1932

Abstract

There is increasing consumer demand for alternative animal protein products that are delicious and sustainably produced to address concerns about the impacts of mass-produced meat on human and planetary health. Cultured meat has the potential to provide a source of nutritious dietary protein that both is palatable and has reduced environmental impact. However, strategies to support the production of cultured meats at the scale required for food consumption will be critical. In this review, we discuss the current challenges and opportunities of using edible scaffolds for scaling up the production of cultured meat. We provide an overview of different types of edible scaffolds, scaffold fabrication techniques, and common scaffold materials. Finally, we highlight potential advantages of using edible scaffolds to advance cultured meat production by accelerating cell growth and differentiation, providing structure to build complex 3D tissues, and enhancing the nutritional and sensory properties of cultured meat.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034451
2024-06-28
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034451.html?itemId=/content/journals/10.1146/annurev-food-072023-034451&mimeType=html&fmt=ahah

Literature Cited

  1. Aberle ED. 2001.. Principles of Meat Science. Dubuque, IA:: Kendall Hunt Publ.
    [Google Scholar]
  2. Adamski M, Fontana G, Gershlak JR, Gaudette GR, Le HD, Murphy WL. 2018.. Two methods for decellularization of plant tissues for tissue engineering applications. . J. Vis. Exp. 135::57586
    [Google Scholar]
  3. Ahirwal D, Hébraud A, Kádár R, Wilhelm M, Schlatter G. 2013.. From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams. . Soft Matter 9::316472
    [Crossref] [Google Scholar]
  4. Allan SJ, Ellis MJ, De Bank PA. 2021.. Decellularized grass as a sustainable scaffold for skeletal muscle tissue engineering. . J. Biomed. Mater. Res. Part A 109::247182
    [Crossref] [Google Scholar]
  5. Alvarez-Martinez L, Kondury KP, Harper JM. 1988.. A general model for expansion of extruded products. . J. Food Sci. 53:(2):60915
    [Crossref] [Google Scholar]
  6. Andreassen RC, Ronning SB, Solberg NT, Gronlien KG, Kristoffersen KA, et al. 2022.. Production of food-grade microcarriers based on by-products from the food industry to facilitate the expansion of bovine skeletal muscle satellite cells for cultured meat production. . Biomaterials 286::121602
    [Crossref] [Google Scholar]
  7. Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, et al. 2016.. Muscle tissue engineering using gingival mesenchymal stem cells encapsulated in alginate hydrogels containing multiple growth factors. . Ann. Biomed. Eng. 44::190820
    [Crossref] [Google Scholar]
  8. Antinori ME, Contardi M, Suarato G, Armirotti A, Bertorelli R, et al. 2021.. Advanced mycelium materials as potential self-growing biomedical scaffolds. . Sci. Rep. 11::12630
    [Crossref] [Google Scholar]
  9. Antoine EE, Vlachos PP, Rylander MN. 2014.. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. . Tissue Eng. Part B 20::68396
    [Crossref] [Google Scholar]
  10. Aschemann-Witzel J, Gantriis RF, Fraga P, Perez-Cueto FJA. 2021.. Plant-based food and protein trend from a business perspective: markets, consumers, and the challenges and opportunities in the future. . Crit. Rev. Food Sci. Nutr. 61::311928
    [Crossref] [Google Scholar]
  11. Bachmann M, Kukkurainen S, Hytonen VP, Wehrle-Haller B. 2019.. Cell adhesion by integrins. . Physiol. Rev. 99::165599
    [Crossref] [Google Scholar]
  12. Báez J, Olsen D, Polarek JW. 2005.. Recombinant microbial systems for the production of human collagen and gelatin. . Appl. Microbiol. Biotechnol. 69::24552
    [Crossref] [Google Scholar]
  13. Bansode S, Bashtanova U, Li R, Clark J, Müller KH, et al. 2020.. Glycation changes molecular organization and charge distribution in type I collagen fibrils. . Sci. Rep. 10::3397
    [Crossref] [Google Scholar]
