1932

Abstract

This article reviews the current knowledge of the health effects of dietary fiber and prebiotics and establishes the position of prebiotics within the broader context of dietary fiber. Although the positive health effects of specific fibers on defecation, reduction of postprandial glycemic response, and maintenance of normal blood cholesterol levels are generally accepted, other presumed health benefits of dietary fibers are still debated. There is evidence that specific dietary fibers improve the integrity of the epithelial layer of the intestines, increase the resistance against pathogenic colonization, reduce the risk of developing colorectal cancer, increase mineral absorption, and have a positive impact on the immune system, but these effects are neither generally acknowledged nor completely understood. Many of the latter effects are thought to be particularly elicited by prebiotics. Although the prebiotic concept evolved significantly during the past two decades, the line between prebiotics and nonprebiotic dietary fiber remains vague. Nevertheless, scientific evidence demonstrating the health-promoting potential of prebiotics continues to accumulate and suggests that prebiotic fibers have their rightful place in a healthy diet.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-081315-032749
2016-02-28
2024-07-20
Loading full text...

Full text loading...

/deliver/fulltext/food/7/1/annurev-food-081315-032749.html?itemId=/content/journals/10.1146/annurev-food-081315-032749&mimeType=html&fmt=ahah

Literature Cited

  1. Am. Assoc. Cereal Chem. Diet. Fiber Defin. Comm 2001. The definition of dietary fiber. Cereal Food World 46:112–26 [Google Scholar]
  2. Abrams SA, Griffin IJ, Hawthorne KM, Liang L, Gunn SK. et al. 2005. A combination of prebiotic short- and long-chain inulin-type fructans enhances calcium absorption and bone mineralization in young adolescents. Am. J. Clin. Nutr. 82:471–76 [Google Scholar]
  3. Akhtar M, Tariq AF, Awais MM, Iqbal Z, Muhammad F. et al. 2012. Studies on wheat bran arabinoxylan for its immunostimulatory and protective effects against avian coccidiosis. Carbohydr. Polym. 90:333–39 [Google Scholar]
  4. Albers R, Bourdet-Sicard R, Braun D, Calder PC, Herz U. et al. 2013. Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br. J. Nutr. 110:S1–30 [Google Scholar]
  5. Am. Diet. Assoc 2008. Position of the American Dietetic Association: health implications of dietary fiber. J. Am. Diet. Assoc. 108:1716–31 [Google Scholar]
  6. Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M. et al. 2009. Health benefits of dietary fiber. Nutr. Rev. 67:188–205 [Google Scholar]
  7. Andrieux C, Gadelle D, Leprince C, Sacquet E. 1989. Effects of some poorly digestible carbohydrates on bile acid bacterial transformations in the rat. Br. J. Nutr. 62:103–19 [Google Scholar]
  8. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T. et al. 2011. Enterotypes of the human gut microbiome. Nature 473:174–80 [Google Scholar]
  9. Aune D, Chan DSM, Lau R, Vieira R, Greenwood DC. et al. 2011. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. Brit. Med. J. 343:d6617 [Google Scholar]
  10. Ballongue J, Schumann C, Quignon P. 1997. Effects of lactulose and lactitol on colonic microflora and enzymatic activity. Scand. J. Gastroenterol. Suppl. 222:41–44 [Google Scholar]
  11. Barrett JS. 2013. Extending our knowledge of fermentable, short-chain carbohydrates for managing gastrointestinal symptoms. Nutr. Clin. Pract. 28:300–6 [Google Scholar]
  12. Belcheva A, Irrazabal T, Martin A. 2015. Gut microbial metabolism and colon cancer: Can manipulations of the microbiota be useful in the management of gastrointestinal health?. BioEssays 37:403–12 [Google Scholar]
  13. Bermudez-Brito M, Sahasrabudhe NM, Rösch C, Schols HA, Faas MM, de Vos P. 2015. The impact of dietary fibers on dendritic cell responses in vitro is dependent on the differential effects of the fibers on intestinal epithelial cells. Mol. Nutr. Food Res. 59:698–710 [Google Scholar]
  14. Bindels LB, Delzenne NM, Cani PD, Walter J. 2015. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 12:303–10 [Google Scholar]
  15. Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM. et al. 2012. Gut microbiota–derived propionate reduces cancer cell proliferation in the liver. Br. J. Cancer 107:1337–44 [Google Scholar]
  16. Blackburn NA, Redfern JS, Jarjis H, Holgate AM, Hanning I. et al. 1984. The mechanism of action of guar gum in improving glucose tolerance in man. Clin. Sci. 66:329–36 [Google Scholar]
  17. Bone E, Tamm A, Hill M. 1976. Production of urinary phenols by gut bacteria and their possible role in causation of large bowel cancer. Am. J. Clin. Nutr. 29:1448–54 [Google Scholar]
  18. Broekaert WF, Courtin CM, Verbeke K, Van de Wiele T, Verstraete W, Delcour JA. 2011. Prebiotic and other health-related effects of cereal-derived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosaccharides. Crit. Rev. Food Sci. Nutr. 51:178–94 [Google Scholar]
