF, Núñez N, Quincose D, Díaz W, Hernández F. 2005.. Study of three systems of ozonized coconut oil. . Ozone Sci. Eng. 27::15357
    [Crossref] [Google Scholar]
  26. Díaz MF, Sánchez Y, Gómez M, Hernández F, da Cunha Veloso MC, et al. 2012.. Physicochemical characteristics of ozonated sunflower oils obtained by different procedures. . Grasas Aceites 63::46674
    [Crossref] [Google Scholar]
  27. Díaz MF, Veloso MCC, Pereira PAP, Sánchez Y, Fernández I, de Andrade JB. 2021.. Assessment of the physicochemical quality indicators and microbiological effects of Brazilian ozonized vegetable oils. . J. Braz. Chem. Soc. 32::21624
    [Google Scholar]
  28. Dijkstra AJ. 2006.. Revisiting the formation of trans isomers during partial hydrogenation of triacylglycerol oils. . Eur. J. Lipid Sci. Technol. 108::24964
    [Crossref] [Google Scholar]
  29. Ebrahimi P, Lante A, Scapin RM, Zannoni S, Contiero B, et al. 2022.. Evaluation of quality and safety of beef hamburgers fortified with ozonated extra virgin olive oil. . LWT Food Sci. Technol. 170::114100
    [Crossref] [Google Scholar]
  30. Elisabetta C, Bernardetta AT, Luciana D. 2018.. Powerful properties of ozonated extra virgin olive oil. . In Herbal Medicine, ed. FB Philip , pp. 22945. Rijeka, Croat:.: IntechOpen
    [Google Scholar]
  31. Enjarlis E, Christwardana M, Handayani S, Fajriah S, Bismo S, et al. 2022.. Effect of pH and ozone dosage on characteristic of ozonated rice bran oil. . Molekul 17::31120
    [Crossref] [Google Scholar]
  32. Faridnia F, Ma QL, Bremer PJ, Burritt DJ, Hamid N, Oey I. 2015.. Effect of freezing as pre-treatment prior to pulsed electric field processing on quality traits of beef muscles. . Innov. Food Sci. Emerg. Technol. 29::3140
    [Crossref] [Google Scholar]
  33. Ferstl P, Eder C, Ruß W, Wierschem A. 2011.. Pressure-induced crystallization of triacylglycerides. . High Press. Res. 31::33949
    [Crossref] [Google Scholar]
  34. Fuentes V, Utrera M, Estévez M, Ventanas J, Ventanas S. 2014.. Impact of high pressure treatment and intramuscular fat content on colour changes and protein and lipid oxidation in sliced and vacuum-packaged Iberian dry-cured ham. . Meat Sc. 97::46874
    [Crossref] [Google Scholar]
  35. Gao Y, Meng Z. 2024.. Crystallization of lipids and lipid emulsions treated by power ultrasound: a review. . Crit. Rev. Food Sci. Nutr. 64:(7):188293
    [Crossref] [Google Scholar]
  36. Giacomozzi A, Palla C, Carrín ME, Martini S. 2020.. Tailoring physical properties of monoglycerides oleogels using high-intensity ultrasound. . Food Res. Int. 134::109231
    [Crossref] [Google Scholar]
  37. Guadalupe Armas GC, Martel-Benítez CJ, Alayón-Afonso R, Clavo B, Bordes Benítez A, et al. 2022.. In vitro antimicrobial activity of ozonated sunflower oil in milk against Escherichia coli: comparative study in cow, goat and sheep. . J. Appl. Anim. Res. 50::71524
    [Crossref] [Google Scholar]
  38. Guderjan M, Elez-Martínez P, Knorr D. 2007.. Application of pulsed electric fields at oil yield and content of functional food ingredients at the production of rapeseed oil. . Innov. Food Sci. Emerg. Technol. 8::5562
    [Crossref] [Google Scholar]
  39. Guerra-Blanco P, Chairez I, Poznyak T, Brito-Arias M. 2021.. Kinetic analysis of ozonation degree effect on the physicochemical properties of ozonated vegetable oils. . Ozone Sci. Eng. 43::54661
    [Crossref] [Google Scholar]
  40. Gupta MK. 2017.. Winterization and fractionation of selected vegetable oils. . In Practical Guide to Vegetable Oil Processing, ed. MK Gupta , pp. 291322. Cambridge, UK:: Elsevier
    [Google Scholar]
  41. Haji-Moradkhani A, Rezaei R, Moghimi M. 2019.. Optimization of pulsed electric field-assisted oil extraction from cannabis seeds. . J. Food Process Eng. 42::e13028
