1932

Abstract

The world food supply depends on a diminishing list of plant crops and animal livestock to not only feed the ever-growing human population but also improve its nutritional state and lower the disease burden. Over the past century or so, technological advances in agricultural and food processing have helped reduce hunger and poverty but have not adequately addressed sustainability targets. This has led to an erosion of agricultural biodiversity and balanced diets and contributed to climate change and rising rates of chronic metabolic diseases. Modern food supply chains have progressively lost dietary fiber, complex carbohydrates, micronutrients, and several classes of phytochemicals with high bioactivity and nutritional relevance. This review introduces the concept of agricultural food systems losses and focuses on improved sources of agricultural diversity, proteins with enhanced resilience, and novel monitoring, processing, and distribution technologies that are poised to improve food security, reduce food loss and waste, and improve health profiles in the near future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-082421-114831
2022-03-25
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-082421-114831.html?itemId=/content/journals/10.1146/annurev-food-082421-114831&mimeType=html&fmt=ahah

Literature Cited

  1. Akakpo R, Scarcelli N, Chaïr H, Dansi A, Djedatin G et al. 2017. Molecular basis of African yam domestication: analyses of selection point to root development, starch biosynthesis, and photosynthesis related genes. BMC Genom. 18:782
    [Google Scholar]
  2. Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N et al. 2015. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell 27:3485–512
    [Google Scholar]
  3. Asprelli PD, Sance M, Insani EM, Asis R, Valle EM et al. 2017. Agronomic performance and fruit nutritional quality of an Andean tomato collection. Acta Hortic. 1159:197–204
    [Google Scholar]
  4. Asseng S, Guarin JR, Raman M, Monje O, Kiss G et al. 2020. Wheat yield potential in controlled-environment vertical farms. PNAS 117:3219131–35
    [Google Scholar]
  5. Avgoustaki DD, Xydis G. 2020. Indoor vertical farming in the urban nexus context: business growth and resource savings. Sustainability 12:51965
    [Google Scholar]
  6. Barnes AP, Soto I, Eory V, Beck B, Balafoutis AT et al. 2019. Influencing incentives for precision agricultural technologies within European arable farming systems. Environ. Sci. Policy 93:66–74
    [Google Scholar]
  7. Baroja-Fernández E, Muñoz FJ, Li J, Bahaji A, Almagro G et al. 2012. Sucrose synthase activity in the sus1/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. PNAS 109:1321–26
    [Google Scholar]
  8. Benzie IFF. 2003. Evolution of dietary antioxidants. Comp. Biochem. Physiol. A 136:1113–26
    [Google Scholar]
  9. Bevis LEM. 2015. Soil-to-human mineral transmission with an emphasis on zinc, selenium, and iodine. Springer Sci. Rev. 3:177–96
    [Google Scholar]
  10. Bitarafan V, Fitzgerald PCE, Little TJ, Meyerhof W, Jones KL et al. 2020. Intragastric administration of the bitter tastant quinine lowers the glycemic response to a nutrient drink without slowing gastric emptying in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 318:2R263–73
    [Google Scholar]
  11. Blando F, Berland H, Maiorano G, Durante M, Mazzucato A et al. 2019. Nutraceutical characterization of anthocyanin-rich fruits produced by “Sun Black” tomato line. Front. Nutr. 6:133
    [Google Scholar]
  12. Bohrer BM. 2019. An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci. Hum. Wellness 8:4320–29
    [Google Scholar]
  13. Burger JR, Fristoe TS. 2018. Hunter-gatherer populations inform modern ecology. PNAS 115:61137–39
    [Google Scholar]
  14. Cabell J, Oelofse M. 2012. An indicator framework for assessing agroecosystem resilience. Ecol. Soc. 17:118
    [Google Scholar]
  15. Campbell BC, Gilding EK, Mace ES, Tai S, Tao Y et al. 2016. Domestication and the storage starch biosynthesis pathway: signatures of selection from a whole sorghum genome sequencing strategy. Plant Biotechnol. J. 14:122240–53
    [Google Scholar]
  16. Carmody RN, Wrangham RW. 2009. Cooking and the human commitment to a high-quality diet. Cold Spring Harb. Symp. Quant. Biol. 74:427–34
    [Google Scholar]
  17. Casas A, Caballero J, Valiente-Banuet A, Soriano J, Dávila P. 1999. Morphological variation and the process of domestication of Stenocereus stellatus (Cactaceae) in central Mexico. Am. J. Bot. 86:522–33