  19. Bron PA, van Baarlen P, Kleerebezem M. 2012. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat. Rev. Microbiol. 10:66–78 [Google Scholar]
  20. Brumfitt W, Reeves DS, Faiers M, Datta N. 1971. Antibiotic resistant Escherichia coli causing urinary tract infection in general practice: relation to faecal flora. Lancet 297:315–17 [Google Scholar]
  21. Brunser O, Gotteland M, Cruchet S, Figueroa G, Garrido D, Steenhout P. 2006. Effect of a milk formula with prebiotics on the intestinal microbiota of infants after an antibiotic treatment. Pediatr. Res. 59:451–56 [Google Scholar]
  22. Buddington KK, Donahoo JB, Buddington RK. 2002. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J. Nutr. 132:472–77 [Google Scholar]
  23. Burger-van Paassen N, Vincent A, Puiman PJ, van der Sluis M, Bouma J. et al. 2009. The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: implications for epithelial protection. Biochem. J. 420:211–19 [Google Scholar]
  24. Burkitt DP, Walker AR, Painter NS. 1972. Effect of dietary fibre on stools and the transit-times, and its role in the causation of disease. Lancet 2:1408–12 [Google Scholar]
  25. Calder PC, Ahluwalia N, Albers R, Bosco N, Bourdet-Sicard R. et al. 2013. A consideration of biomarkers to be used for evaluation of inflammation in human nutritional studies. Br. J. Nutr. 109:S1–S34 [Google Scholar]
  26. Cani PD, Possemiers S, van de Wiele T, Guiot Y, Everard A. et al. 2009. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–103 [Google Scholar]
  27. Chaplin MF. 2003. Fibre and water binding. Proc. Nutr. Soc. 62:223–27 [Google Scholar]
  28. Chassard C, Delmas E, Robert C, Bernalier-Donadille A. 2010. The cellulose-degrading microbial community of the human gut varies according to the presence or absence of methanogens. FEMS Microbiol. Ecol. 74:205–13 [Google Scholar]
  29. Cherbut C. 2003. Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc. Nutr. Soc. 62:95–99 [Google Scholar]
  30. Chinda D, Nakaji S, Fukuda S, Sakamoto J, Shimoyama T. et al. 2004. The fermentation of different dietary fibers is associated with fecal Clostridia levels in men. J. Nutr. 134:1881–86 [Google Scholar]
  31. Christl SU, Bartram HP, Rückert A, Scheppach W, Kasper H. 1995. Influence of starch fermentation on bile acid metabolism by colonic bacteria. Nutr. Cancer 24:67–75 [Google Scholar]
  32. Clausen M, Jorgensen J, Mortensen P. 1998. Comparison of diarrhea induced by ingestion of fructooligosaccharide Idolax and disaccharide lactulose (role of osmolarity versus fermentation of malabsorbed carbohydrate). Dig. Dis. Sci. 43:2696–707 [Google Scholar]
  33. Cloetens L, Broekaert WF, Delaedt Y, Ollevier F, Courtin CM. et al. 2010. Tolerance of arabinoxylan-oligosaccharides and their prebiotic activity in healthy subjects: a randomised, placebo-controlled cross-over study. Br. J. Nutr. 103:703–13 [Google Scholar]
  34. Codex Aliment. Comm 2009. Report of the 30th session of the codex committee on nutrition and foods for special dietary uses, 2008. Joint FAO/WHO Food Stand. Progr. Codex Aliment. Comm., June 29–July 4, Rome, Italy [Google Scholar]
  35. Codex Aliment. Comm 2010. Report of the 31th session of the codex committee on nutrition and foods for special dietary uses, 2009. Joint FAO/WHO Food Stand. Progr. Codex Aliment. Comm., July 5-9, Geneva, Switzerland [Google Scholar]
  36. Conway PL. 2001. Prebiotics and human health: the state-of-the-art and future perspectives. 45:13–21 [Google Scholar]
  37. Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N. et al. 2013. Dietary intervention impact on gut microbial gene richness. Nature 500:585–88 [Google Scholar]
  38. Coudray C, Bellanger J, Castiglia-Delavaud C, Remesy C, Vermorel M, Rayssignuier Y. 1997. Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur. J. Clin. Nutr. 51:375–80 [Google Scholar]
  39. Courtin CM, Delcour JA. 2001. Relative activity of endoxylanases towards water-extractable and water-unextractable arabinoxylan. J. Cereal Sci. 33:301–12 [Google Scholar]
  40. Cummings JH. 1997. The Large Intestine in Nutrition and Disease Brussels: Institut Danone [Google Scholar]
  41. Cummings JH, Bingham SA. 1987. Dietary fibre, fermentation and large bowel cancer. Cancer Surv. 6:601–21 [Google Scholar]
  42. Cummings JH, Christie S, Cole TJ. 2001. A study of fructo oligosaccharides in the prevention of travellers' diarrhoea. Aliment. Pharmacol. Ther. 15:1139–45 [Google Scholar]
  43. Cummings JH, Englyst HN. 1987. Fermentation in the human large intestine and the available substrates. Am. J. Clin. Nutr. 45:1243–55 [Google Scholar]
  44. Cummings JH, Macfarlane GT. 1991. The control and consequences of bacterial fermentation in the human colon. J. Appl. Bacteriol. 70:443–59 [Google Scholar]
