1932

Abstract

The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-100121-050244
2022-03-25
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/food/13/1/annurev-food-100121-050244.html?itemId=/content/journals/10.1146/annurev-food-100121-050244&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelqader A, Al-Fataftah A-R, Daş G 2013. Effects of dietary Bacillus subtilis and inulin supplementation on performance, eggshell quality, intestinal morphology and microflora composition of laying hens in the late phase of production. Anim. Feed Sci. Technol. 179:103–11
    [Google Scholar]
  2. Abdel-Wareth AA, Hammad S, Khalaphallah R, Salem WM, Lohakare J 2019. Synbiotic as eco-friendly feed additive in diets of chickens under hot climatic conditions. Poult. Sci. 98:4575–83
    [Google Scholar]
  3. Adhikari P, Cosby D, Cox N, Kim W. 2017. Effect of dietary supplementation of nitrocompounds on Salmonella colonization and ileal immune gene expression in laying hens challenged with Salmonella Enteritidis. Poult. Sci. 96:4280–86
    [Google Scholar]
  4. Adjei-Fremah S, Ekwemalor K, Asiamah EK, Ismail H, Ibrahim S, Worku M 2018. Effect of probiotic supplementation on growth and global gene expression in dairy cows. J. Appl. Anim. Res. 46:257–63
    [Google Scholar]
  5. Alaboudi AR. 1985. Microbiological Studies of Nitrate and Nitrite Reduction in the Ovine Rumen Ottawa: Natl. Libr. Can.
    [Google Scholar]
  6. Al-Shawi SG, Dang DS, Yousif AY, Al-Younis ZK, Najm TA, Matarneh SK 2020. The potential use of probiotics to improve animal health, efficiency, and meat quality: a review. Agriculture 10:452
    [Google Scholar]
  7. Amalaradjou MAR, Bhunia AK. 2012. Modern approaches in probiotics research to control foodborne pathogens. Adv. Food Nutr. Res. 67:185–239
    [Google Scholar]
  8. Anderson K, Yu Z, Chen J, Jenkins J, Courtney P, Morrison M 2008. Analyses of Bifidobacterium, Lactobacillus, and total bacterial populations in healthy volunteers consuming calcium gluconate by denaturing gradient gel electrophoresis and real-time PCR. Int. J. Prebiotics Probiotics 3:31–36
    [Google Scholar]
  9. Anderson R, Harvey R, Byrd J, Callaway T, Genovese K et al. 2005. Novel preharvest strategies involving the use of experimental chlorate preparations and nitro-based compounds to prevent colonization of food-producing animals by foodborne pathogens. Poult. Sci. 84:649–54
    [Google Scholar]
  10. Anderson RC, Jung YS, Oliver CE, Horrocks SM, Genovese KJ et al. 2007. Effects of nitrate or nitro supplementation, with or without added chlorate, on Salmonella enterica serovar Typhimurium and Escherichia coli in swine feces. J. Food Prot. 70:308–15
    [Google Scholar]
  11. Angelovičová M, Alfaig E, Král M, Tkáčová J 2013. The effect of the probiotics Bacillus subtilis (PB6) on the selected indicators of the table eggs quality, fat and cholesterol. Potravin. Slovak J. Food Sci. 7:80–84
    [Google Scholar]
  12. Apás AL, Dupraz J, Ross R, González SN, Arena ME 2010. Probiotic administration effect on fecal mutagenicity and microflora in the goat's gut. J. Biosci. Bioeng. 110:537–40
    [Google Scholar]
  13. Arsi K, Donoghue A, Woo-Ming A, Blore P, Donoghue D. 2015. The efficacy of selected probiotic and prebiotic combinations in reducing Campylobacter colonization in broiler chickens. J. Appl. Poult. Res. 24:327–34
    [Google Scholar]
  14. Audia JP, Webb CC, Foster JW 2001. Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int. J. Med. Microbiol. 291:97–106
    [Google Scholar]
  15. Baffoni L, Gaggìa F, Di Gioia D, Santini C, Mogna L, Biavati B 2012. A Bifidobacterium-based synbiotic product to reduce the transmission of C. jejuni along the poultry food chain. Int. J. Food Microbiol. 157:156–61
    [Google Scholar]
  16. Baffoni L, Gaggìa F, Garofolo G, Di Serafino G, Buglione E et al. 2017. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. Int. J. Food Microbiol. 251:41–47
    [Google Scholar]
  17. Baker A, Davis E, Spencer J, Moser R, Rehberger T. 2013. The effect of a Bacillus-based direct-fed microbial supplemented to sows on the gastrointestinal microbiota of their neonatal piglets. J. Anim. Sci. 91:3390–99
    [Google Scholar]
  18. Balasubramanian B, Lee SI, Kim I-H. 2018. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing–finishing pigs. Ital. J. Anim. Sci. 17:100–6
    [Google Scholar]
  19. Balasubramanian B, Li T, Kim IH 2016. Effects of supplementing growing-finishing pig diets with Bacillus spp. probiotic on growth performance and meat-carcass grade quality traits. Rev. Bras. Zootec. 45:93–100
    [Google Scholar]
  20. Barko P, McMichael M, Swanson KS, Williams DA. 2018. The gastrointestinal microbiome: a review. J. Vet. Intern. Med. 32:9–25