  14. Banwell MG, Pollard B, Liu X, Connal LA. 2021.. Exploiting nature's most abundant polymers: developing new pathways for the conversion of cellulose, hemicellulose, lignin and chitin into platform molecules (and beyond). . Chem. Asian J. 16::60420
    [Crossref] [Google Scholar]
  15. Barone PW, Wiebe ME, Leung JC, Hussein ITM, Keumurian FJ, et al. 2020.. Viral contamination in biologic manufacture and implications for emerging therapies. . Nat. Biotechnol. 38::56372
    [Crossref] [Google Scholar]
  16. Ben-Arye T, Shandalov Y, Ben-Shaul S, Landau S, Zagury Y, et al. 2020.. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. . Nat. Food 1::21020
    [Crossref] [Google Scholar]
  17. Benington L, Rajan G, Locher C, Lim LY. 2020.. Fibroblast growth factor 2—a review of stabilisation approaches for clinical applications. . Pharmaceutics 12::508
    [Crossref] [Google Scholar]
  18. Biswas MC, Jony B, Nandy PK, Chowdhury RA, Halder S, et al. 2022.. Recent advancement of biopolymers and their potential biomedical applications. . J. Polym. Environ. 30::5174
    [Crossref] [Google Scholar]
  19. Butler M. 2003.. Animal Cell Culture and Technology. London:: Taylor & Francis
    [Google Scholar]
  20. Buyel JF, Twyman RM, Fischer R. 2017.. Very-large-scale production of antibodies in plants: the biologization of manufacturing. . Biotechnol. Adv. 35::45865
    [Crossref] [Google Scholar]
  21. Campuzano S, Mogilever NB, Pelling AE. 2020.. Decellularized plant-based scaffolds for guided alignment of myoblast cells. . bioRxiv 958686. https://doi.org/10.1101/2020.02.23.958686
    [Google Scholar]
  22. Chandler EM, Berglund CM, Lee JS, Polacheck WJ, Gleghorn JP, et al. 2011.. Stiffness of photocrosslinked RGD-alginate gels regulates adipose progenitor cell behavior. . Biotechnol. Bioeng. 108::168392
    [Crossref] [Google Scholar]
  23. Chen C, Ding W, Zhang H, Zhang L, Huang Y, et al. 2022.. Bacterial cellulose-based biomaterials: from fabrication to application. . Carbohydr. Polym. 278::118995
    [Crossref] [Google Scholar]
  24. Chen G, Ito Y, Imanishi Y. 1997.. Photo-immobilization of epidermal growth factor enhances its mitogenic effect by artificial juxtacrine signaling. . Biochim. Biophys. Acta 1358::2008
    [Crossref] [Google Scholar]
  25. Chen Y, Brown PH, Hu K, Black RM, Prior RL, et al. 2011.. Supercritical CO2 decaffeination of unroasted coffee beans produces melanoidins with distinct NF-κB inhibitory activity. . J. Food Sci. 76::H18286
    [Google Scholar]
  26. Cherry RS, Papoutsakis ET. 1988.. Physical mechanisms of cell damage in microcarrier cell culture bioreactors. . Biotechnol. Bioeng. 32::100114
    [Crossref] [Google Scholar]
  27. Chisti Y. 2000.. Animal-cell damage in sparged bioreactors. . Trends Biotechnol. 18::42032
    [Crossref] [Google Scholar]
  28. Chong BF, Blank LM, McLaughlin R, Nielsen LK. 2005.. Microbial hyaluronic acid production. . Appl. Microbiol. Biotechnol. 66::34151
    [Crossref] [Google Scholar]
  29. Collins MN, Birkinshaw C. 2013.. Hyaluronic acid based scaffolds for tissue engineering—a review. . Carbohydr. Polym. 92::126279
    [Crossref] [Google Scholar]
  30. Coogan KR, Stone PT, Sempertegui ND, Rao SS. 2020.. Fabrication of micro-porous hyaluronic acid hydrogels through salt leaching. . Eur. Polymer. J. 135::109870
    [Crossref] [Google Scholar]
  31. Courtenay JC, Johns MA, Galembeck F, Deneke C, Lanzoni EM, et al. 2017.. Surface modified cellulose scaffolds for tissue engineering. . Cellulose 24::25367
    [Crossref] [Google Scholar]
  32. Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O. 2013.. Fiber diameter in electrospinning process. . J. Electrost. 71::18998
    [Crossref] [Google Scholar]
  33. Custódio CA, Alves CM, Reis RL, Mano JF. 2010.. Immobilization of fibronectin in chitosan substrates improves cell adhesion and proliferation. . J. Tissue Eng. Regen. Med. 4::31623
    [Crossref] [Google Scholar]
  34. Dai Z, Ronholm J, Tian Y, Sethi B, Cao X. 2016.. Sterilization techniques for biodegradable scaffolds in tissue engineering applications. . J. Tissue Eng. 7::2041731416648810