  45. Cummings JH, Macfarlane GT. 2002. Gastrointestinal effects of prebiotics. Br. J. Nutr. 87:S145–51 [Google Scholar]
  46. Cummings JH, Pomare EW, Branch WJ, Naylor CPE, Macfarlane GT. 1987. Short chain fatty-acids in human large-intestine, portal, hepatic and venous-blood. Gut 28:1221–27 [Google Scholar]
  47. Damen B, Verspreet J, Pollet A, Broekaert WF, Delcour JA, Courtin CM. 2011. Prebiotic effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Mol. Nutr. Food Res. 55:1862–74 [Google Scholar]
  48. Damen B, Cloetens L, Broekaert WF, François I, Lescroart O. et al. 2012a. Consumption of breads containing in situ–produced arabinoxylan oligosaccharides alters gastrointestinal effects in healthy volunteers. J. Nutr. 142:470–77 [Google Scholar]
  49. Damen B, Pollet A, Dornez E, Broekaert WF, Haesendonck IV. et al. 2012b. Xylanase-mediated in situ production of arabinoxylan oligosaccharides with prebiotic potential in whole meal breads and breads enriched with arabinoxylan rich materials. Food Chem. 131:111–18 [Google Scholar]
  50. Dao MC, Everard A, Aron-Wisnewsky J, Sokolovska N, Prifti E. et al. 2015. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut In press. doi: 10.1136/gutjnl-2014-308778 [Google Scholar]
  51. Daou C, Zhang H. 2012. Oat β-glucan: its role in health promotion and prevention of diseases. Compr. Rev. Food Sci. Food Saf. 11:355–65 [Google Scholar]
  52. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  53. De Preter V, Hamer HM, Windey K, Verbeke K. 2011. The impact of pre- and/or probiotics on human colonic metabolism: Does it affect human health?. Mol. Nutr. Food Res. 55:46–57 [Google Scholar]
  54. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C. et al. 2014. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156:84–96 [Google Scholar]
  55. de Vos WM, de Vos EA. 2012. Role of the intestinal microbiome in health and disease: from correlation to causation. Nutr. Rev. 70:S45–S56 [Google Scholar]
  56. de Vrese M, Schrezenmeir J. 2008. Probiotics, prebiotics, and synbiotics. Food Biotechnology U Stahl, UEB Donalies, E Nevoigt 1–66 Berlin: Springer-Verlag [Google Scholar]
  57. Delzenne NM. 2003. Oligosaccharides: state of the art. Proc. Nutr. Soc. 62:177–82 [Google Scholar]
  58. Demigne C, Jacobs H, Moundras C, Davicco MJ, Horcajada MN. et al. 2008. Comparison of native or reformulated chicory fructans, or non-purified chicory, on rat cecal fermentation and mineral metabolism. Eur. J. Nutr. 47:366–74 [Google Scholar]
  59. den Besten G, Lange K, Havinga R, van Dijk TH, Gerding A. et al. 2013. Gut-derived short-chain fatty acids are vividly assimilated into host carbohydrates and lipids. Am. J. Physiol. Gastroint. Liver 305:G900–G10 [Google Scholar]
  60. Dendougui F, Schwedt G. 2004. In vitro analysis of binding capacities of calcium to phytic acid in different food samples. Eur. Food Res. Technol. 219:409–15 [Google Scholar]
  61. Derrien M, van Hylckama Vlieg JET. 2015. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 23:354–66 [Google Scholar]
  62. Dikeman CL, Fahey GC. 2006. Viscosity as related to dietary fiber: a review. Crit. Rev. Food Sci. Nutr. 46:649–63 [Google Scholar]
  63. Donia MS, Fischbach MA. 2015. Small molecules from the human microbiota. Science 349:1254766 [Google Scholar]
  64. Drakoularakou A, Tzortzis G, Rastall RA, Gibson GR. 2009. A double-blind, placebo-controlled, randomized human study assessing the capacity of a novel galacto-oligosaccharide mixture in reducing travellers' diarrhoea. Eur. J. Clin. Nutr. 64:146–52 [Google Scholar]
  65. Druart C, Alligier M, Salazar N, Neyrinck AM, Delzenne NM. 2014. Modulation of the gut microbiota by nutrients with prebiotic and probiotic properties. Adv. Nutr. 5:624S–33 [Google Scholar]
  66. Duncan SH, Louis P, Thomson JM, Flint HJ. 2009. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11:2112–22 [Google Scholar]
  67. Eeckhaut V, van Immerseel F, Dewulf J, Pasmans F, Haesebrouck F. et al. 2008. Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens. Poult. Sci. 87:2329–34 [Google Scholar]
  68. Elleuch M, Bedigian D, Roiseux O, Besbes S, Blecker C, Attia H. 2011. Dietary fibre and fibre-rich by-products of food processing: characterisation, technological functionality and commercial applications: a review. Food Chem. 124:411–21 [Google Scholar]
  69. Eur. Communities Comm 2008. Commission directive 2008/100/EC of 28 October 2008 amending Council Directive 90/496/EEC on nutrition labelling for foodstuffs as regards recommended daily allowances, energy conversion factors and definitions. Off. J. Eur. Union 285:9–12 [Google Scholar]
  70. Eur. Food Saf. Auth. Panel Diet. Prod. Nutr. Allerg 2010. Scientific opinion on the substantiation of health claims related to pectins and reduction of post-prandial glycaemic responses (ID 786), maintenance of normal blood cholesterol concentrations (ID 818) and increase in satiety leading to a reduction in energy intake (ID 4692) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 8:1747 [Google Scholar]
