1932

Abstract

Ensuring the supply of affordable, palatable, healthy, and sustainable nutrients to feed the growing population without transgressing the planetary boundaries remains a key challenge in the food science community. A dietary transition toward low-emission, plant-based foods, with less reliance on animal agriculture, is advocated for sustainability, health, and ethical reasons. A major hurdle for mainstream adoption of plant-based foods is their poor sensorial performance, such as nonjuicy and astringent textures as well as various off-flavors. This review presents the current understanding of astringency and oral friction of plant-based foods. It focuses on plant proteins and their application in plant-based meat and dairy analogs. In addition, the latest advances in the quantitative characterization of astringency using tribology, electrochemistry, and cellular tools are covered. Finally, we examine factors influencing astringency and propose easy-to-implement colloidal strategies that may mitigate astringency issues, thereby underpinning the design of the next generation of sustainable and pleasurable plant-based foods.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-072023-034510
2024-06-28
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/food/15/1/annurev-food-072023-034510.html?itemId=/content/journals/10.1146/annurev-food-072023-034510&mimeType=html&fmt=ahah

Literature Cited

  1. Adal E, Sadeghpour A, Connell S, Rappolt M, Ibanoglu E, Sarkar A. 2017.. Heteroprotein complex formation of bovine lactoferrin and pea protein isolate: a multiscale structural analysis. . Biomacromolecules 18::62535
    [Crossref] [Google Scholar]
  2. Alessandrini R, Brown MK, Pombo-Rodrigues S, Bhageerutty S, He FJ, MacGregor GA. 2021.. Nutritional quality of plant-based meat products available in the UK: a cross-sectional survey. . Nutrients 13::4225
    [Crossref] [Google Scholar]
  3. Ampofo J, Ngadi M. 2022.. Ultrasound-assisted processing: science, technology and challenges for the plant-based protein industry. . Ultrason. Sonochem. 84::105955
    [Crossref] [Google Scholar]
  4. Andablo-Reyes E, Bryant M, Neville A, Hyde P, Sarkar R, et al. 2020.. 3D biomimetic tongue-emulating surfaces for tribological applications. . ACS Appl. Mater. Interfaces 12::4937185
    [Crossref] [Google Scholar]
  5. Arbach CT, Alves IA, Serafini MR, Stephani R, Perrone ÍT, de Carvalho da Costa J. 2021.. Recent patent applications in beverages enriched with plant proteins. . NPJ Sci. Food 5::28
    [Crossref] [Google Scholar]
  6. Assad-Bustillos M, Cázares-Godoy AC, Devezeaux de Lavergne M, Schmitt C, Hartmann C, Windhab E. 2023.. Assessment of the interactions between pea and salivary proteins in aqueous dispersions. . Innov. Food Sci. Emerg. Technol. 84::103290
    [Crossref] [Google Scholar]
  7. Baune M-C, Broucke K, Ebert S, Gibis M, Weiss J, et al. 2023.. Meat hybrids—an assessment of sensorial aspects, consumer acceptance, and nutritional properties. . Front. Nutr. 10::1101479
    [Crossref] [Google Scholar]
  8. Baune M-C, Terjung N, Tülbek , Boukid F. 2022.. Textured vegetable proteins (TVP): future foods standing on their merits as meat alternatives. . Future Foods 6::100181
    [Crossref] [Google Scholar]
  9. Ben-Arye T, Shandalov Y, Ben-Shaul S, Landau S, Zagury Y, et al. 2020.. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. . Nat. Food 1::21020
    [Crossref] [Google Scholar]
  10. Bennick A. 2002.. Interaction of plant polyphenols with salivary proteins. . Crit. Rev. Oral Biol. Med. 13::18496