    [Crossref] [Google Scholar]
  35. Dessi-Olive J. 2022.. Strategies for growing large-scale mycelium structures. . Biomimetics 7::129
    [Crossref] [Google Scholar]
  36. Dick A, Bhandari B, Prakash S. 2019.. 3D printing of meat. . Meat. Sci. 153::3544
    [Crossref] [Google Scholar]
  37. Dong H, Wang P, Yang Z, Xu X. 2023.. 3D printing based on meat materials: challenges and opportunities. . Curr. Res. Food Sci. 6::100423
    [Crossref] [Google Scholar]
  38. Drury JL, Mooney DJ. 2003.. Hydrogels for tissue engineering: scaffold design variables and applications. . Biomaterials 24::433751
    [Crossref] [Google Scholar]
  39. Engler AJ, Griffin MA, Sen S, Bönnemann CG, Sweeney HL, Discher DE. 2004.. Myotubes differentiate optimally on substrates with tissue-like stiffness: pathological implications for soft or stiff microenvironments. . J. Cell Biol. 166::87787
    [Crossref] [Google Scholar]
  40. Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. 2020.. Immobilization of growth factors for cell therapy manufacturing. . Front. Bioeng. Biotechnol. 8::620
    [Crossref] [Google Scholar]
  41. Ferlin KM, Prendergast ME, Miller ML, Kaplan DS, Fisher JP. 2016.. Influence of 3D printed porous architecture on mesenchymal stem cell enrichment and differentiation. . Acta Biomater. 32::16169
    [Crossref] [Google Scholar]
  42. Fountain H. 2013.. A lab-grown burger gets a taste test. . New York Times, Aug. 13. https://www.nytimes.com/2013/08/06/science/a-lab-grown-burger-gets-a-taste-test.html
    [Google Scholar]
  43. Furuhashi M, Morimoto Y, Shima A, Nakamura F, Ishikawa H, Takeuchi S. 2021.. Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak. . NPJ Sci. Food 5::6
    [Crossref] [Google Scholar]
  44. Gershlak JR, Hernandez S, Fontana G, Perreault LR, Hansen KJ, et al. 2017.. Crossing kingdoms: using decellularized plants as perfusable tissue engineering scaffolds. . J. Biomater. 125::1322
    [Crossref] [Google Scholar]
  45. Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, et al. 2010.. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. . Science 329::107881
    [Crossref] [Google Scholar]
  46. Gómez-Mascaraque LG, Lagarón JM, Amparo López-Rubio A. 2015.. Electrosprayed gelatin submicroparticles as edible carriers for the encapsulation of polyphenols of interest in functional foods. . Food Hydrocoll. 49::4252
    [Crossref] [Google Scholar]
  47. Gu Y, Li X, Chan ECY. 2023.. Risk assessment of cultured meat. . Trends Food Sci. Technol. 138::49199
    [Crossref] [Google Scholar]
  48. Handral HK, Hua Tay S, Wan Chan W, Choudhury D. 2022.. 3D printing of cultured meat products. . Crit. Rev. Food Sci. Nutr. 62::27281
    [Crossref] [Google Scholar]
  49. Hanga MP, Ali J, Moutsatsou P, de la Raga FA, Hewitt CJ, et al. 2020.. Bioprocess development for scalable production of cultivated meat. . Biotechnol. Bioeng. 117::302939
    [Crossref] [Google Scholar]
  50. Hardwicke J, Ferguson EL, Moseley R, Stephens P, Thomas DW, Duncan R. 2008.. Dextrin–rhEGF conjugates as bioresponsive nanomedicines for wound repair. . J. Control Release 130::27583
    [Crossref] [Google Scholar]
  51. He FL, Li DW, He J, Liu YY, Ahmad F, et al. 2018.. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning. . Mater. Sci. Eng. C 86::1827
    [Crossref] [Google Scholar]
  52. Hu L, Huff HE, Heymann H, Hsieh F. 1996.. Effects of emulsifier and soy fiber addition on sensory properties of corn meal extrudate. . J. Food Qual. 19::5777
    [Crossref] [Google Scholar]
  53. Huang L, Xiao L, Jung Poudel A, Li J, Zhou P, et al. 2018a.. Porous chitosan microspheres as microcarriers for 3D cell culture. . Carbohydr. Polym. 202::61120
    [Crossref] [Google Scholar]
  54. Huang M, Wang G, Qin J, Petranovic D, Nielsen J. 2018b.. Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. . PNAS 115::E1102532
    [Google Scholar]
  55. Huang NF, Patel S, Thakar RG, Wu J, Hsiao BS, et al. 2006.. Myotube assembly on nanofibrous and micropatterned polymers. . Nano Lett. 6::53742