  71. Eur. Food Saf. Auth. Panel Diet. Prod. Nutr. Allerg 2011a. Scientific opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 9:2207 [Google Scholar]
  72. Eur. Food Saf. Auth. Panel Diet. Prod. Nutr. Allerg 2011b. Scientific opinion on the substantiation of health claims related to arabinoxylan produced from wheat endosperm and reduction of post-prandial glycaemic responses (ID 830) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 9:2205 [Google Scholar]
  73. Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. 1988. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut 29:1035–41 [Google Scholar]
  74. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C. et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. PNAS 110:9066–71 [Google Scholar]
  75. Food Agric. Org 1998. Carbohydrates in human nutrition. (FAO food and nutrition paper-66 Rep. Joint FAO/WHO Expert Consult., April 14–18, 1997, Rome [Google Scholar]
  76. Figueroa-González I, Quijano G, Ramírez G, Cruz-Guerrero A. 2011. Probiotics and prebiotics—perspectives and challenges. J. Sci. Food Agric. 91:1341–48 [Google Scholar]
  77. Flint H, Scott K, Louis P, Duncan S. 2012a. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9:577–89 [Google Scholar]
  78. Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. 2012b. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306 [Google Scholar]
  79. Flourie B, Vidon N, Florent CH, Bernier JJ. 1984. Effect of pectin on jejunal glucose absorption and unstirred layer thickness in normal man. Gut 25:936–41 [Google Scholar]
  80. Folino M, McIntyre A, Young GP. 1995. Dietary fibers differ in their effects on large bowel epithelial proliferation and fecal fermentation dependent events in rats. J. Nutr. 125:1521–28 [Google Scholar]
  81. François IEJA, Lescroart O, Veraverbeke WS, Windey K, Verbeke K, Broekaert WF. 2014. Tolerance and the effect of high doses of wheat bran extract, containing arabinoxylan-oligosaccharides, and oligofructose on faecal output: a double-blind, randomised, placebo-controlled, cross-over trial. J. Nutr. Sc. 3:e49 [Google Scholar]
  82. French SJ, Read NW. 1994. Effect of guar gum on hunger and satiety after meals of differing fat content: relationship with gastric emptying. Am. J. Clin. Nutr. 59:87–91 [Google Scholar]
  83. Frost G, Sleeth ML, Sahuri-Arisoylu M, Lizarbe B, Cerdan S. et al. 2014. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5:3611 [Google Scholar]
  84. Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C. et al. 2011. Resistant starch as prebiotic: a review. Starch-Stärke 63:406–15 [Google Scholar]
  85. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y. et al. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–47 [Google Scholar]
  86. Fukushima A, Ohta A, Sakai K, Sakuma K. 2005. Expression of calbindin-D9k, VDR and Cdx-2 messenger RNA in the process by which fructooligosaccharides increase calcium absorption in rats. J. Nutr. Sci. Vitaminol. 51:426–32 [Google Scholar]
  87. Fuller R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365–78 [Google Scholar]
  88. Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G. et al. 2013. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504:446–50 [Google Scholar]
  89. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ. et al. 2009. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58:1509–17 [Google Scholar]
  90. Garrett WS. 2015. Cancer and the microbiota. Science 348:80–86 [Google Scholar]
  91. Gear JS, Brodribb AJ, Ware A, Mann JI. 1981. Fibre and bowel transit times. Br. J. Nutr. 45:77–82 [Google Scholar]
  92. Geboes KP, de Hertogh G, De Preter V, Luypaerts A, Bammens B. et al. 2006. The influence of inulin on the absorption of nitrogen and the production of metabolites of protein fermentation in the colon. Br. J. Nutr. 96:1078–86 [Google Scholar]
  93. Gibson GR, McCartney AL, Rastall RA. 2005. Prebiotics and resistance to gastrointestinal infections. Br. J. Nutr. 93:S31–S34 [Google Scholar]
  94. Gibson GR, Probert HM, Loo JV, Rastall RA, Roberfroid MB. 2004. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17:259–75 [Google Scholar]
  95. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota—introducing the concept of prebiotics. J. Nutr. 125:1401–12 [Google Scholar]
  96. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A. et al. 2010. Dietary prebiotics: current status and new definition. Funct. Foods Bull. 7:1–19 [Google Scholar]
  97. Goldin BR. 1990. Intestinal microflora—metabolism of drugs and carcinogens. Ann. Med. 22:43–48 [Google Scholar]
  98. Graham DY, Moser SE, Estes MK. 1982. The effect of bran on bowel function in constipation. Am. J. Gastroenterol. 77:599–603 [Google Scholar]
  99. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH. et al. 2005. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 112:2735–52 [Google Scholar]