    [Crossref] [Google Scholar]
  11. Biegler M, Delius J, Käsdorf BT, Hofmann T, Lieleg O. 2016.. Cationic astringents alter the tribological and rheological properties of human saliva and salivary mucin solutions. . Biotribology 6::1220
    [Crossref] [Google Scholar]
  12. Canon F, Belloir C, Bourillot E, Brignot H, Briand L, et al. 2021.. Perspectives on astringency sensation: an alternative hypothesis on the molecular origin of astringency. . J. Agric. Food Chem. 69::382226
    [Crossref] [Google Scholar]
  13. Chen N, Nicolai T, Chassenieux C, Wang Y. 2020a.. pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins. . Food Hydrocoll. 105::105853
    [Crossref] [Google Scholar]
  14. Chen N, Zhao Z, Wang Y, Dimova R. 2020b.. Resolving the mechanisms of soy glycinin self-coacervation and hollow-condensate formation. . ACS Macro Lett. 9::184452
    [Crossref] [Google Scholar]
  15. Chigwedere CM, Wanasundara JPD, Shand PJ. 2022.. Sensory descriptors for pulses and pulse-derived ingredients: toward a standardized lexicon and sensory wheel. . Compr. Rev. Food Sci. Food Saf. 21::9991023
    [Crossref] [Google Scholar]
  16. Choudhury D, Singh S, Seah JSH, Yeo DCL, Tan LP. 2020.. Commercialization of plant-based meat alternatives. . Trends Plant Sci. 25::105558
    [Crossref] [Google Scholar]
  17. Cosson A, Blumenthal D, Descamps N, Souchon I, Saint-Eve A. 2021.. Using a mixture design and fraction-based formulation to better understand perceptions of plant-protein-based solutions. . Food Res. Int. 141::110151
    [Crossref] [Google Scholar]
  18. Cosson A, Souchon I, Richard J, Descamps N, Saint-Eve A. 2020.. Using multiple sensory profiling methods to gain insight into temporal perceptions of pea protein-based formulated foods. . Foods 9:969
    [Google Scholar]
  19. Costa JJ, Moreira FTC, Soares S, Brandão E, Mateus N, et al. 2022.. Wine astringent compounds monitored by an electrochemical biosensor. . Food Chem. 395::133587
    [Crossref] [Google Scholar]
  20. Crippa M, Solazzo E, Guizzardi D, Monforti-Ferrario F, Tubiello FN, Leip A. 2021.. Food systems are responsible for a third of global anthropogenic GHG emissions. . Nat. Food 2::198209
    [Crossref] [Google Scholar]
  21. Dabbour M, He R, Mintah B, Xiang J, Ma H. 2019.. Changes in functionalities, conformational characteristics and antioxidative capacities of sunflower protein by controlled enzymolysis and ultrasonication action. . Ultrason. Sonochem. 58::104625
    [Crossref] [Google Scholar]
  22. Day L, Cakebread JA, Loveday SM. 2022.. Food proteins from animals and plants: differences in the nutritional and functional properties. . Trends Food Sci. Technol. 119::42842
    [Crossref] [Google Scholar]
  23. Ed Nignpense B, Francis N, Blanchard C, Santhakumar AB. 2021.. Bioaccessibility and bioactivity of cereal polyphenols: a review. . Foods 10:(7):1595
    [Crossref] [Google Scholar]
  24. Fischer E, Cayot N, Cachon R. 2022.. Potential of microorganisms to decrease the “beany” off-flavor: a review. . J. Agric. Food Chem. 70::4493508
    [Crossref] [Google Scholar]
  25. Foegeding EA, Plundrich N, Schneider M, Campbell C, Lila MA. 2017.. Protein-polyphenol particles for delivering structural and health functionality. . Food Hydrocoll. 72::16373
    [Crossref] [Google Scholar]
  26. Garrido-Galand S, Asensio-Grau A, Calvo-Lerma J, Heredia A, Andrés A. 2021.. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: a review. . Food Res. Int. 145::110398
    [Crossref] [Google Scholar]