    [Google Scholar]
  21. Batz MB, Hoffmann S, Morris JG. 2012. Ranking the disease burden of 14 pathogens in food sources in the United States using attribution data from outbreak investigations and expert elicitation. J. Food Prot. 75:1278–91
    [Google Scholar]
  22. Beier RC, Anderson RC, Krueger NA, Edrington TS, Callaway TR, Nisbet DJ. 2009. Effect of nitroethane and nitroethanol on the production of indole and 3-methylindole (skatole) from bacteria in swine feces by gas chromatography. J. Environ. Sci. Health B 44:613–20
    [Google Scholar]
  23. Benson AK, Kelly SA, Legge R, Ma F, Low SJ et al. 2010. Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. PNAS 107:18933–38
    [Google Scholar]
  24. Bernard J. 2015. Milk yield and composition of lactating dairy cows fed diets supplemented with a probiotic extract. Prof. Anim. Sci. 31:354–58
    [Google Scholar]
  25. Boyle EC, Bishop JL, Grassl GA, Finlay BB. 2007. Salmonella: from pathogenesis to therapeutics. J. Bacteriol. 189:1489–95
    [Google Scholar]
  26. Božić A, Anderson RC, Arzola-Alvarez C, Ruiz-Barrera O, Corral-Luna A et al. 2019. Inhibition of multidrug-resistant staphylococci by sodium chlorate and select nitro- and medium chain fatty acid compounds. J. Appl. Microbiol. 126:1508–18
    [Google Scholar]
  27. Brashears M, Jaroni D, Trimble J 2003. Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J. Food Prot. 66:355–63
    [Google Scholar]
  28. Brenner D. 1984. Family I. Enterobacteriaceae. Bergey's Man. Syst. Bacteriol. 1:408–516
    [Google Scholar]
  29. Broadway P, Carroll J, Callaway T 2014. Antibiotic use in livestock production. Agric. Food Anal. Bacteriol. 4:76–85
    [Google Scholar]
  30. Brown T, Edrington T, Genovese K, Loneragan G, Hanson D, Nisbet D 2015. Oral Salmonella challenge and subsequent uptake by the peripheral lymph nodes in calves. J. Food Prot. 78:573–78
    [Google Scholar]
  31. Buntyn JO, Schmidt T, Nisbet DJ, Callaway TR. 2016. The role of direct-fed microbials in conventional livestock production. Annu. Rev. Anim. Biosci. 4:335–55
    [Google Scholar]
  32. Callaway TR, Edrington T, Anderson R, Byrd J, Nisbet D 2008. Gastrointestinal microbial ecology and the safety of our food supply as related to Salmonella. J. Anim. Sci. 86:E163–72
    [Google Scholar]
  33. Callaway TR, Edrington T, Harvey RB, Anderson RC, Nisbet DJ 2012. Prebiotics in food animals, a potential to reduce foodborne pathogens and disease. Rom. Biotechnol. Lett. 17:67808–16
    [Google Scholar]
  34. Callaway TR, Lillehoj H, Chuanchuen R, Gay CG 2021. Alternatives to antibiotics: a symposium on the challenges and solutions for animal health and production. Antibiotics 10:471
    [Google Scholar]
  35. Caprioli A, Morabito S, Brugère H, Oswald E. 2005. Enterohaemorrhagic Escherichia coli: emerging issues on virulence and modes of transmission. Vet. Res. 36:289–311
    [Google Scholar]
  36. Celi P, Verlhac V, Calvo EP, Schmeisser J, Kluenter A-M. 2019. Biomarkers of gastrointestinal functionality in animal nutrition and health. Anim. Feed Sci. Technol. 250:9–31
    [Google Scholar]
  37. Chambers JR, Gong J. 2011. The intestinal microbiota and its modulation for Salmonella control in chickens. Food Res. Int. 44:3149–59
    [Google Scholar]
  38. Chang SY, Belal SA, Da Rae Kang YIC, Kim YH, Choe HS et al. 2018. Influence of probiotics-friendly pig production on meat quality and physicochemical characteristics. Korean J. Food Sci. Anim. Resour. 38:403
    [Google Scholar]
  39. Clavijo V, Flórez MJV. 2017. The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: a review. Poult. Sci. 97:1006–21
    [Google Scholar]
  40. Collins MD, Gibson GR. 1999. Probiotics, prebiotics, and synbiotics: approaches for modulating the microbial ecology of the gut. Am. J. Clin. Nutr. 69:1052s–57
    [Google Scholar]
  41. Cox N, Craven S, Musgrove M, Berrang M, Stern N. 2003. Effect of sub-therapeutic levels of antimicrobials in feed on the intestinal carriage of Campylobacter and Salmonella in turkeys. J. Appl. Poult. Res. 12:32–36
    [Google Scholar]
  42. Dame-Korevaar A, Fischer EA, van der Goot J, Velkers F, Ceccarelli D et al. 2020. Early life supply of competitive exclusion products reduces colonization of extended spectrum beta-lactamase-producing Escherichia coli in broilers. Poult. Sci. 99:4052–64
    [Google Scholar]
  43. Dasti JI, Tareen AM, Lugert R, Zautner AE, Groß U. 2010. Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. Int. J. Med. Microbiol. 300:205–11
    [Google Scholar]
  44. Davies R, Nicholas R, McLaren I, Corkish J, Lanning D, Wray C. 1997. Bacteriological and serological investigation of persistent Salmonella enteritidis infection in an integrated poultry organisation. Vet. Microbiol. 58:277–93