    [Google Scholar]
  18. Castañeda-Álvarez NP, Khoury CK, Achicanoy HA, Bernau V, Dempewolf H et al. 2016. Global conservation priorities for crop wild relatives. Nat. Plants 2:416022
    [Google Scholar]
  19. Chakona G, Shackleton C. 2017. Minimum dietary diversity scores for women indicate micronutrient adequacy and food insecurity status in South African towns. Nutrients 9:8812
    [Google Scholar]
  20. Chen R, Shimono A, Aono M, Nakajima N, Ohsawa R, Yoshioka Y. 2020. Genetic diversity and population structure of feral rapeseed (Brassica napus L.) in Japan. PLOS ONE 15:1e0227990
    [Google Scholar]
  21. Cheng F, Wu J, Cai C, Fu L, Liang J et al. 2016. Genome resequencing and comparative variome analysis in a Brassica rapa and Brassica oleracea collection. Sci. Data 3:1160119
    [Google Scholar]
  22. Chimimba J, Pratt R, Cuellar M, Delgado E. 2019. Quality parameters of masa and tortillas produced from blue maize (Zea mays sp. mays) landraces. J. Food Sci. 84:2213–23
    [Google Scholar]
  23. Clemens R, Kranz S, Mobley AR, Nicklas TA, Raimondi MP et al. 2012. Filling America's fiber intake gap: summary of a roundtable to probe realistic solutions with a focus on grain-based foods. J. Nutr. 142:71390S–401
    [Google Scholar]
  24. Clement CR. 1999. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53:2188
    [Google Scholar]
  25. Clough Y, Kirchweger S, Kantelhardt J 2020. Field sizes and the future of farmland biodiversity in European landscapes. Conserv. Lett. 13:6e12752
    [Google Scholar]
  26. Colledge S, Conolly J, Shennan S 2004. Archaeobotanical evidence for the spread of farming in the eastern Mediterranean. Curr. Anthropol. 45:S4S35–58
    [Google Scholar]
  27. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S et al. 2005. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:2341–54
    [Google Scholar]
  28. Cottrell RS, Nash KL, Halpern BS, Remenyi TA, Corney SP et al. 2019. Food production shocks across land and sea. Nat. Sustain. 2:2130–37
    [Google Scholar]
  29. Cox DN, Hendrie GA, Lease HJ. 2018. Do healthy diets differ in their sensory characteristics?. Food Qual. Preference 68:12–18
    [Google Scholar]
  30. Crimarco A, Springfield S, Petlura C, Streaty T, Cunanan K et al. 2020. A randomized crossover trial on the effect of plant-based compared with animal-based meat on trimethylamine-N-oxide and cardiovascular disease risk factors in generally healthy adults: Study With Appetizing Plantfood—Meat Eating Alternative Trial (SWAP-MEAT). Am. J. Clin. Nutr. 112:51188–99
    [Google Scholar]
  31. Crittenden AN, Schnorr SL. 2017. Current views on hunter-gatherer nutrition and the evolution of the human diet. Am. J. Phys. Anthropol. 162:Suppl. 6384–109
    [Google Scholar]
  32. Dai F-J, Chau C-F. 2017. Classification and regulatory perspectives of dietary fiber. J. Food Drug Anal. 25:137–42
    [Google Scholar]
  33. Davis AS, Hill JD, Chase CA, Johanns AM, Liebman M. 2012. Increasing cropping system diversity balances productivity, profitability and environmental health. PLOS ONE 7:10e47149
    [Google Scholar]
  34. De Ron AM, Sparvoli F, Pueyo JJ, Bazile D. 2017. Editorial: protein crops: food and feed for the future. Front. Plant Sci. 8:105
    [Google Scholar]
  35. Diamond J. 2002. Evolution, consequences and future of plant and animal domestication. Nature 418:6898700–7
    [Google Scholar]
  36. Diaz JT, Foegeding EA, Lila MA. 2020. Formulation of protein-polyphenol particles for applications in food systems. Food Funct 11:65091–104
    [Google Scholar]
  37. Dinssa FF, Hanson P, Dubois T, Tenkouano A, Stoilova T et al. 2016. AVRDC: the World Vegetable Center's women-oriented improvement and development strategy for traditional African vegetables in sub-Saharan Africa. Eur. J. Hortic. Sci. 81:291–105
    [Google Scholar]
  38. Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD 2002. Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:41713–26
    [Google Scholar]
  39. Dominy N, Vogel E, Yeakel J, Constantino P, Lucas P. 2008. Mechanical properties of plant underground storage organs and implications for dietary models of early hominins. Evol. Biol. 35:159–75
    [Google Scholar]
  40. Doughty J. 1979. Dangers of reducing the range of food choice in developing countries.. Ecol. Food Nutr. 84275–83
  41. Drewnowski A, Gomez-Carneros C. 2000. Bitter taste, phytonutrients, and the consumer: a review. Am. J. Clin. Nutr. 72:61424–35