    [Crossref] [Google Scholar]
  56. Humbird D. 2021.. Scale-up economics for cultured meat. . Biotechnol. Bioeng. 118::323950
    [Crossref] [Google Scholar]
  57. Ianovici I, Zagury Y, Redenski I, Lavon N, Levenberg S. 2022.. 3D-printable plant protein-enriched scaffolds for cultivated meat development. . Biomaterials 284::121487
    [Crossref] [Google Scholar]
  58. Jain RK, Au P, Tam J, Duda DG, Fukumura D. 2005.. Engineering vascularized tissue. . Nat. Biotechnol. 23::82123
    [Crossref] [Google Scholar]
  59. Janmey PA, Winer JP, Weisel JW. 2009.. Fibrin gels and their clinical and bioengineering applications. . J. R. Soc. Interface 6::110
    [Crossref] [Google Scholar]
  60. Jones NC, Fedorov YV, Rosenthal RS, Olwin BB. 2001.. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. . J. Cell. Physiol. 186::10415
    [Crossref] [Google Scholar]
  61. Jurgilevich A, Birge T, Kentala-Lehtonen J, Korhonen-Kurki K, Pietikäinen J, et al. 2016.. Transition towards circular economy in the food system. . Sustainability 8::69
    [Crossref] [Google Scholar]
  62. Kakudo N, Shimotsuma A, Kusumoto K. 2007.. Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. . Biochem. Biophys. Res. Commun. 359::23944
    [Crossref] [Google Scholar]
  63. Kang D-H, Louis F, Liu H, Shimoda H, Nishiyama Y, et al. 2021.. Engineered whole cut meat-like tissue by the assembly of cell fibers using tendon-gel integrated bioprinting. . Nat. Commun. 12::5059
    [Crossref] [Google Scholar]
  64. Kawecki NS, Norris SCP, Xu Y, Wu Y, Davis AR, et al. 2023.. Engineering marbled cultured meat by spontaneous adhesion of myogenic and adipogenic microtissues cultured with customized scaffolds. . Food Res. Int. 172::113080
    [Crossref] [Google Scholar]
  65. Khalil AS, Xie AW, Johnson HJ, Murphy WL. 2020.. Sustained release and protein stabilization reduce the growth factor dosage required for human pluripotent stem cell expansion. . Biomaterials 248::120007
    [Crossref] [Google Scholar]
  66. Khodabukus A, Madden L, Prabhu NK, Koves TR, Jackman CP, et al. 2019.. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle. . Biomaterials 198::25969
    [Crossref] [Google Scholar]
  67. Kieliszek M, Misiewicz A. 2014.. Microbial transglutaminase and its application in the food industry. A review. . Folia Microbiol. 59::24150
    [Crossref] [Google Scholar]
  68. Kumar Sarangi P, Subudhi S, Bhatia L, Saha K, Mudgil D, et al. 2023.. Utilization of agricultural waste biomass and recycling toward circular bioeconomy. . Environ. Sci. Pollut. Res. Int. 30::852639
    [Crossref] [Google Scholar]
  69. Kummala R, Soto Veliz D, Fang Z, Xu W, Abitbol T, et al. 2020.. Human dermal fibroblast viability and adhesion on cellulose nanomaterial coatings: influence of surface characteristics. . Biomacromolecules 21::156067
    [Crossref] [Google Scholar]
  70. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, et al. 2019.. 3D bioprinting of collagen to rebuild components of the human heart. . Science 365::48287
    [Crossref] [Google Scholar]
  71. Lee M, Park S, Choi B, Kim J, Choi W, et al. 2022.. Tailoring a gelatin/agar matrix for the synergistic effect with cells to produce high-quality cultured meat. . ACS Appl. Mater. Interfaces 14::3823545
    [Crossref] [Google Scholar]
  72. Letcher SM, Rubio NR, Ashizawa RN, Saad MK, Rittenberg ML, et al. 2022.. In vitro insect fat cultivation for cellular agriculture applications. . ACS Biomater. Sci. Eng. 8::378596
    [Crossref] [Google Scholar]
  73. Li B, Wang X, Wang Y, Gou W, Yuan X, et al. 2015.. Past, present, and future of microcarrier-based tissue engineering. . J. Orthop. Transl. 3::5157
    [Google Scholar]
  74. Li CH, Yang IH, Ke CJ, Chi CY, Matahum J, et al. 2022.. The production of fat-containing cultured meat by stacking aligned muscle layers and adipose layers formed from gelatin-soymilk scaffold. . Front. Bioeng. Biotechnol. 10::875069
    [Crossref] [Google Scholar]