    [Google Scholar]
  45. Dimitrijevic M, Anderson R, Callaway T, Jung Y, Harvey R et al. 2006. Inhibitory effect of select nitrocompounds on growth and survivability of Listeria monocytogenes in vitro. J. Food Prot. 69:1061–65
    [Google Scholar]
  46. Dodd CC, Renter DG, Shi X, Alam MJ, Nagaraja T, Sanderson MW 2011. Prevalence and persistence of Salmonella in cohorts of feedlot cattle. Foodborne Pathog. Dis. 8:781–89
    [Google Scholar]
  47. Economou V, Gousia P. 2015. Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infect. Drug Resist. 8:49–61
    [Google Scholar]
  48. Edrington T, Loneragan G, Genovese K, Hanson D, Nisbet D 2016. Salmonella persistence within the peripheral lymph nodes of cattle following experimental inoculation. J. Food Prot. 79:1032–35
    [Google Scholar]
  49. Ferens WA, Hovde CJ. 2011. Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog. Dis. 8:465–87
    [Google Scholar]
  50. Foster JW. 1995. Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit. Rev. Microbiol. 21:215–37
    [Google Scholar]
  51. Fouhse J, Zijlstra R, Willing B 2016. The role of gut microbiota in the health and disease of pigs. Anim. Front. 6:30–36
    [Google Scholar]
  52. Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE et al. 2016. Antibiotics in agroecosystems: introduction to the special section. J. Environ. Qual. 45:377–93
    [Google Scholar]
  53. Froebel LK, Jalukar S, Lavergne TA, Lee JT, Duong T 2019. Administration of dietary prebiotics improves growth performance and reduces pathogen colonization in broiler chickens. Poult. Sci. 98:6668–76
    [Google Scholar]
  54. Fuller R. 1989. Probiotics in man and animals. J. Appl. Bacteriol. 66:365–78
    [Google Scholar]
  55. Fuller R. 1991. Probiotics in human medicine. Gut 32:439
    [Google Scholar]
  56. Fuller R 1992. History and development of probiotics. Probiotics: The Scientific Basis R Fuller 1–8 New York: Springer
    [Google Scholar]
  57. Gadde U, Kim W, Oh S, Lillehoj HS 2017. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev. 18:26–45
    [Google Scholar]
  58. Gaggìa F, Mattarelli P, Biavati B. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food Microbiol. 141:S15–28
    [Google Scholar]
  59. Galiş AM, Marcq C, Marlier D, Portetelle D, Van I et al. 2013. Control of Salmonella contamination of shell eggs—preharvest and postharvest methods: a review. Compr. Rev. Food Sci. Food Saf. 12:155–82
    [Google Scholar]
  60. Garcia-Mazcorro J, Ishaq S, Rodriguez-Herrera M, Garcia-Hernandez C, Kawas J, Nagaraja T 2020. Are there indigenous Saccharomyces in the digestive tract of livestock animal species? Implications for health, nutrition and productivity traits. Animal 14:22–30
    [Google Scholar]
  61. Ghareeb K, Awad W, Mohnl M, Porta R, Biarnes M et al. 2012. Evaluating the efficacy of an avian-specific probiotic to reduce the colonization of Campylobacter jejuni in broiler chickens. Poult. Sci. 91:1825–32
    [Google Scholar]
  62. Gibson GR, Hutkins RW, Sanders ME, Prescott SL, Reimer RA et al. 2017. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14:491–502
    [Google Scholar]
  63. Gibson GR, Roberfroid MB. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125:1401–12
    [Google Scholar]
  64. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A et al. 2010. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. Funct. Foods 7:1–19
    [Google Scholar]
  65. Griffin PM, Tauxe RV. 1991. The epidemiology of infections caused by Escherichia coli O157:H7, other enterohemorrhagic E. coli, and the associated hemolytic uremic syndrome. Epidemiol. Rev. 13:60–98
    [Google Scholar]
  66. Guyard-Nicodeme M, Keita A, Quesne S, Amelot M, Poezevara T et al. 2016. Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poult. Sci. 95:298–305
    [Google Scholar]
  67. Hanson D, Loneragan G, Brown T, Nisbet D, Hume M, Edrington T. 2016. Evidence supporting vertical transmission of Salmonella in dairy cattle. Epidemiol. Infect. 144:962–67
    [Google Scholar]
  68. Harvey R, Anderson R, Genovese K, Callaway T, Nisbet D. 2005. Use of competitive exclusion to control enterotoxigenic strains of Escherichia coli in weaned pigs. J. Anim. Sci. 83:E44–47
    [Google Scholar]
  69. Hashem F, Parveen S. 2016. Salmonella and Campylobacter: antimicrobial resistance and bacteriophage control in poultry. Food Microbiol. 53:104–9
    [Google Scholar]
  70. Havelaar AH, Kirk MD, Torgerson PR, Gibb HJ, Hald T et al. 2015. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLOS Med. 12:e1001923
    [Google Scholar]