    [Crossref] [Google Scholar]
  42. Hashempour-Baltork F, Torbati M, Azadmard-Damirchi S, Savage GP. 2016.. Vegetable oil blending: a review of physicochemical, nutritional and health effects. . Trends Food Sci. Technol. 57::5258
    [Crossref] [Google Scholar]
  43. Hastert RC. 1981.. Practical aspects of hydrogenation and soybean salad oil manufacture. . J. Am. Oil Chem. Soc. 58::16974
    [Crossref] [Google Scholar]
  44. Huang K, Wang J. 2009.. Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: a review. . J. Food Eng. 95::22739
    [Crossref] [Google Scholar]
  45. Huey SM, Chong CL, Yeoh CB. 2015.. New developments in palm oil fractionation. . Palm Oil Dev. 62::49
    [Google Scholar]
  46. Islam MA, Amin MN, Siddiqui SA, Hossain MP, Sultana F, Kabir MR. 2019.. Trans fatty acids and lipid profile: a serious risk factor to cardiovascular disease, cancer and diabetes. . Diabetes Metab. Syndr. Clin. Res. Rev. 13::164347
    [Crossref] [Google Scholar]
  47. Jalarama Reddy K, Jayathilakan K, Chauhan OP, Pandey MC, Radhakrishna K. 2015.. Effect of high-pressure processing on physico-chemical and microbial quality characteristics of chevon (Capra aegagrus hircus). . Food Bioprocess Technol. 8::234758
    [Crossref] [Google Scholar]
  48. Jiang J, Song Z, Wang Q, Xu X, Liu Y, Xiong YL. 2019.. Ultrasound-mediated interfacial protein adsorption and fat crystallization in cholesterol-reduced lard emulsion. . Ultrason. Sonochem. 58::104641
    [Crossref] [Google Scholar]
  49. Jin J, Jin Q, Akoh CC, Wang X. 2021.. StOSt-rich fats in the manufacture of heat-stable chocolates and their potential impacts on fat bloom behaviors. . Trends Food Sci. Technol. 118::41830
    [Crossref] [Google Scholar]
  50. Kellens M, Gibon V, Hendrix M, De Greyt W. 2007.. Palm oil fractionation. . Eur. J. Lipid Sci. Technol. 109::33649
    [Crossref] [Google Scholar]
  51. Kim BH, Akoh CC. 2015.. Recent research trends on the enzymatic synthesis of structured lipids. . J. Food Sci. 80::C171324
    [Google Scholar]
  52. Kim HS, Noh SU, Han YW, Kim KM, Kang H, et al. 2009.. Therapeutic effects of topical application of ozone on acute cutaneous wound healing. . J. Korean Med. Sci. 24::36874
    [Crossref] [Google Scholar]
  53. Kim YA, Van Ba H, Dashdorj D, Hwang I. 2018.. Effect of high-pressure processing on the quality characteristics and shelf-life stability of Hanwoo beef marinated with various sauces. . Korean J. Food Sci. Anim. Resour. 38::67992
    [Google Scholar]
  54. Lai O-M, Lee Y-Y, Phuah E-T, Akoh CC. 2019.. Lipase/esterase: properties and industrial applications. . In Encyclopedia of Food Chemistry, ed. L Melton, F Shahidi, P Varelis , pp. 15867. Oxford, UK:: Academic
    [Google Scholar]
  55. Lai O-M, Lo S-K, Akoh CC. 2012.. Enzymatic and chemical modification of palm oil, palm kernel oil, and its fractions. . In Palm Oil: Production, Processing, Characterization, and Uses, ed. O-M Lai, C-P Tan, CC Akoh , pp. 52743. Urbana, IL:: AOCS Press
    [Google Scholar]
  56. Lai OM, Ghazali HM, Chong CL. 1999.. Use of enzymatic transesterified palm stearin-sunflower oil blends in the preparation of table margarine formulation. . Food Chem. 64::8388
    [Crossref] [Google Scholar]
  57. Lee JH, Yu F, Vu PL, Choi MS, Akoh CC, Lee KT. 2007.. Compositional study on rice bran oil after lipase-catalyzed glycerolysis and solvent fractionations. . J. Food Sci. 72::C16367
    [Google Scholar]
  58. Lee WJ, Wang Y. 2022.. Blending, hydrogenation, fractionation and interesterification processing. . In Recent Advances in Edible Fats and Oils Technology: Processing, Health Implications, Economic and Environmental Impact, ed. Y-Y Lee, T-K Tang, E-T Phuah, O-M Lai , pp. 189264. Singapore:: Springer