  75. Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, et al. 2016.. How muscle structure and composition influence meat and flesh quality. . Sci. World J. 2016::e3182746
    [Crossref] [Google Scholar]
  76. Liu Y, Wang R, Ding S, Deng L, Zhang Y, et al. 2022.. Engineered meatballs via scalable skeletal muscle cell expansion and modular micro-tissue assembly using porous gelatin micro-carriers. . Biomaterials 287::121615
    [Crossref] [Google Scholar]
  77. Liu Z, Cai M, Zhang X, Yu X, Wang S, et al. 2021.. Cell-traction-triggered on-demand electrical stimulation for neuron-like differentiation. . Adv. Mater. 33::e2106317
    [Crossref] [Google Scholar]
  78. Lotz S, Goderie S, Tokas N, Hirsch SE, Ahmad F, et al. 2013.. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. . PLOS ONE 8::e56289
    [Crossref] [Google Scholar]
  79. MacQueen LA, Alver CG, Chantre CO, Ahn S, Cera L, et al. 2019.. Muscle tissue engineering in fibrous gelatin: implications for meat analogs. . npj Sci. Food 3::20
    [Crossref] [Google Scholar]
  80. Malik P, Mukherjee S, Mukherjee TK. 2023.. Microbial contamination of mammalian cell culture. . In Practical Approach to Mammalian Cell and Organ Culture, ed. TK Mukherjee, P Malik, S Mukherjee , pp. 187231. Singapore:: Springer
    [Google Scholar]
  81. Malladi S, Miranda-Nieves D, Leng L, Grainger SJ, Tarabanis C, et al. 2020.. Continuous formation of ultrathin, strong collagen sheets with tunable anisotropy and compaction. . ACS Biomater. Sci. Eng. 6::423646
    [Crossref] [Google Scholar]
  82. Mao H, Min Kim S, Ueki M, Ito Y. 2017.. Serum-free culturing of human mesenchymal stem cells with immobilized growth factors. . J. Mater. Chem. B 5::92834
    [Crossref] [Google Scholar]
  83. McMurtrey RJ. 2016.. Analytic models of oxygen and nutrient diffusion, metabolism dynamics, and architecture optimization in three-dimensional tissue constructs with applications and insights in cerebral organoids. . Tissue Eng. Part C 22::22149
    [Crossref] [Google Scholar]
  84. Mitic R, Cantoni F, Borlin CS, Post MJ, Jackisch L. 2023.. A simplified and defined serum-free medium for cultivating fat across species. . iScience 26::105822
    [Crossref] [Google Scholar]
  85. Modulevsky DJ, Lefebvre C, Haase K, Al-Rekabi Z, Pelling AE. 2014.. Apple derived cellulose scaffolds for 3D mammalian cell culture. . PLOS ONE 9::e97835
    [Crossref] [Google Scholar]
  86. Mohorcich J, Reese J. 2019.. Cell-cultured meat: lessons from GMO adoption and resistance. . Appetite 143::104408
    [Crossref] [Google Scholar]
  87. Montorsi M, Genchi GG, De Pasquale D, De Simoni G, Sinibaldi E, Ciofani G. 2022.. Design, fabrication, and characterization of a multimodal reconfigurable bioreactor for bone tissue engineering. . Biotechnol. Bioeng. 119::196579
    [Crossref] [Google Scholar]
  88. Mukund K, Subramaniam S. 2020.. Skeletal muscle: a review of molecular structure and function, in health and disease. . Wiley Interdisc. Rev. Syst. Biol. Med. 12::e1462
    [Crossref] [Google Scholar]
  89. Muneekaew S, Wang M-J, Chen S-Y. 2022.. Control of stem cell differentiation by using extrinsic photobiomodulation in conjunction with cell adhesion pattern. . Sci. Rep. 12::1812
    [Crossref] [Google Scholar]
  90. Murphy SV, Atala A. 2014.. 3D bioprinting of tissues and organs. . Nat. Biotechnol. 32::77385
    [Crossref] [Google Scholar]
  91. Naqvi SM, McNamara LM. 2020.. Stem cell mechanobiology and the role of biomaterials in governing mechanotransduction and matrix production for tissue regeneration. . Front. Bioeng. Biotechnol. 8::597661
    [Crossref] [Google Scholar]
  92. Narayanan KB, Zo SM, Han SS. 2020.. Novel biomimetic chitin-glucan polysaccharide nano/microfibrous fungal-scaffolds for tissue engineering applications. . Int. J. Biol. Macromol. 149::72431
    [Crossref] [Google Scholar]
  93. Negrini NC, Bonnetier M, Giatsidis G, Orgill DP, Farè S, Marelli B. 2019.. Tissue-mimicking gelatin scaffolds by alginate sacrificial templates for adipose tissue engineering. . Acta Biomater. 87::6175