  71. Henderson G, Cox F, Ganesh S, Jonker A, Young W, Janssen PH 2015. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 5:14567
    [Google Scholar]
  72. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ et al. 2014. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11:506–14
    [Google Scholar]
  73. Hoelzer K, Wong N, Thomas J, Talkington K, Jungman E, Coukell A 2017. Antimicrobial drug use in food-producing animals and associated human health risks: what, and how strong, is the evidence?. BMC Vet. Res. 13:211
    [Google Scholar]
  74. Hoffman S, Maculloch B, Batz M. 2015. Economic burden of major foodborne illnesses acquired in the United States. Econ. Info Bull. EIB-140, Econ. Res. Serv Washington, DC: https://www.ers.usda.gov/webdocs/publications/43984/52807_eib140.pdf?v=6090.8
    [Google Scholar]
  75. Hooper L, Midtvedt T, Gordon JI 2001. Commensal host-bacterial relationships in the gut. . Science 292:1115–18
    [Google Scholar]
  76. Horrocks SM, Anderson R, Nisbet D, Ricke S 2009. Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe 15:18–25
    [Google Scholar]
  77. Horrocks SM, Jung YS, Huwe J, Harvey R, Ricke S et al. 2007. Effects of short-chain nitrocompounds against Campylobacter jejuni and Campylobacter coli in vitro. J. Food Sci. 72:M50–55
    [Google Scholar]
  78. Hou C, Zeng X, Yang F, Liu H, Qiao S 2015. Study and use of the probiotic Lactobacillus reuteri in pigs: a review. J. Anim. Sci. Biotechnol. 6:14
    [Google Scholar]
  79. Hsi DJ, Ebel ED, Williams MS, Golden NJ, Schlosser WD. 2015. Comparing foodborne illness risks among meat commodities in the United States. Food Control 54:353–59
    [Google Scholar]
  80. Hume M. 2011. Historic perspective: prebiotics, probiotics, and other alternatives to antibiotics. Poult. Sci. 90:2663–69
    [Google Scholar]
  81. Hungate R. 1966. The Rumen and Its Microbes. New York: Acad. Press
    [Google Scholar]
  82. Huyghebaert G, Ducatelle R, Van Immerseel F. 2011. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187:182–88
    [Google Scholar]
  83. Ingledew W, Poole R. 1984. The respiratory chains of Escherichia coli. Microbiol. Rev. 48:222–71
    [Google Scholar]
  84. Jazi V, Foroozandeh A, Toghyani M, Dastar B, Koochaksaraie RR 2018. Effects of Pediococcus acidilactici, mannan-oligosaccharide, butyric acid and their combination on growth performance and intestinal health in young broiler chickens challenged with Salmonella Typhimurium. Poult. Sci. 97:2034–43
    [Google Scholar]
  85. Joerger RD, Ganguly A. 2018. Current status of the preharvest application of pro- and prebiotics to farm animals to enhance the microbial safety of animal products. Preharvest Food Saf. 5:1349–60
    [Google Scholar]
  86. Jukna V, Šimkus A. 2005. The effect of probiotics and phytobiotics on meat properties and quality in pigs. Vet. Zootech. 29:5180–84
    [Google Scholar]
  87. Jung YS, Anderson RC, Edrington TS, Genovese KJ, Byrd JA et al. 2004. Experimental use of 2-nitropropanol for reduction of Salmonella Typhimurium in the ceca of broiler chicks. J. Food Prot. 67:1945–47
    [Google Scholar]
  88. Karmali MA, Gannon V, Sargeant JM. 2010. Verocytotoxin-producing Escherichia coli (VTEC). Vet. Microbiol. 140:360–70
    [Google Scholar]
  89. Kerr AK, Farrar AM, Waddell LA, Wilkins W, Wilhelm BJ et al. 2013. A systematic review: meta-analysis and meta-regression on the effect of selected competitive exclusion products on Salmonella spp. prevalence and concentration in broiler chickens. Prev. Vet. Med. 111:112–25
    [Google Scholar]
  90. Kim HB, Isaacson RE. 2017. Salmonella in swine: microbiota interactions. Annu. Rev. Anim. Biosci. 5:43–63
    [Google Scholar]
  91. Klaenhammer TR, Kullen MJ. 1999. Selection and design of probiotics. Int. J. Food Microbiol. 50:45–57
    [Google Scholar]
  92. Knap I, Kehlet A, Bennedsen M, Mathis G, Hofacre C et al. 2011. Bacillus subtilis (DSM17299) significantly reduces Salmonella in broilers. Poult. Sci. 90:1690–94
    [Google Scholar]
  93. Kogut MH, Arsenault RJ. 2016. Gut health: the new paradigm in food animal production. Front. Vet. Sci. 3:71
    [Google Scholar]
  94. Kudva I, Dean-Nystrom E. 2011. Bovine recto-anal junction squamous epithelial (RSE) cell adhesion assay for studying Escherichia coli O157 adherence. J. Appl. Microbiol. 111:1283–94
    [Google Scholar]
  95. Lammie SL, Hughes JM. 2016. Antimicrobial resistance, food safety, and one health: the need for convergence. Annu. Rev. Food Sci. Technol. 7:287–312
    [Google Scholar]
  96. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR et al. 2008. Evolution of mammals and their gut microbes. Science 320:1647–51
    [Google Scholar]