    [Google Scholar]
  59. Lee Y-Y, Tang T-K, Phuah E-T, Karim NAA, Alwi SMM, Lai O-M. 2015.. Palm-based medium-and-long-chain triacylglycerol (P-MLCT): production via enzymatic interesterification and optimization using response surface methodology (RSM). . J. Food Sci. Technol. 52::68596
    [Crossref] [Google Scholar]
  60. Lemus-Mondaca R, Leiva-Portilla D, Perez-Won M, Tabilo-Munizaga G, Aubourg S. 2018.. Effects of high pressure treatment on physicochemical quality of pre- and post-rigor palm ruff (Seriolella violacea) fillets. . J. Aquat. Food Prod. Technol. 27::37993
    [Crossref] [Google Scholar]
  61. Leon BR, Romary DJ, Landsberger SA, Bradner KN, Ramirez M, Lubitz RM. 2022.. Risks of ozonated oil and ozonated water on human skin: a systematic review. . Int. Wound J. 19::190110
    [Crossref] [Google Scholar]
  62. Li L, Taha A, Geng M, Zhang Z, Su H, et al. 2021.. Ultrasound-assisted gelation of β-carotene enriched oleogels based on candelilla wax-nut oils: physical properties and in-vitro digestion analysis. . Ultrason. Sonochem. 79::105762
    [Crossref] [Google Scholar]
  63. Lo S-K, Cheong L-Z, Arifin N, Tan C-P, Long K, et al. 2007.. Diacylglycerol and triacylglycerol as responses in a dual response surface-optimized process for diacylglycerol production by lipase-catalyzed esterification in a pilot packed-bed enzyme reactor. . J. Agric. Food Chem. 55::5595603
    [Crossref] [Google Scholar]
  64. Luque de Castro MD, Priego-Capote F. 2007.. Ultrasound-assisted crystallization (sonocrystallization). . Ultrason. Sonochem. 14::71724
    [Crossref] [Google Scholar]
  65. Ma Q, Hamid N, Oey I, Kantono K, Faridnia F, et al. 2016.. Effect of chilled and freezing pre-treatments prior to pulsed electric field processing on volatile profile and sensory attributes of cooked lamb meats. . Innov. Food Sci. Emerg. Technol. 37::35974
    [Crossref] [Google Scholar]
  66. Magalhães KT, de Sousa Tavares T, Nunes CA. 2020.. The chemical, thermal and textural characterization of fractions from Macauba kernel oil. . Food Res. Int. 130::108925
    [Crossref] [Google Scholar]
  67. Martini S. 2013.. Sonocrystallization of Fats. New York:: Springer
    [Google Scholar]
  68. Maruyama JM, Wagh A, Gioielli LA, da Silva RC, Martini S. 2016.. Effects of high intensity ultrasound and emulsifiers on crystallization behavior of coconut oil and palm olein. . Food Res. Int. 86::5463
    [Crossref] [Google Scholar]
  69. Medina-Meza IG, Barnaba C, Barbosa-Cánovas GV. 2014.. Effects of high pressure processing on lipid oxidation: a review. . Innov. Food Sci. Emerg. Technol. 22::110
    [Crossref] [Google Scholar]
  70. Moreau M, Orange N, Feuilloley MGJ. 2008.. Non-thermal plasma technologies: new tools for bio-decontamination. . Biotechnol. Adv. 26::61017
    [Crossref] [Google Scholar]
  71. Moureu S, Violleau F, Ali Haimoud-Lekhal D, Calmon A. 2015.. Ozonation of sunflower oils: impact of experimental conditions on the composition and the antibacterial activity of ozonized oils. . Chem. Phys. Lipids 186::7985
    [Crossref] [Google Scholar]
  72. Naliyadhara N, Kumar A, Girisa S, Daimary UD, Hegde M, Kunnumakkara AB. 2022.. Pulsed electric field (PEF): avant-garde extraction escalation technology in food industry. . Trends Food Sci. Technol. 122::23855
    [Crossref] [Google Scholar]
  73. Ng SP, Khor YP, Lim HK, Lai OM, Wang Y, et al. 2021.. In-depth characterization of palm-based diacylglycerol-virgin coconut oil blends with enhanced techno-functional properties. . LWT Food Sci. Technol. 145::111327
    [Crossref] [Google Scholar]