    [Crossref] [Google Scholar]
  94. Negulescu PG, Risner D, Spang ES, Sumner D, Block D, et al. 2023.. Techno-economic modeling and assessment of cultivated meat: impact of production bioreactor scale. . Biotechnol. Bioeng. 120:(4):105567
    [Crossref] [Google Scholar]
  95. Ngouémazong ED, Christiaens S, Shpigelman A, Van Loey A, Hendrickx M. 2015.. The emulsifying and emulsion-stabilizing properties of pectin: a review. . Compr. Rev. Food Sci. Food Saf. 14::70518
    [Crossref] [Google Scholar]
  96. Nguyen THM, Jeong TH, Kim SY, Kim KB, Ha TH, et al. 2021.. Porous structures prepared by a novel route: combination of digital light processing 3D printing and leaching method. . J. Manuf. Process. 67::4651
    [Crossref] [Google Scholar]
  97. Nieminen HJ, Laidmäe I, Salmi A, Rauhala T, Paulin T, et al. 2018.. Ultrasound-enhanced electrospinning. . Sci. Rep. 8::4437
    [Crossref] [Google Scholar]
  98. Norris SCP, Kawecki NS, Davis AR, Chen KK, Rowat AC. 2022.. Emulsion-templated microparticles with tunable stiffness and topology: applications as edible microcarriers for cultured meat. . Biomaterials 287::121669
    [Crossref] [Google Scholar]
  99. Omer S, Forgách L, Zelkó R, Sebe I. 2021.. Scale-up of electrospinning: market overview of products and devices for pharmaceutical and biomedical purposes. . Pharmaceutics 13::286
    [Crossref] [Google Scholar]
  100. Pakseresht A, Ahmadi Kaliji S, Canavari M. 2022.. Review of factors affecting consumer acceptance of cultured meat. . Appetite 170::105829
    [Crossref] [Google Scholar]
  101. Park S, Jung S, Heo J, Koh W-G, Lee S, Hong J. 2021.. Chitosan/cellulose-based porous nanofilm delivering C-phycocyanin: a novel platform for the production of cost-effective cultured meat. . ACS Appl. Mater. Interfaces 13::32193204
    [Crossref] [Google Scholar]
  102. Pasitka L, Cohen M, Ehrlich A, Gildor B, Reuveni E, et al. 2023.. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat. . Nat. Food 4::3550
    [Crossref] [Google Scholar]
  103. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, et al. 2005.. Tensional homeostasis and the malignant phenotype. . Cancer Cell 8::24154
    [Crossref] [Google Scholar]
  104. Pedrotty DM, Koh J, Davis BH, Taylor DA, Wolf P, Niklason LE. 2005.. Engineering skeletal myoblasts: roles of three-dimensional culture and electrical stimulation. . Am. J. Physiol. Heart Circ. Physiol. 288::H162026
    [Crossref] [Google Scholar]
  105. Peng R, Yao X, Ding J. 2011.. Effect of cell anisotropy on differentiation of stem cells on micropatterned surfaces through the controlled single cell adhesion. . Biomaterials 32::804857
    [Crossref] [Google Scholar]
  106. Pereira JCV, Serbent MP, Skoronski E. 2021.. Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: a review. . Water Sci. Technol. 83::178196
    [Crossref] [Google Scholar]
  107. Perreault LR, Thyden R, Kloster J, Jones JD, Nunes J, et al. 2023.. Repurposing agricultural waste as low-cost cultured meat scaffolds. . Front. Food Sci. Technol. 3::1208298
    [Crossref] [Google Scholar]
  108. Piñón-Balderrama CI, Leyva-Porras C, Terán-Figueroa Y, Espinosa-Solís V, Álvarez-Salas C, Saavedra-Leos MZ. 2020.. Encapsulation of active ingredients in food industry by spray-drying and nano spray-drying technologies. . Processes 8::889
    [Crossref] [Google Scholar]
  109. Pirsa S, Hafezi K. 2023.. Hydrocolloids: structure, preparation method, and application in food industry. . Food Chem 399::133967
    [Crossref] [Google Scholar]
  110. Prusty D, Park BH, Davis KE, Farmer SR. 2002.. Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator-activated receptor γ (PPARγ) and C/EBPα gene expression during the differentiation of 3T3-L1 preadipocytes. . J. Biol. Chem. 277::4622632
    [Crossref] [Google Scholar]
  111. Rakosky J. 1970.. Soy products for the meat industry. . J. Agric. Food Chem. 18::10059
    [Crossref] [Google Scholar]
  112. Ranucci CS, Moghe PV. 2001.. Substrate microtopography can enhance cell adhesive and migratory responsiveness to matrix ligand density. . J. Biomed. Mater. Res. 54::14961