  27. Giacalone D, Clausen MP, Jaeger SR. 2022.. Understanding barriers to consumption of plant-based foods and beverages: insights from sensory and consumer science. . Curr. Opin. Food Sci. 48::100919
    [Crossref] [Google Scholar]
  28. Gibbins HL, Carpenter GH. 2013.. Alternative mechanisms of astringency—What is the role of saliva?. J. Texture Stud. 44::36475
    [Crossref] [Google Scholar]
  29. Grossmann L, McClements DJ. 2023.. Current insights into protein solubility: a review of its importance for alternative proteins. . Food Hydrocoll. 137::108416
    [Crossref] [Google Scholar]
  30. Heng L, Vincken J-P, van Koningsveld G, Legger A, Gruppen H, et al. 2006.. Bitterness of saponins and their content in dry peas. . J. Sci. Food Agric. 86::122531
    [Crossref] [Google Scholar]
  31. Jo Y, Benoist DM, Barbano DM, Drake MA. 2018.. Flavor and flavor chemistry differences among milks processed by high-temperature, short-time pasteurization or ultra-pasteurization. . J. Dairy Sci. 101::381228
    [Crossref] [Google Scholar]
  32. Joslyn MA, Goldstein JL. 1964.. Astringency of fruits and fruit products in relation to phenolic content. . In Advances in Food Research, Vol. 13, ed. CO Chichester, EM Mrak, GF Stewart , pp. 179217. New York:: Academic
    [Google Scholar]
  33. Karaca AC, Low N, Nickerson M. 2011.. Emulsifying properties of chickpea, faba bean, lentil and pea proteins produced by isoelectric precipitation and salt extraction. . Food Res. Int. 44::274250
    [Crossref] [Google Scholar]
  34. Kew B, Holmes M, Liamas E, Ettelaie R, Connell SD, et al. 2023.. Transforming sustainable plant proteins into high performance lubricating microgels. . Nat. Commun. 14::4743
    [Crossref] [Google Scholar]
  35. Kew B, Holmes M, Stieger M, Sarkar A. 2021.. Oral tribology, adsorption and rheology of alternative food proteins. . Food Hydrocoll. 116::106636
    [Crossref] [Google Scholar]
  36. Kim M, Heo G, Kim S-Y. 2022.. Neural signalling of gut mechanosensation in ingestive and digestive processes. . Nat. Rev. Neurosci. 23::13556
    [Crossref] [Google Scholar]
  37. Kishi M, Sadachi H, Nakamura J, Tonoike M. 2017.. Functional magnetic resonance imaging investigation of brain regions associated with astringency. . Neurosci. Res. 122::916
    [Crossref] [Google Scholar]
  38. Kornet R, Roozalipour SL, Venema P, van der Goot AJ, Meinders MBJ, van der Linden E. 2022.. Coacervation in pea protein solutions: the effect of pH, salt, and fractionation processing steps. . Food Hydrocoll. 125::107379
    [Crossref] [Google Scholar]
  39. Kütt M-L, Orgusaar K, Stulova I, Priidik R, Pismennõi D, et al. 2023.. Starter culture growth dynamics and sensory properties of fermented oat drink. . Heliyon 9::e15627
    [Crossref] [Google Scholar]
  40. Kyriakopoulou K, Keppler JK, van der Goot AJ. 2021.. Functionality of ingredients and additives in plant-based meat analogues. . Foods 10:(3):600
    [Crossref] [Google Scholar]
  41. Laguna L, Barrowclough RA, Chen J, Sarkar A. 2016.. New approach to food difficulty perception: food structure, food oral processing and individual's physical strength. . J. Texture Stud. 47::41322
    [Crossref] [Google Scholar]
  42. Laguna L, Sarkar A. 2017.. Oral tribology: update on the relevance to study astringency in wines. . Tribol. Mater. Surf. Interfaces 11::11623
    [Crossref] [Google Scholar]
  43. Lesme H, Kew B, Bonnet L, Sarkar A, Stellaci F. 2024.. Difference in astringency of the main pea protein fractions. . Food Hydrocoll. 149::109489