  100. Guarner F. 2007. Studies with inulin-type fructans on intestinal infections, permeability, and inflammation. J. Nutr. 137:2568S–71S [Google Scholar]
  101. Guillon F, Champ M. 2000. Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Res. Int. 33:233–45 [Google Scholar]
  102. Gunness P, Gidley MJ. 2010. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides. Food Funct. 1:149–55 [Google Scholar]
  103. Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG. 2014. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146:67–75.e5 [Google Scholar]
  104. Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. 2008. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27:104–19 [Google Scholar]
  105. Hirano S, Nagao N. 1989. Effects of chitosan, pectic acid, lysozyme, chitinase on the growth of several phytopathogens. Agric. Biol. Chem. 53:3065–66 [Google Scholar]
  106. Holgate AM, Read NW. 1983. Relationship between small bowel transit time and absorption of a solid meal influence of metoclopramide, magnesium sulfate, and lactulose. Dig. Dis. Sci. 28:812–19 [Google Scholar]
  107. Hooper LV, Littman DR, Macpherson AJ. 2012. Interactions between the microbiota and the immune system. Science 336:1268–73 [Google Scholar]
  108. Irrazábal T, Belcheva A, Girardin SE, Martin A, Philpott DJ. 2014. The multifaceted role of the intestinal microbiota in colon cancer. Mol. Cell 54:309–20 [Google Scholar]
  109. Jacobs PJ, Hemdane S, Dornez E, Delcour JA, Courtin CM. 2015. Study of hydration properties of wheat bran as a function of particle size. Food Chem. 179:296–304 [Google Scholar]
  110. Jeffery IB, Claesson MJ, O'Toole PW, Shanahan F. 2012. Categorization of the gut microbiota: enterotypes or gradients?. Nat. Rev. Microbiol. 10:591–92 [Google Scholar]
  111. Jonathan MC, van den Borne JJGC, van Wiechen P, Souza da Silva C, Schols HA, Gruppen H. 2012. In vitro fermentation of 12 dietary fibres by faecal inoculum from pigs and humans. Food Chem. 133:889–97 [Google Scholar]
  112. Jones A. 1971. Escherichia coli in retail samples of milk and their resistance to antibiotics. Lancet 298:347–50 [Google Scholar]
  113. Jones JM. 2014. CODEX-aligned dietary fiber definitions help to bridge the “fiber gap.”. Nutr. J. 13:34 [Google Scholar]
  114. Karczewski J, Poniedziałek B, Adamski Z, Rzymski P. 2014. The effects of the microbiota on the host immune system. Autoimmunity 47:494–504 [Google Scholar]
  115. Kellow NJ, Coughlan MT, Reid CM. 2014. Metabolic benefits of dietary prebiotics in human subjects: a systematic review of randomised controlled trials. Br. J. Nutr. 111:1147–61 [Google Scholar]
  116. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC. et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71 [Google Scholar]
  117. Kelly G. 2009. Inulin-type prebiotics: a review. (Part 2). Altern. Med. Rev. 14:36–55 [Google Scholar]
  118. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A. et al. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). PNAS 108:8030–35 [Google Scholar]
  119. Kvietys PR, Granger DN. 1981. Effect of volatile fatty acids on blood and oxygen uptake by the dog colon. Gastroenterology 80:962–69 [Google Scholar]
  120. Lahti L, Salojärvi J, Salonen A, Scheffer M, de Vos WM. 2014. Tipping elements in the human intestinal ecosystem. Nat. Commun. 5:4344 [Google Scholar]
  121. Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr. 2013. Short chain fatty acids and their receptors: new metabolic targets. Transl. Res. 161:131–40 [Google Scholar]
  122. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F. et al. 2013. Richness of human gut microbiome correlates with metabolic markers. Nature 500:541–46 [Google Scholar]
  123. Lee W-J, Hase K. 2014. Gut microbiota–generated metabolites in animal health and disease. Nat. Chem. Biol. 10:416–24 [Google Scholar]
  124. Leeds AR, Ebied F, Ralphs DNL, Metz G, Dilawari JB. 1981. Pectin in the dumping syndrome: reduction of symptoms and plasma volume changes. Lancet 317:1075–78 [Google Scholar]
  125. Lewis S, Burmeister S, Brazier J. 2005a. Effect of the prebiotic oligofructose on relapse of Clostridium difficile–associated diarrhea: a randomized, controlled study. Clin. Gastroenterol. Hepatol. 3:442–48 [Google Scholar]
  126. Lewis S, Burmeister S, Cohen S, Brazier J, Awasthi A. 2005b. Failure of dietary oligofructose to prevent antibiotic-associated diarrhoea. Aliment. Pharmacol. Ther. 21:469–77 [Google Scholar]
  127. Ley RE, Peterson DA, Gordon JI. 2006. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–48 [Google Scholar]
  128. Lim CC, Ferguson LR, Tannock GW. 2005. Dietary fibres as “prebiotics”: implications for colorectal cancer. Mol. Nutr. Food Res. 49:609–19 [Google Scholar]
  129. Liu LH, Wang S, Liu JC. 2015. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: a systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 59:139–46 [Google Scholar]