  74. Ng SP, Lai OM, Abas F, Lim HK, Beh BK, et al. 2014.. Compositional and thermal characteristics of palm olein-based diacylglycerol in blends with palm super olein. . Food Res. Int. 55::6269
    [Crossref] [Google Scholar]
  75. Norlelawati A, Koh S-P, Kamariah L, Tan C-P, Yusoff MSA, Lai O-M. 2012.. Modeling and optimization of lipozyme RM IM-catalyzed esterification of medium- and long-chain triacyglycerols (MLCT) using response surface methodology. . Food Bioprocess Technol. 5::21625
    [Crossref] [Google Scholar]
  76. Okyere AY, Rajendran S, Annor GA. 2022.. Cold plasma technologies: their effect on starch properties and industrial scale-up for starch modification. . Curr. Res. Nutr. Food Sci. 5::45163
    [Google Scholar]
  77. Omonov TS, Kharraz E, Curtis JM. 2011.. Ozonolysis of canola oil: a study of product yields and ozonolysis kinetics in different solvent systems. . J. Am. Oil Chem. Soc. 88::689705
    [Crossref] [Google Scholar]
  78. Ong CRE, Tang TK, Lee YY, Choong TSY, Lai OM, et al. 2019.. Melting and crystallisation behaviour of soybean oil in blend with palm oil based diacylglycerol. . Int. Food Res. J. 26::78191
    [Google Scholar]
  79. Oteng A-B, Kersten S. 2019.. Mechanisms of action of trans fatty acids. . Adv. Nutr. 11::697708
    [Crossref] [Google Scholar]
  80. Pande G, Akoh CC, Shewfelt RL. 2013.. Utilization of enzymatically interesterified cottonseed oil and palm stearin-based structured lipid in the production of trans-free margarine. . Biocatal. Agric. Biotechnol. 2::7684
    [Crossref] [Google Scholar]
  81. Pérez-Andrés JM, Charoux CMG, Cullen PJ, Tiwari BK. 2018.. Chemical modifications of lipids and proteins by nonthermal food processing technologies. . J. Agric. Food Chem. 66::504154
    [Crossref] [Google Scholar]
  82. Phuah E-T, Lai O-M, Choong TS-Y, Tan C-P, Lo S-K. 2012.. Kinetic study on partial hydrolysis of palm oil catalyzed by Rhizomucor miehei lipase. . J. Mol. Catal. B 78::9197
    [Crossref] [Google Scholar]
  83. Phuah E-T, Lee Y-Y, Tang T-K, Lai O-M, Choong TS-Y, et al. 2016.. Modeling and optimization of lipase-catalyzed partial hydrolysis for diacylglycerol production in packed bed reactor. . Int. J. Food Eng. 12::68189
    [Crossref] [Google Scholar]
  84. Phuah E-T, Tang T-K, Lee Y-Y, Choong TS-Y, Tan C-P, Lai O-M. 2015.. Review on the current state of diacylglycerol production using enzymatic approach. . Food Bioprocess Technol. 8::116986
    [Crossref] [Google Scholar]
  85. Puértolas E, Álvarez I, Raso J, Martínez de Marañón I. 2013.. Industrial application of pulsed electric field for food pasteurization: review of its technical and commercial viability. . CyTA J. Food 11::8188
    [Crossref] [Google Scholar]
  86. Puprasit K, Wongsawaeng D, Ngaosuwan K, Kiatkittipong W, Assabumrungrat S. 2020.. Non-thermal dielectric barrier discharge plasma hydrogenation for production of margarine with low trans-fatty acid formation. . Innov. Food Sci. Emerg. Technol. 66::102511
    [Crossref] [Google Scholar]
  87. Puprasit K, Wongsawaeng D, Ngaosuwan K, Kiatkittipong W, Assabumrungrat S. 2022.. Improved hydrogenation process for margarine production with no trans fatty acid formation by non-thermal plasma with needle-in-tube configuration. . J. Food Eng. 334::111167
    [Crossref] [Google Scholar]
  88. Radzimierska-Kaźmierczak M, Śmigielski K, Sikora M, Nowak A, Plucińska A, et al. 2021.. Olive oil with ozone-modified properties and its application. . Molecules 26::3074
    [Crossref] [Google Scholar]
  89. Ranjha MMAN, Kanwal R, Shafique B, Arshad RN, Irfan S, et al. 2021.. A critical review on pulsed electric field: a novel technology for the extraction of phytoconstituents. . Molecules 26::4893
    [Crossref] [Google Scholar]