    [Crossref] [Google Scholar]
  44. Li Y, Joyner HS, Carter BG, Drake MA. 2018a.. Effects of fat content, pasteurization method, homogenization pressure, and storage time on the mechanical and sensory properties of bovine milk. . J. Dairy Sci. 101::294155
    [Crossref] [Google Scholar]
  45. Li Y, Joyner HS, Lee AP, Drake MA. 2018b.. Impact of pasteurization method and fat on milk: relationships among rheological, tribological, and astringency behaviors. . Int. Dairy J. 78::2835
    [Crossref] [Google Scholar]
  46. Liamas E, Connell SD, Sarkar A. 2023.. Frictional behaviour of plant proteins in soft contacts: unveiling nanoscale mechanisms. . Nanoscale Adv. 5::110214
    [Crossref] [Google Scholar]
  47. Liamas E, Connell SD, Zembyla M, Ettelaie R, Sarkar A. 2021.. Friction between soft contacts at nanoscale on uncoated and protein-coated surfaces. . Nanoscale 13::235067
    [Crossref] [Google Scholar]
  48. Lie-Piang A, Braconi N, Boom RM, van der Padt A. 2021.. Less refined ingredients have lower environmental impact—a life cycle assessment of protein-rich ingredients from oil- and starch-bearing crops. . J. Clean. Prod. 292::126046
    [Crossref] [Google Scholar]
  49. Lim J, Lawless HT. 2005.. Oral sensations from iron and copper sulfate. . Physiol. Behav. 85::30813
    [Crossref] [Google Scholar]
  50. Lin W, Klein J. 2022.. Hydration lubrication in biomedical applications: from cartilage to hydrogels. . Acc. Mater. Res. 3::21323
    [Crossref] [Google Scholar]
  51. Liu J, Xie J, Lin J, Xie X, Fan S, et al. 2023.. The material basis of astringency and the deastringent effect of polysaccharides: a review. . Food Chem. 405::134946
    [Crossref] [Google Scholar]
  52. Lozano PR, Drake M, Benitez D, Cadwallader KR. 2007.. Instrumental and sensory characterization of heat-induced odorants in aseptically packaged soy milk. . J. Agric. Food Chem. 55::301826
    [Crossref] [Google Scholar]
  53. Luck P, Vårum KM, Foegeding EA. 2015.. Charge related astringency of chitosans. . Food Hydrocoll. 48::17478
    [Crossref] [Google Scholar]
  54. Ma W, Guo A, Zhang Y, Wang H, Liu Y, Li H. 2014.. A review on astringency and bitterness perception of tannins in wine. . Trends Food Sci. Technol. 40::619
    [Crossref] [Google Scholar]
  55. McClements DJ, Grossmann L. 2021.. A brief review of the science behind the design of healthy and sustainable plant-based foods. . NPJ Sci. Food 5::17
    [Crossref] [Google Scholar]
  56. Mittermeier-Kleßinger VK, Hofmann T, Dawid C. 2021.. Mitigating off-flavors of plant-based proteins. . J. Agric. Food Chem. 69::92027
    [Crossref] [Google Scholar]
  57. Moss R, Barker S, Falkeisen A, Gorman M, Knowles S, McSweeney MB. 2022.. An investigation into consumer perception and attitudes towards plant-based alternatives to milk. . Food Res. Int. 159::111648
    [Crossref] [Google Scholar]
  58. Murakami K, Hori K, Uehara F, Salazar SE, Ishihara S, et al. 2022.. Effect of maximal voluntary tongue pressure and mechanical properties of gels on tongue pressure production when squeezing gels. . Food Hydrocoll. 124::107323
    [Crossref] [Google Scholar]
  59. Nayak A, Carpenter GH. 2008.. A physiological model of tea-induced astringency. . Physiol. Behav. 95::29094
    [Crossref] [Google Scholar]
  60. Nivala O, Mäkinen OE, Kruus K, Nordlund E, Ercili-Cura D. 2017.. Structuring colloidal oat and faba bean protein particles via enzymatic modification. . Food Chem. 231::8795
    [Crossref] [Google Scholar]