  97. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 2008. Worlds within worlds: evolution of the vertebrate gut microbiota. . Nat. Rev. Microbiol 6:776–88
    [Google Scholar]
  98. Liao SF, Nyachoti M. 2017. Using probiotics to improve swine gut health and nutrient utilization. Anim. Nutr. 3:331–43
    [Google Scholar]
  99. Liu Y, Li Y, Feng X, Wang Z, Xia Z 2018. Dietary supplementation with Clostridium butyricum modulates serum lipid metabolism, meat quality, and the amino acid and fatty acid composition of Peking ducks. Poult. Sci. 97:3218–29
    [Google Scholar]
  100. Lloyd A, Cumming R, Kent R. 1974. Competitive exclusion as exemplified by Salmonella typhimurium. Proceedings of the Australian Poultry Science Convention185–86
    [Google Scholar]
  101. Lourenço J, Seidel D, Callaway T 2019. Antibiotics and gut function: historical and current perspectives. Improving Gut Health in Poultry SC Ricke 189–204 Cambridge, UK: Burleigh Dodds
    [Google Scholar]
  102. Low JC, McKendrick IJ, McKechnie C, Fenlon D, Naylor SW et al. 2005. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl. Environ. Microbiol. 71:93–97
    [Google Scholar]
  103. Luoma A, Markazi A, Shanmugasundaram R, Murugesan G, Mohnl M, Selvaraj R 2017. Effect of synbiotic supplementation on layer production and cecal Salmonella load during a Salmonella challenge. Poult. Sci. 96:4208–16
    [Google Scholar]
  104. Lyte M. 2010. The microbial organ in the gut as a driver of homeostasis and disease. Med. Hypotheses 74:634–38
    [Google Scholar]
  105. Lyte M. 2013. Microbial endocrinology in the microbiome-gut-brain axis: how bacterial production and utilization of neurochemicals influence behavior. PLOS Pathog. 9:e1003726
    [Google Scholar]
  106. Mackie RI, Aminov R, White B, McSweeney C. 2000. Molecular ecology and diversity in gut microbial ecosystems. Rumin. Physiol. Dig. Metab. Growth Reprod. 2000.61–77
    [Google Scholar]
  107. Mackie RI, Sghir A, Gaskins HR. 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 69:1035s–45
    [Google Scholar]
  108. Madaj R, Kalinowska H, Sobiecka E. 2016. Utilisation of nitrocompounds. Biotechnol. Food Sci. 80:263–73
    [Google Scholar]
  109. Mahdavi A, Rahmani H, Pourreza J. 2005. Effect of probiotic supplements on egg quality and laying hen's performance. Int. J. Poult. Sci. 4:488–92
    [Google Scholar]
  110. Maiorano G, Stadnicka K, Tavaniello S, Abiuso C, Bogucka J et al. 2017. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult. Sci. 96:511–18
    [Google Scholar]
  111. Manafi M, Khalaji S, Hedayati M 2016. Assessment of a probiotic containing Bacillus subtilis on the performance and gut health of laying Japanese quails (Coturnix coturnix Japonica). Braz. J. Poult. Sci. 18:599–606
    [Google Scholar]
  112. Manafi M, Khalaji S, Hedayati M, Pirany N. 2017. Efficacy of Bacillus subtilis and bacitracin methylene disalicylate on growth performance, digestibility, blood metabolites, immunity, and intestinal microbiota after intramuscular inoculation with Escherichia coli in broilers. Poult. Sci. 96:1174–83
    [Google Scholar]
  113. Markazi A, Luoma A, Shanmugasundaram R, Mohnl M, Murugesan GR, Selvaraj R. 2018. Effects of drinking water synbiotic supplementation in laying hens challenged with Salmonella. Poult. Sci. 97:3510–18
    [Google Scholar]
  114. McAnally R, Phillipson A. 1944. Digestion in the ruminant. Biol. Rev. 19:41–54
    [Google Scholar]
  115. McCabe L, Britton RA, Parameswaran N. 2015. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr. Osteoporos. Rep. 13:363–71
    [Google Scholar]
  116. Mehdi Y, Létourneau-Montminy M-P, Gaucher M-L, Chorfi Y, Suresh G et al. 2018. Use of antibiotics in broiler production: global impacts and alternatives. Anim. Nutr. 4:170–78
    [Google Scholar]
  117. Messaoudi S, Kergourlay G, Dalgalarrondo M, Choiset Y, Ferchichi M et al. 2012. Purification and characterization of a new bacteriocin active against Campylobacter produced by Lactobacillus salivarius SMXD51. Food Microbiol. 32:129–34
    [Google Scholar]
  118. Metchnikoff E. 1907. Lactic acid as inhibiting intestinal putrefaction. In The Prolongation of Life: Optimistic Studies161–83. London: W. Heinemann
    [Google Scholar]
  119. Meyer C, Thiel S, Ullrich U, Stolle A 2010. Salmonella in raw meat and by-products from pork and beef. J. Food Prot. 73:1780–84
    [Google Scholar]
  120. Meyer D. 2008. Prebiotic dietary fibres and the immune system. Agro-Food Ind. Hi-Tech 19:12–15
    [Google Scholar]
  121. Miniello V, Diaferio L, Lassandro C, Verduci E. 2017. The importance of being eubiotic. J. Prob. Health 5:162
    [Google Scholar]
  122. Mohammed A, Zaki R, Negm E, Mahmoud M, Cheng H 2021. Effects of dietary supplementation of a probiotic (Bacillus subtilis) on bone mass and meat quality of broiler chickens. Poult. Sci. 100:100906