  130. Lopez HW, Coudray C, Levrat-Verny M-A, Feillet-Coudray C, Demigné C, Rémésy C. 2000. Fructooligosaccharides enhance mineral apparent absorption and counteract the deleterious effects of phytic acid on mineral homeostasis in rats. J. Nutr. Biochem. 11:500–08 [Google Scholar]
  131. Louis P, Hold GL, Flint HJ. 2014. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 12:661–72 [Google Scholar]
  132. Lugo-Villarino G, Neyrolles O. 2015. SIGNing a symbiotic treaty with gut microbiota. EMBO J. 34:829–31 [Google Scholar]
  133. Macfarlane GT, Allison C, Gibson GR. 1988. Effect of pH on protease activities in the large intestine. Lett. Appl. Microbiol. 7:161–64 [Google Scholar]
  134. Macfarlane S, Macfarlane GT, Cummings JH. 2006. Review article: prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther. 24:701–14 [Google Scholar]
  135. Mälkki Y, Virtanen E. 2001. Gastrointestinal effects of oat bran and oat gum: a review. LWT Food Sci. Technol. 34:337–47 [Google Scholar]
  136. Manning TS, Gibson GR. 2004. Prebiotics.. Best Pract. Res. Clin. Gastroenterol. 18:287–98 [Google Scholar]
  137. Marteau P, Flourié B. 2001. Tolerance to low-digestible carbohydrates: symptomatology and methods. Br. J. Nutr. 85:S17–21 [Google Scholar]
  138. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F. et al. 2009. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461:1282–86 [Google Scholar]
  139. McCleary BV. 2011. The evolution of dietary fiber definitions and methods and the role of AACC International. Cereal Food World 56:103 [Google Scholar]
  140. Mikkelsen MS, Cornali SB, Jensen MG, Nilsson M, Beeren SR, Meier S. 2014. Probing interactions between β-glucan and bile salts at atomic detail by 1H–13C NMR assays. J. Agric. Food Chem. 62:11472–78 [Google Scholar]
  141. Moore WEC, Holdeman LV. 1975. Discussion of current bacteriological investigations of the relationships between instestinal flora, diet, and colon cancer. Cancer Res. 35:3418–20 [Google Scholar]
  142. Mortensen FV, Hessov I, Birke H, Korsgaard N, Nielsen H. 1991. Microcirculatory and trophic effects of short chain fatty acids in the human rectum after Hartmann's procedure. Br. J. Surg. 78:1208–11 [Google Scholar]
  143. Müller-Lissner SA. 1988. Effect of wheat bran on weight of stool and gastrointestinal transit time: a meta analysis. Brit. Med. J. 296:615–17 [Google Scholar]
  144. Muller-Lissner SA, Kamm MA, Scarpignato C, Wald A. 2005. Myths and misconceptions about chronic constipation. Am. J. Gastroenterol. 100:232–42 [Google Scholar]
  145. O'Flaherty S, Saulnier DM, Pot B, Versalovic J. 2010. How can probiotics and prebiotics impact mucosal immunity?. Gut Microbes 1:293–300 [Google Scholar]
  146. O'Keefe SJD, Li JV, Lahti L, Ou J, Carbonero F. et al. 2015. Fat, fibre and cancer risk in African Americans and rural Africans. Nat. Commun. 6:6342 [Google Scholar]
  147. Ohland CL, MacNaughton WK. 2010. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol.-Gastroint. Liver Physiol. 298:G807–19 [Google Scholar]
  148. Oku T, Nakamura S. 2014. Evaluation of the relative available energy of several dietary fiber preparations using breath hydrogen evolution in healthy humans. J. Nutr. Sci. Vitaminol. 60:246–54 [Google Scholar]
  149. Palframan R, Gibson GR, Rastall RA. 2003. Development of a quantitative tool for the comparison of the prebiotic effect of dietary oligosaccharides. Lett. Appl. Microbiol. 37:281–84 [Google Scholar]
  150. Park Y, Subar AF, Hollenbeck A, Schatzkin A. 2011. Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch. Intern. Med. 171:1061–68 [Google Scholar]
  151. Pasqualetti V, Altomare A, Guarino MPL, Locato V, Cocca S. et al. 2014. Antioxidant activity of inulin and its role in the prevention of human colonic muscle cell impairment induced by lipopolysaccharide mucosal exposure. PLOS ONE 9:e98031 [Google Scholar]
  152. Pollet A, van Craeyveld V, van de Wiele T, Verstraete W, Delcour JA, Courtin CM. 2011. In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk. J. Agric. Food Chem. 60:946–54 [Google Scholar]
  153. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS. et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [Google Scholar]
  154. Rafter JJ, Eng VW, Furrer R, Medline A, Bruce WR. 1986. Effects of calcium and pH on the mucosal damage produced by deoxycholic acid in the rat colon. Gut 27:1320–29 [Google Scholar]
  155. Ramsubeik K, Keuler NS, Davis LA, Hansen KE. 2014. Factors associated with calcium absorption in postmenopausal women: a post hoc analysis of dual-isotope studies. J. Acad. Nutr. Diet. 114:761–67 [Google Scholar]
  156. Rastall RA, Maitin V. 2002. Prebiotics and synbiotics: towards the next generation. Curr. Opin. Biotechnol. 13:490–96 [Google Scholar]
  157. Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR. et al. 2015. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 29:1395–403 [Google Scholar]