  61. Nuvoli C, Fillion L, Lacoste Gregorutti C, Labbe D. 2023.. Comparison of sensitivity to taste and astringency stimuli among vegans and omnivores. . Physiol. Behav. 262::114092
    [Crossref] [Google Scholar]
  62. Onwezen MC, Bouwman EP, Reinders MJ, Dagevos H. 2021.. A systematic review on consumer acceptance of alternative proteins: pulses, algae, insects, plant-based meat alternatives, and cultured meat. . Appetite 159::105058
    [Crossref] [Google Scholar]
  63. Osborne TB, Mendel LB, Ferry EL, Wakeman AJ. 1914.. Nutritive properties of proteins of the maize kernel. . J. Biol. Chem. 18::116
    [Crossref] [Google Scholar]
  64. Part N, Kazantseva J, Rosenvald S, Kallastu A, Vaikma H, et al. 2023.. Microbiological, chemical, and sensorial characterisation of commercially available plant-based yoghurt alternatives. . Future Foods 7::100212
    [Crossref] [Google Scholar]
  65. Payne C, Bowyer PK, Herderich M, Bastian SEP. 2009.. Interaction of astringent grape seed procyanidins with oral epithelial cells. . Food Chem. 115::55157
    [Crossref] [Google Scholar]
  66. Poliseli-Scopel FH, Hernández-Herrero M, Guamis B, Ferragut V. 2013.. Characteristics of soymilk pasteurized by ultra high pressure homogenization (UHPH). . Innov. Food Sci. Emerg. Technol. 20::7380
    [Crossref] [Google Scholar]
  67. Poore J, Nemecek T. 2018.. Reducing food's environmental impacts through producers and consumers. . Science 360::98792
    [Crossref] [Google Scholar]
  68. Rackis JJ, Sessa DJ, Honig DH. 1979.. Flavor problems of vegetable food proteins. . J. Am. Oil Chem. Soc. 56::26271
    [Crossref] [Google Scholar]
  69. Ranc H, Elkhyat A, Servais C, Mac-Mary S, Launay B, Humbert P. 2006.. Friction coefficient and wettability of oral mucosal tissue: changes induced by a salivary layer. . Colloids Surf. A 276::15561
    [Crossref] [Google Scholar]
  70. Roland WSU, Pouvreau L, Curran J, van de Velde F, de Kok PMT. 2017.. Flavor aspects of pulse ingredients. . Cereal Chem. 94::5865
    [Crossref] [Google Scholar]
  71. Rubio NR, Xiang N, Kaplan DL. 2020.. Plant-based and cell-based approaches to meat production. . Nat. Commun. 11::6276
    [Crossref] [Google Scholar]
  72. Rudge RED, Fuhrmann PL, Scheermeijer R, van der Zanden EM, Dijksman JA, Scholten E. 2021.. A tribological approach to astringency perception and astringency prevention. . Food Hydrocoll. 121::106951
    [Crossref] [Google Scholar]
  73. Sarkar A, Dickinson E. 2020.. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. . Curr. Opin. Colloid Interface Sci. 49::6981
    [Crossref] [Google Scholar]
  74. Sarkar A, Goh KKT, Singh H. 2009.. Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. . Food Hydrocoll. 23::127078
    [Crossref] [Google Scholar]
  75. Sbihi HM, Nehdi IA, Tan CP, Al-Resayes SI. 2013.. Bitter and sweet lupin (Lupinus albus L.) seeds and seed oils: a comparison study of their compositions and physicochemical properties. . Ind. Crops Prod. 49::57379
    [Crossref] [Google Scholar]
  76. Schöbel N, Radtke D, Kyereme J, Wollmann N, Cichy A, et al. 2014.. Astringency is a trigeminal sensation that involves the activation of G protein–coupled signaling by phenolic compounds. . Chem. Senses 39::47187
    [Crossref] [Google Scholar]
  77. Shahbal N, Jing X, Bhandari B, Dayananda B, Prakash S. 2023.. Effect of enzymatic hydrolysis on solubility and surface properties of pea, rice, hemp, and oat proteins: implication on high protein concentrations. . Food Biosci. 53::102515
    [Crossref] [Google Scholar]