    [Google Scholar]
  123. Mookiah S, Sieo CC, Ramasamy K, Abdullah N, Ho YW 2014. Effects of dietary prebiotics, probiotic and synbiotics on performance, caecal bacterial populations and caecal fermentation concentrations of broiler chickens. J. Sci. Food Agric. 94:341–48
    [Google Scholar]
  124. Murate LS, Paião FG, de Almeida AM, Berchieri A Jr., Shimokomaki M. 2015. Efficacy of prebiotics, probiotics, and synbiotics on laying hens and broilers challenged with Salmonella Enteritidis. Poult. Sci. 52:52–56
    [Google Scholar]
  125. Murray CJ 2000. Environmental aspects of Salmonella. Salmonella in Domestic Animals C Wray, A Wray 265–83 Wallingford, UK: CABI
    [Google Scholar]
  126. Natl. Toxicol. Progr 2005. Toxicology and carcinogenesis studies of sodium chlorate (CAS no. 7775–09–9) in F344/N rats and B6C3F1 mice (drinking water studies). Natl. Toxicol. Prog. Tech. Rep. Ser. 517:1–255
    [Google Scholar]
  127. Naylor SW, Low JC, Besser TE, Mahajan A, Gunn GJ et al. 2003. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 71:1505–12
    [Google Scholar]
  128. Neal-McKinney JM, Lu X, Duong T, Larson CL, Call DR et al. 2012. Production of organic acids by probiotic lactobacilli can be used to reduce pathogen load in poultry. PLOS ONE 7:e43928
    [Google Scholar]
  129. Nisbet D. 2002. Defined competitive exclusion cultures in the prevention of enteropathogen colonisation in poultry and swine. Antonie Van Leeuwenhoek 81:481–86
    [Google Scholar]
  130. Nisbet DJ, Anderson R, Harvey R, Genovese K, DeLoach J, Stanker L. 1999. Competitive exclusion of Salmonella serovar Typhimurium from the gut of early weaned pigs. Proceedings of the 3rd International Symposium on Epidemiology and Control of Salmonella in Pork80–82 Ames: Iowa State
    [Google Scholar]
  131. Nisbet DJ, Corrier DE, Scanlan CM, Hollister AG, Beier RC, DeLoach JR. 1993. Effect of a defined continuous-flow derived bacterial culture and dietary lactose on Salmonella typhimurium colonization in broiler chickens. Avian Dis. 37:41017–25
    [Google Scholar]
  132. Nurmi E, Nuotio L, Schneitz C. 1992. The competitive exclusion concept: development and future. Int. J. Food Microbiol. 15:237–40
    [Google Scholar]
  133. Nurmi E, Rantala M. 1973. New aspects of Salmonella infection in broiler production. Nature 241:210–11
    [Google Scholar]
  134. Oakley BB, Lillehoj HS, Kogut MH, Kim WK, Maurer JJ et al. 2014. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 360:100–12
    [Google Scholar]
  135. O'Hara E, Neves AL, Song Y, Guan LL 2020. The role of the gut microbiome in cattle production and health: driver or passenger?. Annu. Rev. Anim. Biosci. 8:199–220
    [Google Scholar]
  136. O'Shea EF, Cotter PD, Stanton C, Ross RP, Hill C 2012. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 152:189–205
    [Google Scholar]
  137. Park J, Kim I 2014. Supplemental effect of probiotic Bacillus subtilis B2A on productivity, organ weight, intestinal Salmonella microflora, and breast meat quality of growing broiler chicks. Poult. Sci. 93:2054–59
    [Google Scholar]
  138. Parry R, Nishino S, Spain J. 2011. Naturally-occurring nitro compounds. Nat. Prod. Rep. 28:152–67
    [Google Scholar]
  139. Peterson RE, Klopfenstein TJ, Erickson GE, Folmer J, Hinkley S et al. 2007. Effect of Lactobacillus acidophilus strain N P51 on Escherichia coli 0157:H7 fecal shedding and finishing performance in beef feedlot cattle. Fac. Pap. Publ. Anim. Sci. 70:2287–91
    [Google Scholar]
  140. Popoff MY, Bockemühl J, Gheesling LL. 2004. Supplement 2002 (no. 46) to the Kauffmann–White scheme. Res. Microbiol. 155:568–70
    [Google Scholar]
  141. Popova T. 2017. Effect of probiotics in poultry for improving meat quality. Curr. Opin. Food Sci. 14:72–77
    [Google Scholar]
  142. Poppy G, Rabiee A, Lean I, Sanchez W, Dorton K, Morley P 2012. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 95:6027–41
    [Google Scholar]
  143. Roberfroid M. 2007. Prebiotics: the concept revisited. J. Nutr. 137:830S–37
    [Google Scholar]
  144. Rozman V, Lorbeg PM, Accetto T, Matijašić BB 2020. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data. Int. J. Food Microbiol. 314:108388
    [Google Scholar]
  145. Ruby T, McLaughlin L, Gopinath S, Monack D 2012. Salmonella’s long-term relationship with its host. FEMS Microbiol. Rev. 36:600–15
    [Google Scholar]
  146. Rukambile E, Sintchenko V, Muscatello G, Kock R, Alders R 2019. Infection, colonization and shedding of Campylobacter and Salmonella in animals and their contribution to human disease: a review. Zoonoses Public Health 66:562–78
    [Google Scholar]