    [Crossref] [Google Scholar]
  113. Rasoulianboroujeni M, Kiaie N, Tabatabaei FS, Yadegari A, Fahimipour F, et al. 2018.. Dual porosity protein-based scaffolds with enhanced cell infiltration and proliferation. . Sci. Rep. 8::14889
    [Crossref] [Google Scholar]
  114. Riaz MN. 2000.. Extruders in Food Applications. Boca Raton, FL:: CRC Press
    [Google Scholar]
  115. Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S. 2021.. Crosstalk between mechanotransduction and metabolism. . Nat. Rev. Mol. Cell Biol. 22::2238
    [Crossref] [Google Scholar]
  116. Rowley JA, Mooney DJ. 2002.. Alginate type and RGD density control myoblast phenotype. . J. Biomed. Mater. Res. 60::21723
    [Crossref] [Google Scholar]
  117. Ruzgys S, Pickering GJ. 2020.. Perceptions of cultured meat among youth and messaging strategies. . Front. Sustain. Food Syst. 4::122
    [Crossref] [Google Scholar]
  118. Samard S, Gu BY, Ryu GH. 2019.. Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. . J. Sci. Food Agric. 99::492231
    [Crossref] [Google Scholar]
  119. Samir A, Ashour FH, Hakim AAA, Bassyouni M. 2022.. Recent advances in biodegradable polymers for sustainable applications. . npj Mater. Degrad. 6::68
    [Crossref] [Google Scholar]
  120. Seo Y, Jung Y, Kim SH. 2018.. Decellularized heart ECM hydrogel using supercritical carbon dioxide for improved angiogenesis. . Acta Biomater. 67::27081
    [Crossref] [Google Scholar]
  121. Shao Y, Xue C, Liu W, Zuo S, Wei P, et al. 2022.. High-level secretory production of leghemoglobin in Pichia pastoris through enhanced globin expression and heme biosynthesis. . Bioresour. Technol. 363::127884
    [Crossref] [Google Scholar]
  122. Sharova AS, Melloni F, Lanzani G, Bettinger CJ, Caironi M. 2021.. Edible electronics: the vision and the challenge. . Adv. Mater. Technol. 6::2000757
    [Crossref] [Google Scholar]
  123. Shen CF, Guilbault C, Li X, Elahi SM, Ansorge S, et al. 2019.. Development of suspension adapted Vero cell culture process technology for production of viral vaccines. . Vaccine 37::69967002
    [Crossref] [Google Scholar]
  124. Stein H, Wilensky M, Tsafrir Y, Rosenthal M, Amir R, et al. 2009.. Production of bioactive, post-translationally modified, heterotrimeric, human recombinant type-I collagen in transgenic tobacco. . Biomacromolecules 10::264045
    [Crossref] [Google Scholar]
  125. Su L, Jing L, Zeng X, Chen T, Liu H, et al. 2023.. 3D-printed prolamin scaffolds for cell-based meat culture. . Adv. Mater. 35::2207397
    [Crossref] [Google Scholar]
  126. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. 2005.. Electrospinning of nanofibers. . J. App. Polymer. Sci. 96::55769
    [Crossref] [Google Scholar]
  127. Talukder S. 2015.. Effect of dietary fiber on properties and acceptance of meat products: a review. . Crit. Rev. Food Sci. Nutr. 55::100511
    [Crossref] [Google Scholar]
  128. Tanaka R, Sakaguchi K, Yoshida A, Takahashi H, Haraguchi Y, Shimizu T. 2022.. Production of scaffold-free cell-based meat using cell sheet technology. . npj Sci. Food 6::41
    [Crossref] [Google Scholar]
  129. Thyden R, Perreault LR, Jones JD, Notman H, Varieur BM, et al. 2022.. An edible, decellularized plant derived cell carrier for lab grown meat. . Appl. Sci. 10::5155
    [Crossref] [Google Scholar]
  130. Tokárová V, Kašpar O, Knejzlík Z, Ulbrich P, Štěpánek F. 2013.. Development of spray-dried chitosan microcarriers for nanoparticle delivery. . Powder Technol. 235::797805
    [Crossref] [Google Scholar]
  131. Tomadoni B, Fabra MJ, Mendez DA, Martinez-Abad A, Lopez-Rubio A. 2022.. Electrosprayed agar nanocapsules as edible carriers of bioactive compounds. . Foods 11:(14):2093
    [Crossref] [Google Scholar]
  132. Tomiyama AJ, Kawecki NS, Rosenfeld DL, Jay JA, Rajagopal D, Rowat AC. 2020.. Bridging the gap between the science of cultured meat and public perceptions. . Trends Food Sci Technol 104::14452
    [Crossref] [Google Scholar]