  78. Shen Y, Li Y. 2021.. Acylation modification and/or guar gum conjugation enhanced functional properties of pea protein isolate. . Food Hydrocoll. 117::106686
    [Crossref] [Google Scholar]
  79. Shewry PR, Halford NG. 2002.. Cereal seed storage proteins: structures, properties and role in grain utilization. . J. Exp. Bot. 53::94758
    [Crossref] [Google Scholar]
  80. Shrestha S, van ’t Hag L, Haritos VS, Dhital S. 2023.. Lentil and mungbean protein isolates: processing, functional properties, and potential food applications. . Food Hydrocoll. 135::108142
    [Crossref] [Google Scholar]
  81. Silletti E, Vingerhoeds MH, Norde W, van Aken GA. 2007.. Complex formation in mixtures of lysozyme-stabilized emulsions and human saliva. . J. Colloid Interface Sci. 313::48593
    [Crossref] [Google Scholar]
  82. Soares S, Brandão E, Guerreiro C, Mateus N, de Freitas V, Soares S. 2019.. Development of a new cell-based oral model to study the interaction of oral constituents with food polyphenols. . J. Agric. Food Chem. 67::1283343
    [Crossref] [Google Scholar]
  83. Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, de Freitas V. 2020a.. Tannins in food: insights into the molecular perception of astringency and bitter taste. . Molecules 25:(11):2590
    [Crossref] [Google Scholar]
  84. Soares S, Soares S, Brandão E, Guerreiro C, Mateus N, de Freitas V. 2020b.. Oral interactions between a green tea flavanol extract and red wine anthocyanin extract using a new cell-based model: insights on the effect of different oral epithelia. . Sci. Rep. 10::12638
    [Crossref] [Google Scholar]
  85. Soares S, Vitorino R, Osório H, Fernandes A, Venâncio A, et al. 2011.. Reactivity of human salivary proteins families toward food polyphenols. . J. Agric. Food Chem. 59::553547
    [Crossref] [Google Scholar]
  86. Soltanahmadi S, Murray BS, Sarkar A. 2022.. Comparison of oral tribological performance of proteinaceous microgel systems with protein-polysaccharide combinations. . Food Hydrocoll. 129::107660
    [Crossref] [Google Scholar]
  87. Soltanahmadi S, Wang M, Gul MK, Stribițcaia E, Sarkar A. 2023.. Tribology and rheology of potato protein and pectin mixtures and Maillard conjugates. . Sustain. Food Proteins 1::14963
    [Crossref] [Google Scholar]
  88. Springmann M, Wiebe K, Mason-D'Croz D, Sulser TB, Rayner M, Scarborough P. 2018.. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. . Lancet Planet. Health 2::e45161
    [Crossref] [Google Scholar]
  89. Symoneaux R, Chollet S, Bauduin R, Le Quéré JM, Baron A. 2014.. Impact of apple procyanidins on sensory perception in model cider (part 2): degree of polymerization and interactions with the matrix components. . LWT 57::2834
    [Crossref] [Google Scholar]
  90. Tamara MR, Lelono D, Roto R, Triyana K. 2023.. All-solid-state astringent taste sensor using polypyrrole-carbon black composite as ion-electron transducer. . Sens. Actuators A 351::114170
    [Crossref] [Google Scholar]
  91. Tang Q, Roos YH, Miao S. 2023.. Plant protein versus dairy proteins: a pH-dependency investigation on their structure and functional properties. . Foods 12::368
    [Crossref] [Google Scholar]
  92. Tanger C, Utz F, Spaccasassi A, Kreissl J, Dombrowski J, et al. 2022.. Influence of pea and potato protein microparticles on texture and sensory properties in a fat-reduced model milk dessert. . ACS Food Sci. Technol. 2::16979
    [Crossref] [Google Scholar]
  93. Tao A, Zhang H, Duan J, Xiao Y, Liu Y, et al. 2022.. Mechanism and application of fermentation to remove beany flavor from plant-based meat analogs: a mini review. . Front. Microbiol. 13::1070773