  147. Russell JB. 2002. Rumen Microbiology and Its Role in Ruminant Nutrition Ithaca, NY: Cornell Univ.
    [Google Scholar]
  148. Rybarczyk A, Romanowski M, Karamucki T, Ligocki M 2016. The effect of Bokashi probiotic on pig carcass characteristics and meat quality. FleischWirtschaft-International 31:174–77
    [Google Scholar]
  149. Saint-Cyr MJ, Haddad N, Taminiau B, Poezevara T, Quesne S et al. 2017. Use of the potential probiotic strain Lactobacillus salivarius SMXD51 to control Campylobacter jejuni in broilers. Int. J. Food Microbiol. 247:9–17
    [Google Scholar]
  150. Salminen S, Collado MC, Endo A, Hill C, Lebeer S et al. 2021. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 18:649–67
    [Google Scholar]
  151. Satora M, Magdziarz M, Rząsa A, Rypuła K, Płoneczka-Janeczko K. 2020. Insight into the intestinal microbiome of farrowing sows following the administration of garlic (Allium sativum) extract and probiotic bacteria cultures under farming conditions. BMC Vet. Res. 16:442
    [Google Scholar]
  152. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A et al. 2011. Foodborne illness acquired in the United States—major pathogens. Emerg. Infect. Dis. 17:7–15
    [Google Scholar]
  153. Scallan E, Mahon BE, Hoekstra RM, Griffin PM. 2013. Estimates of illnesses, hospitalizations, and deaths caused by major bacterial enteric pathogens in young children in the United States. Pediatr. Infect. Dis. J. 32:217–21
    [Google Scholar]
  154. Schofield BJ, Lachner N, Le OT, McNeill DM, Dart P et al. 2018. Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. J. Appl. Microbiol. 124:855–66
    [Google Scholar]
  155. Schneitz C. 2005. Competitive exclusion in poultry—30 years of research. Food Control 16:657–67
    [Google Scholar]
  156. Semenov AM, Kuprianov AA, Van Bruggen AH. 2010. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microbial. Ecol. 60:239–49
    [Google Scholar]
  157. Shreiner AB, Kao JY, Young VB. 2015. The gut microbiome in health and in disease. Curr. Opin. Gastroenterol. 31:169–75
    [Google Scholar]
  158. Silva I, Vellano I, Moraes A, Lee I, Alvarenga B et al. 2017. Evaluation of a probiotic and a competitive exclusion product inoculated in ovo on broiler chickens challenged with Salmonella Heidelberg. Braz. J. Poult. Sci. 19:19–26
    [Google Scholar]
  159. Smialek M, Burchardt S, Koncicki A. 2018. The influence of probiotic supplementation in broiler chickens on population and carcass contamination with Campylobacter spp.: field study. Res. Vet. Sci. 118:312–16
    [Google Scholar]
  160. Smialek M, Kaczorek E, Szczucińska E, Burchardt S, Kowalczyk J et al. 2019. Evaluation of Lactobacillus spp. and yeast based probiotic (Lavipan) supplementation for the reduction of Salmonella Enteritidis after infection of broiler chickens. Pol. J. Vet. Sci. 22:15–10
    [Google Scholar]
  161. Smith D, Oliver C, Taylor J, Anderson R 2012. Invited review: efficacy, metabolism, and toxic responses to chlorate salts in food and laboratory animals. J. Anim. Sci. 90:4098–117
    [Google Scholar]
  162. Smith DJ, Anderson RC. 2013. Toxicity and metabolism of nitroalkanes and substituted nitroalkanes. J. Agric. Food Chem. 61:763–79
    [Google Scholar]
  163. Smith DR. 2014. Cattle production systems: ecology of existing and emerging Escherichia coli types related to foodborne illness. Annu. Rev. Anim. Biosci. 2:445–68
    [Google Scholar]
  164. Smith DR, Novotnaj K, Smith G 2010. Preharvest food safety: What do the past and the present tell us about the future?. J. Agromed. 15:275–80
    [Google Scholar]
  165. Smith JM. 2014. A review of avian probiotics. J. Avian Med. Surg. 28:87–94
    [Google Scholar]
  166. Spaniol JS, Oltramari CE, Locatelli M, Volpato A, Campigotto G et al. 2015. Influence of probiotic on somatic cell count in milk and immune system of dairy cows. Comp. Clin. Pathol. 24:677–81
    [Google Scholar]