  90. Roodenburg B. 2007.. Electrochemistry in pulsed electric field treatment chambers. . In Food Preservation by Pulsed Electric Fields: From Research to Application, ed. HLM Lelieveld, S Notermans, SWH De Haan , pp. 94106. Cambridge, UK:: Springer
    [Google Scholar]
  91. Saberi AH, Lai O-M, Miskandar MS. 2012.. Melting and solidification properties of palm-based diacylglycerol, palm kernel olein, and sunflower oil in the preparation of palm-based diacylglycerol-enriched soft tub margarine. . Food Bioprocess Technol. 5::167485
    [Crossref] [Google Scholar]
  92. Şahin-Yeşilçubuk N, Akoh CC. 2017.. Biotechnological and novel approaches for designing structured lipids intended for infant nutrition. . J. Am. Oil Chem. Soc. 94::100534
    [Crossref] [Google Scholar]
  93. Sega A, Zanardi I, Chiasserini L, Gabbrielli A, Bocci V, Travagli V. 2010.. Properties of sesame oil by detailed 1H and 13C NMR assignments before and after ozonation and their correlation with iodine value, peroxide value, and viscosity measurements. . Chem. Phys. Lipids 163::14856
    [Crossref] [Google Scholar]
  94. Sharifi M, Goli SAH, Fayaz G. 2019.. Exploitation of high-intensity ultrasound to modify the structure of olive oil organogel containing propolis wax. . Int. J. Food Sci. Technol. 54::50915
    [Crossref] [Google Scholar]
  95. Sharma K, Kumar M, Lorenzo JM, Guleria S, Saxena S. 2023.. Manoeuvring the physicochemical and nutritional properties of vegetable oils through blending. . J. Am. Oil Chem. Soc. 100::524
    [Crossref] [Google Scholar]
  96. Shorstkii I, Khudyakov D, Mirshekarloo MS. 2020.. Pulsed electric field assisted sunflower oil pilot production: impact on oil yield, extraction kinetics and chemical parameters. . Innov. Food Sci. Emerg. Technol. 60::102309
    [Crossref] [Google Scholar]
  97. Silva V, Peirone C, Capita R, Alonso-Calleja C, Marques-Magallanes JA, et al. 2021.. Topical application of ozonated oils for the treatment of MRSA skin infection in an animal model of infected ulcer. . Biology 10::372
    [Crossref] [Google Scholar]
  98. Silve A, Papachristou I, Wüstner R, Sträßner R, Schirmer M, et al. 2018.. Extraction of lipids from wet microalga Auxenochlorella protothecoides using pulsed electric field treatment and ethanol-hexane blends. . Algal Res. 29::21222
    [Crossref] [Google Scholar]
  99. Sivakanthan S, Madhujith T. 2020.. Current trends in applications of enzymatic interesterification of fats and oils: a review. . LWT Food Sci. Technol. 132::109880
    [Crossref] [Google Scholar]
  100. Sonwai S, Ornla-ied P, Martini S, Hondoh H, Ueno S. 2021.. High-intensity ultrasound-induced crystallization of mango kernel fat. . J. Am. Oil Chem. Soc. 98::4352
    [Crossref] [Google Scholar]
  101. Tefelski DB, Siegoczyński RM, Rostocki AJ, Kos A, Kościesza R, Wieja K. 2008.. The investigation of the dynamics of the phase transformation in triolein and oleic acid under pressure. . J. Phys. Conf. Ser. 121::142004
    [Crossref] [Google Scholar]
  102. Thirumdas R. 2022.. Partial hydrogenation of oils using cold plasma technology and its effect on lipid oxidation. . J. Food Sci. Technol. 60::167480
    [Crossref] [Google Scholar]
  103. Tong S-C, Tang T-K, Lee Y-Y. 2021.. A review on the fundamentals of palm oil fractionation: processing conditions and seeding agents. . Eur. J. Lipid Sci. Technol. 123::2100132
    [Crossref] [Google Scholar]
  104. Ugazio E, Tullio V, Binello A, Tagliapietra S, Dosio F. 2020.. Ozonated oils as antimicrobial systems in topical applications: their characterization, current applications, and advances in improved delivery techniques. . Molecules 25::334
    [Crossref] [Google Scholar]