    [Crossref] [Google Scholar]
  94. Tilman D, Clark M. 2014.. Global diets link environmental sustainability and human health. . Nature 515::51822
    [Crossref] [Google Scholar]
  95. Tuccillo F, Kantanen K, Wang Y, Martin Ramos Diaz J, Pulkkinen M, et al. 2022.. The flavor of faba bean ingredients and extrudates: chemical and sensory properties. . Food Res. Int. 162::112036
    [Crossref] [Google Scholar]
  96. UN. 2022.. World population prospects 2022: summary of results. Rep. , UN Dep. Econ. Soc. Aff., New York:. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
    [Google Scholar]
  97. Vaikma H, Kaleda A, Rosend J, Rosenvald S. 2021.. Market mapping of plant-based milk alternatives by using sensory (RATA) and GC analysis. . Future Foods 4::100049
    [Crossref] [Google Scholar]
  98. Vardhanabhuti B, Kelly MA, Luck PJ, Drake MA, Foegeding EA. 2010.. Roles of charge interactions on astringency of whey proteins at low pH. . J. Dairy Sci. 93::189099
    [Crossref] [Google Scholar]
  99. Vlădescu S-C, Agurto MG, Myant C, Boehm MW, Baier SK, et al. 2023.. Protein-induced delubrication: how plant-based and dairy proteins affect mouthfeel. . Food Hydrocoll. 134::107975
    [Crossref] [Google Scholar]
  100. Wang Y, Tuccillo F, Lampi A-M, Knaapila A, Pulkkinen M, et al. 2022.. Flavor challenges in extruded plant-based meat alternatives: a review. . Compr. Rev. Food Sci. Food Saf. 21::2898929
    [Crossref] [Google Scholar]
  101. Xu X, Sharma P, Shu S, Lin T-S, Ciais P, et al. 2021.. Global greenhouse gas emissions from animal-based foods are twice those of plant-based foods. . Nat. Food 2::72432
    [Crossref] [Google Scholar]
  102. Yang J, Kornet R, Diedericks CF, Yang Q, Berton-Carabin CC, et al. 2022.. Rethinking plant protein extraction: albumin—from side stream to an excellent foaming ingredient. . Food Struct. 31::100254
    [Crossref] [Google Scholar]
  103. Yang Q, Venema P, van der Linden E, de Vries R. 2023.. Soluble protein particles produced directly from mung bean flour by simple coacervation. . Food Hydrocoll. 139::108541
    [Crossref] [Google Scholar]
  104. Yang Q-Q, Gan R-Y, Ge Y-Y, Zhang D, Corke H. 2018.. Polyphenols in common beans (Phaseolus vulgaris L.): chemistry, analysis, and factors affecting composition. . Compr. Rev. Food Sci. Food Saf. 17::151839
    [Crossref] [Google Scholar]
  105. Yen F-C, Glusac J, Levi S, Zernov A, Baruch L, et al. 2023.. Cultured meat platform developed through the structuring of edible microcarrier-derived microtissues with oleogel-based fat substitute. . Nat. Commun. 14::2942
    [Crossref] [Google Scholar]
  106. Yeom J, Choe A, Lim S, Lee Y, Na S, Ko H. 2020.. Soft and ion-conducting hydrogel artificial tongue for astringency perception. . Sci. Adv. 6::eaba5785
    [Crossref] [Google Scholar]
  107. Zeeb B, Yavuz-Düzgun M, Dreher J, Evert J, Stressler T, et al. 2018.. Modulation of the bitterness of pea and potato proteins by a complex coacervation method. . Food Funct. 9::226169
    [Crossref] [Google Scholar]
  108. Zembyla M, Liamas E, Andablo-Reyes E, Gu K, Krop EM, et al. 2021.. Surface adsorption and lubrication properties of plant and dairy proteins: a comparative study. . Food Hydrocoll. 111::106364
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-food-072023-034510
Loading
/content/journals/10.1146/annurev-food-072023-034510
Loading

Data & Media loading...

Supplemental Materials

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error