    [Google Scholar]
  42. Dwivedi SL, Ceccarelli S, Blair MW, Upadhyaya HD, Are AK, Ortiz R. 2016. Landrace germplasm for improving yield and abiotic stress adaptation. Trends Plant Sci 21:131–42
    [Google Scholar]
  43. Ebert AW. 2020. The role of vegetable genetic resources in nutrition security and vegetable breeding. Plants Basel Switz 9:6736
    [Google Scholar]
  44. Eshed Y, Lippman ZB. 2019. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 366:6466eaax0025
    [Google Scholar]
  45. Fader M, Gerten D, Krause M, Lucht W, Cramer W 2013. Spatial decoupling of agricultural production and consumption: quantifying dependences of countries on food imports due to domestic land and water constraints. Environ. Res. Lett. 8:1014046
    [Google Scholar]
  46. Fan M-S, Zhao F-J, Fairweather-Tait SJ, Poulton PR, Dunham SJ, McGrath SP. 2008. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace Elem. Med. Biol. 22:4315–24
    [Google Scholar]
  47. Ferguson EL, Darmon N. 2007. Traditional foods versus manufactured baby foods. Nestle Nutr. Workshop Ser. Paediatr. Programme 60:43–63
    [Google Scholar]
  48. Ferguson EL, Watson L, Berger J, Chea M, Chittchang U et al. 2019. Realistic food-based approaches alone may not ensure dietary adequacy for women and young children in South-East Asia. Matern. . Child Health J 23:155–66
    [Google Scholar]
  49. Fowler C, Mooney P. 1990. Shattering: Food, Politics, and the Loss of Genetic Diversity Tucson: Univ. Ariz. Press
    [Google Scholar]
  50. Fraeye I, Kratka M, Vandenburgh H, Thorrez L. 2020. Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: much to be inferred. Front. Nutr. 7:35
    [Google Scholar]
  51. Fullana-Pericàs M, Conesa , Douthe C, El Aou-Ouad H, Ribas-Carbó M, Galmés J 2019. Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agric. Water Manag. 223:105722
    [Google Scholar]
  52. Gardner CD, Trepanowski JF, Del Gobbo LC, Hauser ME, Rigdon J et al. 2018. Effect of low-fat versus low-carbohydrate diet on 12-month weight loss in overweight adults and the association with genotype pattern or insulin secretion: the DIETFITS randomized clinical trial. JAMA 319:7667–79
    [Google Scholar]
  53. Gaulin S, Koner M. 1977. On the natural diet of primates, including humans. Biology 1:1–86
    [Google Scholar]
  54. Georgiev V, Slavov A, Vasileva I, Pavlov A. 2018. Plant cell culture as emerging technology for production of active cosmetic ingredients. Eng. Life Sci. 18:11779–98
    [Google Scholar]
  55. Ghosh-Jerath S, Singh A, Magsumbol MS, Kamboj P, Goldberg G 2016. Exploring the potential of indigenous foods to address hidden hunger: nutritive value of indigenous foods of Santhal tribal community of Jharkhand, India. J. Hunger Environ. Nutr. 11:4548–68
    [Google Scholar]
  56. Godfray HCJ, Aveyard P, Garnett T, Hall JW, Key TJ et al. 2018. Meat consumption, health, and the environment. Science 361:6399eaam5324
    [Google Scholar]
  57. Grimm D, Wösten HAB. 2018. Mushroom cultivation in the circular economy. Appl. Microbiol. Biotechnol. 102:187795–803
    [Google Scholar]
  58. Hajjar R, Jarvis DI, Gemmill-Herren B. 2008. The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 123:4261–70
    [Google Scholar]
  59. Halford NG, Curtis TY, Muttucumaru N, Postles J, Mottram DS 2011. Sugars in crop plants. Ann. Appl. Biol. 158:11–25
    [Google Scholar]
  60. Hamilton MJ, Milne BT, Walker RS, Burger O, Brown JH. 2007. The complex structure of hunter-gatherer social networks. Proc. R. Soc. B 274:16222195–203
    [Google Scholar]
  61. Hammer K, Laghetti G. 2005. Genetic erosion: examples from Italy. Genet. Resour. Crop Evol. 52:5629–34
    [Google Scholar]
  62. Hammond ST, Brown JH, Burger JR, Flanagan TP, Fristoe TS et al. 2015. Food spoilage, storage, and transport: implications for a sustainable future. BioScience 65:8758–68
    [Google Scholar]
  63. Hardy K, Buckley S, Collins MJ, Estalrrich A, Brothwell D et al. 2012. Neanderthal medics? Evidence for food, cooking, and medicinal plants entrapped in dental calculus. Naturwissenschaften 99:8617–26
    [Google Scholar]
  64. Harlan JR, de Wet JMJ, Price EG. 1973. Comparative evolution of cereals. Evolution 27:2311–25
    [Google Scholar]
  65. Heald PJ, Chapman S. 2009. Crop diversity report card for the twentieth century: diversity bust or diversity boom? SSRN Work. Pap. 1462917
    [Google Scholar]