  158. Reunanen J, Kainulainen V, Huuskonen L, Ottman N, Belzer C. et al. 2015. Akkermansia muciniphila adheres to enterocytes and strengthens the integrity of the epithelial cell layer. Appl. Environ. Microbiol. 81:3655–62 [Google Scholar]
  159. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE. et al. 2013. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341:1079 [Google Scholar]
  160. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R. et al. 2010. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104:S1–63 [Google Scholar]
  161. Roland N, Nugon-Baudon L, Andrieux C, Szylit O. 1995. Comparative study of the fermentative characteristics of inulin and different types of fibre in rats inoculated with a human whole faecal flora. Br. J. Nutr. 74:239–49 [Google Scholar]
  162. Sakata T. 1987. Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine. A possible explanation for trophic effects of fermentable fiber, gut microbes and luminal trophic factors. Br. J. Nutr. 58:95–103 [Google Scholar]
  163. Salonen A, de Vos WM. 2014. Impact of diet on human intestinal microbiota and health. Annu. Rev. Food Sci. Technol. 5:239–62 [Google Scholar]
  164. Salonen A, Salojärvi J, Lahti L, de Vos WM. 2012. The adult intestinal core microbiota is determined by analysis depth and health status. Clin. Microbiol. Infect. 18:Suppl. 416–20 [Google Scholar]
  165. Schley PD, Field CJ. 2002. The immune-enhancing effects of dietary fibres and prebiotics. Br. J. Nutr. 87:S221–S30 [Google Scholar]
  166. Scholz-Ahrens KE, Schaafsma G, van den Heuvel EG, Schrezenmeir J. 2001. Effects of prebiotics on mineral metabolism. Am. J. Clin. Nutr. 73:459S–64 [Google Scholar]
  167. Shan MM, Gentile M, Yeiser JR, Walland AC, Bornstein VU. et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–53 [Google Scholar]
  168. Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW. et al. 2014. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63:727–35 [Google Scholar]
  169. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R. et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39 [Google Scholar]
  170. Slavin JL, Savarino V, Paredes-Diaz A, Fotopoulos G. 2009. A review of the role of soluble fiber in health with specific reference to wheat dextrin. J. Int. Med. Res. 37:1–17 [Google Scholar]
  171. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA. et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73 [Google Scholar]
  172. Song M, Garrett WS, Chan AT. 2015. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148:1244–60 [Google Scholar]
  173. Stephen AM, Wiggins HS, Cummings JH. 1987. Effect of changing transit time on colonic microbial metabolism in man. Gut 28:601–9 [Google Scholar]
  174. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 2014. The role of short-chain fatty acids in health and disease. Advances in Immunology WA Frederick 91–119 San Diego, CA: Acad. Press [Google Scholar]
  175. Ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Lettink-Wissink MLG, Katan MB, van der Meer R. 2004. Dietary fructo-oligosaccharides and inulin decrease resistance of rats to Salmonella: protective role of calcium. Gut 53:530–35 [Google Scholar]
  176. Ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Lettink-Wissink MLG, van der Meer R. 2003. Dietary fructo-oligosaccharides dose-dependently increase translocation of Salmonella in rats. J. Nutr. 133:2313–18 [Google Scholar]
  177. Theuwissen E, Mensink RP. 2008. Water-soluble dietary fibers and cardiovascular disease. Physiol. Behav. 94:285–92 [Google Scholar]
  178. Threapleton DE, Greenwood DC, Evans CEL, Cleghorn CL, Nykjaer C. et al. 2013. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 347:f6879 [Google Scholar]
  179. Tilg H, Moschen AR. 2015. Food, immunity, and the microbiome. Gastroenterology 148:1107–19 [Google Scholar]
  180. Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. 2012. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10:575–82 [Google Scholar]
  181. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM. et al. 2012. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes 61:364–71 [Google Scholar]
  182. Topping DL, Clifton PM. 2001. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81:1031–64 [Google Scholar]
  183. Tremaroli V, Bäckhed F. 2012. Functional interactions between the gut microbiota and host metabolism. Nature 489:242–49 [Google Scholar]
  184. Trowell H. 1972. Dietary fibre and coronary heart disease. Rev. Eur. Etud. Clin. Biol. 17:345–49 [Google Scholar]
  185. Tungland BC, Meyer D. 2002. Nondigestible oligo- and polysaccharides (dietary fiber): their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 1:90–109 [Google Scholar]
  186. Turnbaugh P, Ley R, Mahowald M, Magrini V, Mardis E, Gordon J. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–31 [Google Scholar]