  105. Upadhyay R, Thirumdas R, Deshmukh RR, Annapure U, Misra NN. 2019.. An exploration of the effects of low-pressure plasma discharge on the physico-chemical properties of chia (Salvia hispanica L.) flour. . J. Eng. Process. Manag. 11::7380
    [Google Scholar]
  106. Vázquez L, Akoh CC. 2010.. Fractionation of short and medium chain fatty acid ethyl esters from a blend of oils via ethanolysis and short-path distillation. . J. Am. Oil Chem. Soc. 87::91728
    [Crossref] [Google Scholar]
  107. WHO. 2018.. Draft guidelines on saturated fatty acid and trans-fatty acid intake for adults and children. Rep. , World Health Organ., Geneva:. https://cdn.who.int/media/docs/default-source/nutritionlibrary/cfs-vgfsyn/draft-who-sfa-tfa-guidelines-public-consultation.pdf?sfvrsn=dc29c6af_5
    [Google Scholar]
  108. Willett SA, Akoh CC. 2018.. Application of Taguchi method in the enzymatic modification of menhaden oil to incorporate capric acid. . J. Am. Oil Chem. Soc. 95::299311
    [Crossref] [Google Scholar]
  109. Wongjaikham W, Kongprawes G, Wongsawaeng D, Ngaosuwan K, Kiatkittipong W, et al. 2022.. Production of low trans-fat margarine by partial hydrogenation of palm oil using nature-friendly and catalyst-free microwave plasma technique. . Innov. Food Sci. Emerg. Technol. 80::103107
    [Crossref] [Google Scholar]
  110. Xiao W, Tang H, Wu M, Liao Y, Li K, et al. 2017.. Ozone oil promotes wound healing by increasing the migration of fibroblasts via PI3K/Akt/mTOR signaling pathway. . Biosci. Rep. 37::BSR20170658
    [Crossref] [Google Scholar]
  111. Yepez XV. 2020.. Characterization and analysis of high voltage atmospheric cold plasma treatment of soybean oil. PhD Thesis , Purdue Univ., West Lafayette, IN:
    [Google Scholar]
  112. Yepez XV, Baykara H, Xu L, Keener KM. 2021.. Cold plasma treatment of soybean oil with hydrogen gas. . J. Am. Oil Chem. Soc. 98::10313
    [Crossref] [Google Scholar]
  113. Yepez XV, Keener KM. 2016.. High-voltage atmospheric cold plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids. . Innov. Food Sci. Emerg. Technol. 38::16974
    [Crossref] [Google Scholar]
  114. Yordanov DG, Angelova GV. 2010.. High pressure processing for foods preserving. . Biotechnol. Biotechnol. Equip. 24::194045
    [Crossref] [Google Scholar]
  115. Zanardi I, Travagli V, Gabbrielli A, Chiasserini L, Bocci V. 2008.. Physico-chemical characterization of sesame oil derivatives. . Lipids 43::87786
    [Crossref] [Google Scholar]
  116. Zhang Z, Ye J, Lee WJ, Akoh CC, Li A, Wang Y. 2021.. Modification of palm-based oil blend via interesterification: physicochemical properties, crystallization behaviors and oxidative stabilities. . Food Chem. 347::129070
    [Crossref] [Google Scholar]
  117. Zhong N, Li L, Xu X, Cheong L-Z, Xu Z, Li B. 2013.. High yield of monoacylglycerols production through low-temperature chemical and enzymatic glycerolysis. . Eur. J. Lipid Sci. Technol. 115::68490
    [Crossref] [Google Scholar]
  118. Zou X, Jin Q, Guo Z, Huang J, Xu X, Wang X. 2016.. Preparation of 1,3-dioleoyl-2-palmitoylglycerol-rich structured lipids from basa catfish oil: combination of fractionation and enzymatic acidolysis. . Eur. J. Lipid Sci. Technol. 118::70815
    [Crossref] [Google Scholar]
  119. Zulkurnain M, Balasubramaniam VM, Maleky F. 2017.. Thermal effects on lipids crystallization kinetics under high pressure. . Cryst. Growth Des. 17::483543
    [Crossref] [Google Scholar]
  120. Zulkurnain M, Maleky F, Balasubramaniam VM. 2016.. High pressure processing effects on lipids thermophysical properties and crystallization kinetics. . Food Eng. Rev. 8::393413
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034440
Loading
/content/journals/10.1146/annurev-food-072023-034440
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error