  66. Henry AG, Brooks AS, Piperno DR. 2014. Plant foods and the dietary ecology of Neanderthals and early modern humans. J. Hum. Evol. 69:44–54
    [Google Scholar]
  67. Hernandez-Aguilar R, Moore J, Pickering T 2008. Savanna chimpanzees use tools to harvest the underground storage organs of plants. PNAS 104:19210–13
    [Google Scholar]
  68. Hssaini L, Charafi J, Razouk R, Hernández F, Fauconnier M-L et al. 2020. Assessment of morphological traits and fruit metabolites in eleven fig varieties (Ficus carica L.). Int. J. Fruit Sci. 20:Suppl. 28–28
    [Google Scholar]
  69. Iglesias I, Echeverría G, Soria Y. 2008. Differences in fruit colour development, anthocyanin content, fruit quality and consumer acceptability of eight ‘Gala’ apple strains. Sci. Hortic. 119:132–40
    [Google Scholar]
  70. Ismail BP, Senaratne-Lenagala L, Stube A, Brackenridge A 2020. Protein demand: review of plant and animal proteins used in alternative protein product development and production. Anim. Front. 10:453–63
    [Google Scholar]
  71. Jairath G, Mal G, Gopinath D, Singh B 2021. A holistic approach to access the viability of cultured meat: a review. Trends Food Sci. Technol. 110:700–10
    [Google Scholar]
  72. John DA, Babu GR 2021. Lessons from the aftermaths of Green Revolution on food system and health. Front. Sustain. Food Syst. 5:644559
    [Google Scholar]
  73. Katz Y, Gutierrez-Castrellon P, González MG, Rivas R, Lee BW, Alarcon P. 2014. A comprehensive review of sensitization and allergy to soy-based products. Clin. Rev. Allergy Immunol. 46:3272–81
    [Google Scholar]
  74. Kaushik P, Andújar I, Vilanova S, Plazas M, Gramazio P et al. 2015. Breeding vegetables with increased content in bioactive phenolic acids. Molecules 20:1018464–81
    [Google Scholar]
  75. Kay CD, Pereira-Caro G, Ludwig IA, Clifford MN, Crozier A 2017. Anthocyanins and flavanones are more bioavailable than previously perceived: a review of recent evidence. Annu. Rev. Food Sci. Technol. 8:155–80
    [Google Scholar]
  76. Kearney J. 2010. Food consumption trends and drivers. Philos. Trans. R. Soc. B 365:15542793–807
    [Google Scholar]
  77. Kell S, HaiNing Q, Bin C, Ford-Lloyd B, Wei W et al. 2015. China's crop wild relatives: diversity for agriculture and food security. Agric. Ecosyst. Environ. 209:138–54
    [Google Scholar]
  78. Khoury CK, Bjorkman A, Dempewolf H, Ramirez-Villegas J, Guarino L et al. 2014. Increasing homogeneity in global food supplies and the implications for food security. PNAS 111:114001–6
    [Google Scholar]
  79. Komarnytsky S, Gaume A, Garvey A, Borisjuk N, Raskin I. 2004. A quick and efficient system for antibiotic-free expression of heterologous genes in tobacco roots. Plant Cell Rep 22:10765–73
    [Google Scholar]
  80. Kummu M, Kinnunen P, Lehikoinen E, Porkka M, Queiroz C et al. 2020. Interplay of trade and food system resilience: gains on supply diversity over time at the cost of trade independency. Glob. Food Secur. 24:100360
    [Google Scholar]
  81. Kuyu CG, Bereka TY. 2020. Review on contribution of indigenous food preparation and preservation techniques to attainment of food security in Ethiopian. Food Sci. Nutr. 8:13–15
    [Google Scholar]
  82. Kyriacou MC, Rouphael Y. 2018. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 234:463–69
    [Google Scholar]
  83. Kyriakopoulou K, Dekkers B, van der Goot AJ. 2019. Plant-based meat analogues. Sustainable Meat Production and Processing CM Galanakis 103–26 Cambridge, MA: Academic
    [Google Scholar]
  84. Lalueza-Fox C, Gigli E, de la Rasilla M, Fortea J, Rosas A 2009. Bitter taste perception in Neanderthals through the analysis of the TAS2R38 gene. Biol. Lett. 5:6809–11
    [Google Scholar]
  85. Larbey C, Mentzer SM, Ligouis B, Wurz S, Jones MK 2019. Cooked starchy food in hearths ca. 120 kya and 65 kya (MIS 5e and MIS 4) from Klasies River Cave, South Africa. J. Hum. Evol. 131:210–27
    [Google Scholar]
  86. Larson G, Dobney K, Albarella U, Fang M, Matisoo-Smith E et al. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307:57151618–21
    [Google Scholar]
  87. Lee S-J, Oh C-S, Suh J-P, McCouch SR, Ahn S-N. 2005. Identification of QTLs for domestication-related and agronomic traits in an Oryza sativa×O. rufipogon BC1F7 population. Plant Breed. 124:3209–19
    [Google Scholar]
  88. Leff B, Ramankutty N, Foley JA 2004. Geographic distribution of major crops across the world. Glob. Biogeochem. Cycles 18:132–35
    [Google Scholar]