  187. US Dep. Health Hum. Serv. Food Drug Admin 2006. Food labeling; health claims; soluble dietary fiber from certain foods and coronary heart disease. Final rule. Fed. Regist. 71:29248–50 [Google Scholar]
  188. van de Wiele T, Boon N, Possemiers S, Jacobs H, Verstraete W. 2007. Inulin-type fructans of longer degree of polymerization exert more pronounced in vitro prebiotic effects. J. Appl. Microbiol. 102:452–60 [Google Scholar]
  189. van den Heuvel EG, Muijs T, van Dokkum W, Schaafsma G. 1999. Lactulose stimulates calcium absorption in postmenopausal women. J. Bone Miner. Res. 14:1211–16 [Google Scholar]
  190. van Dokkum W, Wezendonk B, Srikumar TS, van den Heuvel E. 1999. Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur. J. Clin. Nutr. 53:1–7 [Google Scholar]
  191. van Munster IP, Tangerman A, Nagengast FM. 1994. Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Dig. Dis. Sci. 39:834–42 [Google Scholar]
  192. Vince AJ, Burridge SM. 1980. Ammonia production by intestinal bacteria: the effects of lactose, lactulose and glucose. J. Med. Microbiol. 13:177–91 [Google Scholar]
  193. Vipperla K, O'Keefe SJ. 2012. The microbiota and its metabolites in colonic mucosal health and cancer risk. Nutr. Clin. Pract. 27:624–35 [Google Scholar]
  194. Visek WJ. 1978. Diet and cell growth modulation by ammonia. Am. J. Clin. Nutr. 31:S216–20 [Google Scholar]
  195. Vogt L, Ramasamy U, Meyer D, Pullens G, Venema K. et al. 2013. Immune modulation by different types of β2→1-fructans is Toll-like receptor dependent. PLOS ONE 8:e68367 [Google Scholar]
  196. Vogt LM, Meyer D, Pullens G, Faas MM, Venema K. et al. 2014. Toll-like receptor 2 activation by β2→1-fructans protects barrier function of T84 human intestinal epithelial cells in a chain length–dependent manner. J. Nutr. 144:1002–8 [Google Scholar]
  197. Volman JJ, Ramakers JD, Plat J. 2008. Dietary modulation of immune function by β-glucans. Physiol. Behav. 94:276–84 [Google Scholar]
  198. Vrieze A, van Nood E, Holleman F, Salojärvi J, Kootte RS. et al. 2012. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143:913–16.e7 [Google Scholar]
  199. Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ. 2005. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71:3692–700 [Google Scholar]
  200. Wang Y, Zeng T, Wang SE, Wang W, Wang Q, Yu HX. 2010. Fructo-oligosaccharides enhance the mineral absorption and counteract the adverse effects of phytic acid in mice. Nutrition 26:305–11 [Google Scholar]
  201. Weaver CM, Heaney RP, Teegarden D, Hinders SM. 1996. Wheat bran abolishes the inverse relationship between calcium load size and absorption fraction in women. J. Nutr. 126:303–7 [Google Scholar]
  202. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A. et al. 2011. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J. Agric. Food Chem. 59:6501–10 [Google Scholar]
  203. Windey K, De Preter V, Louat T, Schuit F, Herman J. et al. 2012a. Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects. PLOS ONE 7:e52387 [Google Scholar]
  204. Windey K, De Preter V, Verbeke K. 2012b. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56:184–96 [Google Scholar]
  205. Windey K, François I, Broekaert W, De Preter V, Delcour JA. et al. 2014. High dose of prebiotics reduces fecal water cytotoxicity in healthy subjects. Mol. Nutr. Food Res. 58:2206–18 [Google Scholar]
  206. Wolever T, Spadafora P, Eshuis H. 1991. Interaction between colonic acetate and propionate in humans. Am. J. Clin. Nutr. 53:681–87 [Google Scholar]
  207. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. 2006. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40:235–43 [Google Scholar]
  208. World Cancer Res. Fund Am. Inst. Cancer Res 2011. Continuous update project report. Food, nutrition, physical activity, and the prevention of colorectal cancer. http://www.wcrf.org/sites/default/files/Colorectal-Cancer-2011-Report.pdf [Google Scholar]
  209. Wyman JB, Heaton KW, Manning AP, Wicks AC. 1976. The effect on intestinal transit and the feces of raw and cooked bran in different doses. Am. J. Clin. Nutr. 29:1474–79 [Google Scholar]
  210. Yun C-H, Estrada A, van Kessel A, Park B-C, Laarveld B. 2003. β-Glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infections. FEMS Immunol. Med. Microbiol. 35:67–75 [Google Scholar]
  211. Zackular JP, Rogers MAM, Ruffin MT, Schloss PD. 2014. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev. Res. 7:1112–21 [Google Scholar]
  212. Zaibi MS, Stocker CJ, O'Dowd J, Davies A, Bellahcene M. et al. 2010. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett. 584:2381–86 [Google Scholar]
  213. Zimmer J, Lange B, Frick JS, Sauer H, Zimmermann K. et al. 2012. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66:53–60 [Google Scholar]
/content/journals/10.1146/annurev-food-081315-032749
Loading
/content/journals/10.1146/annurev-food-081315-032749
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error