  133. Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R. 2003.. Molecular farming in plants: host systems and expression technology. . Trends Biotechnol. 21::57078
    [Crossref] [Google Scholar]
  134. Tzachor A, Richards CE, Holt L. 2021.. Future foods for risk-resilient diets. . Nat. Food 2::32629
    [Crossref] [Google Scholar]
  135. Uygun BE, Soto-Gutierrez A, Yagi H, Izamis M-L, Guzzardi MA, et al. 2010.. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. . Nat. Med. 16::81420
    [Crossref] [Google Scholar]
  136. Van Wezel AL. 1967.. Growth of cell-strains and primary cells on micro-carriers in homogeneous culture. . Nature 216::6465
    [Crossref] [Google Scholar]
  137. Wang B, Lv X, Chen S, Li Z, Yao J, et al. 2018.. Use of heparinized bacterial cellulose based scaffold for improving angiogenesis in tissue regeneration. . Carbohydr. Polym. 181::94856
    [Crossref] [Google Scholar]
  138. Wei Z, Dai S, Huang J, Hu X, Ge C, et al. 2023.. Soy protein amyloid fibril scaffold for cultivated meat application. . ACS Appl. Mater. Interfaces 15::1510819
    [Crossref] [Google Scholar]
  139. Wong CJK, Tai YK, Yap JLY, Fong CHH, Loo LSW, et al. 2022.. Brief exposure to directionally-specific pulsed electromagnetic fields stimulates extracellular vesicle release and is antagonized by streptomycin: a potential regenerative medicine and food industry paradigm. . Biomaterials 287::121658
    [Crossref] [Google Scholar]
  140. Wosek J. 2015.. Fabrication of composite polyurethane/hydroxyapatite scaffolds using solvent-casting salt leaching technique. . Adv. Mater. Sci. 15::1420
    [Crossref] [Google Scholar]
  141. Xiang N, Yao Y, Yuen JSK, Stout AJ, Fennelly C, et al. 2022.. Edible films for cultivated meat production. . Biomaterials 287::121659
    [Crossref] [Google Scholar]
  142. Yang J, Guertin P, Jia G, Lv Z, Yang H, Ju D. 2019.. Large-scale microcarrier culture of HEK293T cells and Vero cells in single-use bioreactors. . AMB Express 9::70
    [Crossref] [Google Scholar]
  143. Ye K, Cao L, Li S, Yu L, Ding J. 2016.. Interplay of matrix stiffness and cell–cell contact in regulating differentiation of stem cells. . ACS Appl. Mater. Interfaces 8::2190313
    [Crossref] [Google Scholar]
  144. Yen F-C, Glusac J, Levi S, Zernov A, Baruch L, et al. 2023.. Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute. . Nat. Commun. 14::2942
    [Crossref] [Google Scholar]
  145. Yeo M, Kim G. 2019.. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. . Carbohydr. Polym. 223::115041
    [Crossref] [Google Scholar]
  146. Yoon JK, Misra M, Yu SJ, Kim HJ, Bhang SH, et al. 2017.. Thermosensitive, stretchable, and piezoelectric substrate for generation of myogenic cell sheet fragments from human mesenchymal stem cells for skeletal muscle regeneration. . Adv. Func. Mater. 27:(48):1703853
    [Crossref] [Google Scholar]
  147. Young DA, Choi YS, Engler AJ, Christman KL. 2013.. Stimulation of adipogenesis of adult adipose-derived stem cells using substrates that mimic the stiffness of adipose tissue. . Biomaterials 34::858188
    [Crossref] [Google Scholar]
  148. Yuen JSK Jr., Saad MK, Xiang N, Barrick BM, DiCindio H, et al. 2023.. Aggregating in vitro-grown adipocytes to produce macroscale cell-cultured fat tissue with tunable lipid compositions for food applications. . eLife 12::e82120
    [Crossref] [Google Scholar]
  149. Zaidel-Bar R. 2009.. Evolution of complexity in the integrin adhesome. . J. Cell Biol. 186::31721
    [Crossref] [Google Scholar]
  150. Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. 2001.. Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. . Tissue Eng. 7::55772
    [Crossref] [Google Scholar]
  151. Zheng Y-Y, Shi Y-F, Zhu H-Z, Ding S-J, Zhou G-H. 2022.. Quality evaluation of cultured meat with plant protein scaffold. . Food Res. Int. 161::111818
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034451
Loading
/content/journals/10.1146/annurev-food-072023-034451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error