  89. Leyser O. 2014. Moving beyond the GM debate. PLOS Biol. 12:6e1001887
    [Google Scholar]
  90. Liu B, Fujita T, Yan Z-H, Sakamoto S, Xu D, Abe J. 2007. QTL mapping of domestication-related traits in soybean (Glycine max). Ann. Bot. 100:51027–38
    [Google Scholar]
  91. Liu R, Hooker NH, Parasidis E, Simons CT 2017. A natural experiment: using immersive technologies to study the impact of “all-natural” labeling on perceived food quality, nutritional content, and liking. J. Food Sci. 82:3825–33
    [Google Scholar]
  92. London D, Hruschka D. 2014. Helminths and human ancestral immune ecology: What is the evidence for high helminth loads among foragers?. Am. J. Hum. Biol. 26:2124–29
    [Google Scholar]
  93. Loreau M, de Mazancourt C. 2013. Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol. Lett. 16:Suppl. 1106–15
    [Google Scholar]
  94. Luca F, Perry GH, Di Rienzo A. 2010. Evolutionary adaptations to dietary changes. Annu. Rev. Nutr. 30:291–314
    [Google Scholar]
  95. Marini L, Klimek S, Battisti A 2011. Mitigating the impacts of the decline of traditional farming on mountain landscapes and biodiversity: a case study in the European Alps. Environ. Sci. Policy 14:3258–67
    [Google Scholar]
  96. Martin EA, Dainese M, Clough Y, Báldi A, Bommarco R et al. 2019. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22:71083–94
    [Google Scholar]
  97. Mattick CS. 2018. Cellular agriculture: the coming revolution in food production. Bull. At. Sci. 74:132–35
    [Google Scholar]
  98. McAlvay AC, Ragsdale AP, Mabry ME, Qi X, Bird KA et al. 2021. Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes. Mol. Biol. Evol. 38:83358–72
    [Google Scholar]
  99. Mehrabi Z, Ramankutty N. 2019. Synchronized failure of global crop production. Nat. Ecol. Evol. 3:5780–86
    [Google Scholar]
  100. Meldrum G, Padulosi S, Lochetti G, Robitaille R, Diulgheroff S. 2018. Issues and prospects for the sustainable use and conservation of cultivated vegetable diversity for more nutrition-sensitive agriculture. Agriculture 8:7112
    [Google Scholar]
  101. Mengist MF, Grace MH, Xiong J, Kay CD, Bassil N et al. 2020. Diversity in metabolites and fruit quality traits in blueberry enables ploidy and species differentiation and establishes a strategy for future genetic studies. Front. Plant Sci. 11:370
    [Google Scholar]
  102. Mercer KL, Perales HR. 2010. Evolutionary response of landraces to climate change in centers of crop diversity. Evol. Appl. 3:5–6480–93
    [Google Scholar]
  103. Meyer R, Steinfath M, Lisec J, Becher M, Witucka-Wall H et al. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. PNAS 104:4759–64
    [Google Scholar]
  104. Milton K. 1999. Nutritional characteristics of wild primate foods: Do the diets of our closest living relatives have lessons for us?. Nutrition 15:6488–98
    [Google Scholar]
  105. Missio JC, Rivera A, Figàs MR, Casanova C, Camí B et al. 2018. A comparison of landraces vs. modern varieties of lettuce in organic farming during the winter in the Mediterranean area: an approach considering the viewpoints of breeders, consumers, and farmers. Front. Plant Sci. 9:1491
    [Google Scholar]
  106. Mittell EA, Cobbold CA, Ijaz UZ, Kilbride EA, Moore KA, Mable BK 2020. Feral populations of Brassica oleracea along Atlantic coasts in western Europe. Ecol. Evol. 10:2011810–25
    [Google Scholar]
  107. Mobley AR, Jones JM, Rodriguez J, Slavin J, Zelman KM. 2014. Identifying practical solutions to meet America's fiber needs: proceedings from the Food & Fiber Summit. Nutrients 6:72540–51
    [Google Scholar]
  108. Mohr KI. 2016. History of antibiotics research. Curr. Top. Microbiol. Immunol. 398:237–72
    [Google Scholar]
  109. Müller T, Ulrich M, Ongania K-H, Kräutler B. 2007. Colorless tetrapyrrolic chlorophyll catabolites found in ripening fruit are effective antioxidants. Angew. Chem. Int. Ed. 46:458699–702
    [Google Scholar]
  110. Muscolo A, Settineri G, Mallamaci C, Papalia T, Sidari M. 2017. Erosion of Brassica incana genetic resources: causes and effects. IOP Conf. Ser. Earth Environ. Sci. 78:012014
    [Google Scholar]
  111. Myers AM, Morell MK, James MG, Ball SG 2000. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 122:4989–98
    [Google Scholar]
  112. Myhrstad MCW, Tunsjø H, Charnock C, Telle-Hansen VH. 2020. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients 12:3859
    [Google Scholar]
  113. Naderi N, House JD. 2018. Recent developments in folate nutrition. Adv. Food Nutr. Res. 83:195–213
    [Google Scholar]
  114. Nally D. 2016. Against food security: on forms of care and fields of violence. Glob. Soc. 30:558–82
    [Google Scholar]
  115. Narayanan N, Beyene G, Chauhan RD, Gaitán-Solís E, Gehan J et al. 2019. Biofortification of field-grown cassava by engineering expression of an iron transporter and ferritin. Nat. Biotechnol. 37:2144–51
    [Google Scholar]
  116. Neel JV. 1962. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”?. Am. J. Hum. Genet. 14:353–62
    [Google Scholar]
  117. Nordlund E, Lille M, Silventoinen P, Nygren H, Seppänen-Laakso T et al. 2018. Plant cells as food: a concept taking shape. Food Res. Int. 107:297–305
    [Google Scholar]
  118. Nusca A, Tuccinardi D, Albano M, Cavallaro C, Ricottini E et al. 2018. Glycemic variability in the development of cardiovascular complications in diabetes. Diabetes Metab. Res. Rev. 34:8e3047
    [Google Scholar]
  119. Palatini KM, Durand P-J, Rathinasabapathy T, Esposito D, Komarnytsky S. 2016. Bitter receptors and glucose transporters interact to control carbohydrate and immune responses in the gut. FASEB J 30:Suppl. 1682.6
    [Google Scholar]
  120. Palatini KM, Rathinasabapathy T, Bonney S, Esposito D, Komarnytsky S. 2017. Bitter receptors control glucose absorption in the gut by modifying the G-protein coupled receptor signaling cascade. FASEB J. 31:646.58
    [Google Scholar]
  121. Parr AJ, Bolwell GP. 2000. Phenols in the plant and in man: the potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 80:7985–1012
    [Google Scholar]
  122. Pavlidis C, Lanara Z, Balasopoulou A, Nebel J-C, Katsila T, Patrinos GP 2015. Meta-analysis of genes in commercially available nutrigenomic tests denotes lack of association with dietary intake and nutrient-related pathologies. OMICS 19:9512–20
    [Google Scholar]
  123. Peng J, Ronin Y, Fahima T, Röder M, Li Y et al. 2003. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. PNAS 100:2489–94
    [Google Scholar]
  124. Pigford A-AE, Hickey GM, Klerkx L. 2018. Beyond agricultural innovation systems? Exploring an agricultural innovation ecosystems approach for niche design and development in sustainability transitions. Agric. Syst. 164:116–21
    [Google Scholar]
  125. Plotkin S. 2014. History of vaccination. PNAS 111:3412283–87
    [Google Scholar]
  126. Pontzer H, Wood BM, Raichlen DA. 2018. Hunter-gatherers as models in public health. Obes. Rev. 19:Suppl. 124–35
    [Google Scholar]
  127. Porkka M, Kummu M, Siebert S, Varis O 2013. From food insufficiency towards trade dependency: a historical analysis of global food availability. PLOS ONE 8:12e82714
    [Google Scholar]
  128. Post MJ. 2014. An alternative animal protein source: cultured beef. Ann. N. Y. Acad. Sci. 1328:29–33
    [Google Scholar]
  129. Powell ALT, Nguyen CV, Hill T, Cheng KL, Figueroa-Balderas R et al. 2012. Uniform ripening encodes a Golden 2-like transcription factor regulating tomato fruit chloroplast development. Science 336:60891711–15
    [Google Scholar]
  130. Qi X, An H, Hall TE, Di C, Blischak PD et al. 2021. Genes derived from ancient polyploidy have higher genetic diversity and are associated with domestication in Brassica rapa. New Phytol 230:1372–86
    [Google Scholar]
  131. Quagliani D, Felt-Gunderson P. 2016. Closing America's fiber intake gap. Am. J. Lifestyle Med. 11:180–85
    [Google Scholar]
  132. Rahmannia S, Diana A, Luftimas DE, Gurnida DA, Herawati DMD et al. 2019. Poor dietary diversity and low adequacy of micronutrient intakes among rural Indonesian lactating women from Sumedang district, West Java. PLOS ONE 14:7e0219675
    [Google Scholar]
  133. Raichlen DA, Pontzer H, Harris JA, Mabulla AZP, Marlowe FW et al. 2017. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol. 29:2e22919
    [Google Scholar]
  134. Ren Y, Guo S, Zhang J, He H, Sun H et al. 2018. A tonoplast sugar transporter underlies a sugar accumulation QTL in watermelon. Plant Physiol 176:1836–50
    [Google Scholar]
  135. Rischer H, Szilvay GR, Oksman-Caldentey K-M. 2020. Cellular agriculture—industrial biotechnology for food and materials. Curr. Opin. Biotechnol. 61:128–34
    [Google Scholar]
  136. Sagar NA, Pareek S, Sharma S, Yahia EM, Lobo MG. 2018. Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 17:3512–31
    [Google Scholar]
  137. Schmierer M, Knopf O, Asch F. 2021. Growth and photosynthesis responses of a super dwarf rice genotype to shade and nitrogen supply. Rice Sci. 28:2178–90
    [Google Scholar]
  138. Schnabel L, Kesse-Guyot E, Allès B, Touvier M, Srour B et al. 2019. Association between ultraprocessed food consumption and risk of mortality among middle-aged adults in France. JAMA Intern. Med. 179:4490–98
    [Google Scholar]
  139. Schouten HJ, Tikunov Y, Verkerke W, Finkers R, Bovy A et al. 2019. Breeding has increased the diversity of cultivated tomato in the Netherlands. Front. Plant Sci. 10:1606
    [Google Scholar]
  140. Schreinemachers P, Simmons EB, Wopereis MCS. 2018. Tapping the economic and nutritional power of vegetables. Glob. Food Secur. 16:36–45
    [Google Scholar]
  141. Shamshiri R, Kalantari F, Ting KC, Thorp KR, Hameed IA et al. 2018. Advances in greenhouse automation and controlled environment agriculture: a transition to plant factories and urban agriculture. Int. J. Agric. Biol. Eng. 11:11–22
    [Google Scholar]
  142. Sheehy T, Kolahdooz F, Roache C, Sharma S 2015. Traditional food consumption is associated with better diet quality and adequacy among Inuit adults in Nunavut, Canada. Int. J. Food Sci. Nutr. 66:4445–51
    [Google Scholar]
  143. Shi M, Liao P, Nile SH, Georgiev MI, Kai G. 2021. Biotechnological exploration of transformed root culture for value-added products. Trends Biotechnol 39:2137–49
    [Google Scholar]
  144. Shipley GP, Kindscher K. 2016. Evidence for the paleoethnobotany of the Neanderthal: a review of the literature. Scientifica 2016:8927654
    [Google Scholar]
  145. Siriwoharn T, Wrolstad RE, Finn CE, Pereira CB. 2004. Influence of cultivar, maturity, and sampling on blackberry (Rubus L. hybrids) anthocyanins, polyphenolics, and antioxidant properties. J. Agric. Food Chem. 52:268021–30
    [Google Scholar]
  146. Skates E, Overall J, DeZego K, Wilson M, Esposito D et al. 2018. Berries containing anthocyanins with enhanced methylation profiles are more effective at ameliorating high fat diet-induced metabolic damage. Food Chem. Toxicol. 111:445–53
    [Google Scholar]
  147. Smalley J, Blake M. 2003. Sweet beginnings: stalk sugar and the domestication of maize. Curr. Anthropol. 44:5675–703
    [Google Scholar]
  148. Smith BD. 2006. Eastern North America as an independent center of plant domestication. PNAS 103:3312223–28
    [Google Scholar]
  149. Smits SA, Leach J, Sonnenburg ED, Gonzalez CG, Lichtman JS et al. 2017. Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of Tanzania. Science 357:6353802–6
    [Google Scholar]
  150. Soares S, Silva MS, García-Estevez I, Großmann P, Brás N et al. 2018. Human bitter taste receptors are activated by different classes of polyphenols. J. Agric. Food Chem. 66:338814–23
    [Google Scholar]
  151. Spengler R. 2020. Anthropogenic seed dispersal: rethinking the origins of plant domestication. Trends Plant Sci 25:4P340–48
    [Google Scholar]
  152. Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. 2020. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. Environ. Chem. Lett. 19:1715–35
    [Google Scholar]
  153. Sulpice R, Pyl E-T, Ishihara H, Trenkamp S, Steinfath M et al. 2009. Starch as a major integrator in the regulation of plant growth. PNAS 106:2510348–53
    [Google Scholar]
  154. Szymanek M, Tanaś W, Kassar FH 2015. Kernel carbohydrates concentration in sugary-1, sugary enhanced and shrunken sweet corn kernels. Agric. Agric. Sci. Procedia 7:260–64
    [Google Scholar]
  155. Tako E. 2019. Dietary trace minerals. Nutrients 11:112823
    [Google Scholar]
  156. Tallavaara M, Eronen JT, Luoto M. 2018. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. PNAS 115:61232–37
    [Google Scholar]
  157. Taylor NG, Kell SP, Holubec V, Parra-Quijano M, Chobot K, Maxted N 2017. A systematic conservation strategy for crop wild relatives in the Czech Republic. Divers. Distrib. 23:4448–62
    [Google Scholar]
  158. Thorrez L, Vandenburgh H. 2019. Challenges in the quest for “clean meat. .” Nat. Biotechnol. 37:3215–16
    [Google Scholar]
  159. Timler C, Alvarez S, DeClerck F, Remans R, Raneri J et al. 2020. Exploring solution spaces for nutrition-sensitive agriculture in Kenya and Vietnam. Agric. Syst. 180:102774
    [Google Scholar]
  160. Tresset A, Vigne J-D. 2007. Substitution of species, techniques and symbols at the Mesolithic/Neolithic transition in Western Europe. Proc. Br. Acad. 144:189–210
    [Google Scholar]
  161. Trinkaus E. 2005. Early modern humans. Annu. Rev. Anthropol. 34:1207–30
    [Google Scholar]
  162. Tsai CY. 1974. The function of the waxy locus in starch synthesis in maize endosperm. Biochem. Genet. 11:283–96
    [Google Scholar]
  163. Valdiani A, Hansen OK, Nielsen UB, Johannsen VK, Shariat M et al. 2019. Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit. Rev. Biotechnol. 39:120–34
    [Google Scholar]
  164. Vallejo F, Marín JG, Tomás-Barberán FA. 2012. Phenolic compound content of fresh and dried figs (Ficus carica L.). Food Chem 130:3485–92
    [Google Scholar]
  165. van der Burg S, Bogaardt M-J, Wolfert S. 2019. Ethics of smart farming: current questions and directions for responsible innovation towards the future. NJAS Wagening. J. Life Sci. 90–91:100289
    [Google Scholar]
  166. Van Der Straeten D, Bhullar NK, De Steur H, Gruissem W, MacKenzie D et al. 2020. Multiplying the efficiency and impact of biofortification through metabolic engineering. Nat. Commun. 11:15203
    [Google Scholar]
  167. Vanhaeren M, d'Errico F. 2006. Aurignacian ethno-linguistic geography of Europe revealed by personal ornaments. J. Archaeol. Sci. 33:81105–28
    [Google Scholar]
  168. Vavilov NI. 1992. Origin and Geography of Cultivated Plants Cambridge, UK: Cambridge Univ. Press
  169. Vimolmangkang S, Zheng H, Peng Q, Jiang Q, Wang H et al. 2016. Assessment of sugar components and genes involved in the regulation of sucrose accumulation in peach fruit. J. Agric. Food Chem. 64:356723–29
    [Google Scholar]
  170. von der Goltz J, Dar A, Fishman R, Mueller ND, Barnwal P, McCord GC. 2020. Health impacts of the Green Revolution: evidence from 600,000 births across the developing world. J. Health Econ. 74:102373
    [Google Scholar]
  171. Wadley L, Backwell L, d'Errico F, Sievers C. 2020. Cooked starchy rhizomes in Africa 170 thousand years ago. Science 367:647387–91
    [Google Scholar]
  172. Wagner C, De Gezelle J, Komarnytsky S. 2020. Celtic provenance in traditional herbal medicine of medieval Wales and classical antiquity. Front. Pharmacol. 11:105
    [Google Scholar]
  173. Wegener CB, Jansen G, Jürgens H-U, Schütze W. 2009. Special quality traits of coloured potato breeding clones: anthocyanins, soluble phenols and antioxidant capacity. J. Sci. Food Agric. 89:2206–15
    [Google Scholar]
  174. Weise S, Lohwasser U, Oppermann M. 2020. Document or lose it—on the importance of information management for genetic resources conservation in genebanks. Plants 9:81050
    [Google Scholar]
  175. Weiss E, Kislev ME, Hartmann A. 2006. Autonomous cultivation before domestication. Science 312:57801608–10
    [Google Scholar]
  176. Weiss E, Zohary D. 2011. The Neolithic southwest Asian founder crops: their biology and archaeobotany. Curr. Anthropol. 52:S4S237–54
    [Google Scholar]
  177. White PJ, Broadley MR. 2009. Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:149–84
    [Google Scholar]
  178. White S, Doebley J. 1998. Of genes and genomes and the origin of maize. Trends Genet 14:8327–32
    [Google Scholar]
  179. Whitt S, Wilson L, Tenaillon M, Gaut B, Buckler E. 2002. Genetic diversity and selection in the maize starch pathway. PNAS 99:12959–62
    [Google Scholar]
  180. Wiegmann M, Thomas WTB, Bull HJ, Flavell AJ, Zeyner A et al. 2019. Wild barley serves as a source for biofortification of barley grains. Plant Sci. 283:83–94
    [Google Scholar]
  181. Willett W, Rockström J, Loken B, Springmann M, Lang T et al. 2019. Food in the Anthropocene: the EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 393:10170447–92
    [Google Scholar]
  182. Williams P. 2007. Nutritional composition of red meat. Nutr. Diet. 64:s4S113–19
    [Google Scholar]
  183. Ye Y, Qu J, Pu Y, Rao S, Xu F, Wu C. 2020. Selenium biofortification of crop food by beneficial microorganisms. J. Fungi 6:259
    [Google Scholar]
  184. Zahari I, Ferawati F, Helstad A, Ahlström C, Östbring K et al. 2020. Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods 9:6772
    [Google Scholar]
  185. Zeder MA. 2008. Domestication and early agriculture in the Mediterranean basin: origins, diffusion, and impact. PNAS 105:3311597–604
    [Google Scholar]
  186. Zeder MA. 2009. The Neolithic macro-(r)evolution: macroevolutionary theory and the study of culture change. J. Archaeol. Res. 17:11–63
    [Google Scholar]
/content/journals/10.1146/annurev-food-082421-114831
Loading
/content/journals/10.1146/annurev-food-082421-114831
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error