  167. Splichal I, Donovan SM, Splichalova Z, Neuzil Bunesova V, Vlkova E et al. 2019. Colonization of germ-free piglets with commensal Lactobacillus amylovorus, Lactobacillus mucosae, and probiotic E. coli Nissle 1917 and their interference with Salmonella Typhimurium. Microorganisms 7:273
    [Google Scholar]
  168. Stavric S, D'aoust J-Y 1993. Undefined and defined bacterial preparations for the competitive exclusion of Salmonella in poultry: a review. J. Food Prot. 56:173–80
    [Google Scholar]
  169. Stephens T, Loneragan G, Chichester L, Brashears M. 2007a. Prevalence and enumeration of Escherichia coli O157 in steers receiving various strains of Lactobacillus-based direct-fed microbials. J. Food Prot. 70:1252–55
    [Google Scholar]
  170. Stephens T, Loneragan G, Karunasena E, Brashears M 2007b. Reduction of Escherichia coli O157 and Salmonella in feces and on hides of feedlot cattle using various doses of a direct-fed microbial. J. Food Prot. 70:2386–91
    [Google Scholar]
  171. Stewart V. 1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52:190–232
    [Google Scholar]
  172. Sun P, Wang J, Deng L 2013. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows. Animal 7:216–22
    [Google Scholar]
  173. Suryanarayana M, Sreedhar S, Babu BJ. 2013. Interactive effect of prebiotic (oligofructose) and probiotic (Saccharomyces) feed additives on nutrient utilization, growth, feed conversion and faecal microbiota population in pigs. Anim. Sci. 7:3107–13
    [Google Scholar]
  174. Swaggerty CL, Callaway TR, Kogut MH, Piva A, Grilli E 2019. Modulation of the immune response to improve health and reduce foodborne pathogens in poultry. Microorganisms 7:65
    [Google Scholar]
  175. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid G et al. 2020. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17:687–701
    [Google Scholar]
  176. Syngai GG, Gopi R, Bharali R, Dey S, Lakshmanan GA, Ahmed G. 2016. Probiotics: the versatile functional food ingredients. J. Food Sci. Technol. 53:921–33
    [Google Scholar]
  177. Tabashsum Z, Peng M, Alvarado-Martinez Z, Aditya A, Bhatti J et al. 2020. Competitive reduction of poultry-borne enteric bacterial pathogens in chicken gut with bioactive Lactobacillus casei. Sci. Rep. 10:16259
    [Google Scholar]
  178. Tabe ES, Oloya J, Doetkott DK, Bauer ML, Gibbs PS, Khaitsa ML. 2008. Comparative effect of direct-fed microbials on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle. J. Food Prot. 71:539–44
    [Google Scholar]
  179. Tavaniello S, Maiorano G, Stadnicka K, Mucci R, Bogucka J et al. 2018. Prebiotics offered to broiler chicken exert positive effect on meat quality traits irrespective of delivery route. Poult. Sci. 97:2979–87
    [Google Scholar]
  180. Tavaniello S, Mucci R, Stadnicka K, Acaye O, Bednarczyk M, Maiorano G. 2019. Effect of in ovo administration of different synbiotics on carcass and meat quality traits in broiler chickens. Poult. Sci. 98:464–72
    [Google Scholar]
  181. Tavaniello S, Slawinska A, Prioriello D, Petrecca V, Bertocchi M et al. 2020. Effect of galactooligosaccharides delivered in ovo on meat quality traits of broiler chickens exposed to heat stress. Poult. Sci. 99:612–19
    [Google Scholar]
  182. Téllez G, Higgins S, Donoghue A, Hargis B. 2006. Digestive physiology and the role of microorganisms. J. Appl. Poult. Res. 15:136–44
    [Google Scholar]
  183. Téllez G, Lauková A, Latorre JD, Hernandez-Velasco X, Hargis BM, Callaway T. 2015. Food-producing animals and their health in relation to human health. Microb. Ecol. Health Dis. 26:25876
    [Google Scholar]
  184. Tian Z, Cui Y, Lu H, Wang G, Ma X 2021. Effect of long-term dietary probiotic Lactobacillus reuteri 1 or antibiotics on meat quality, muscular amino acids and fatty acids in pigs. Meat Sci. 171:108234
    [Google Scholar]
  185. Timmerman H, Koning C, Mulder L, Rombouts F, Beynen A 2004. Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int. J. Food Microbiol. 96:219–33
    [Google Scholar]
  186. Trampel DW, Holder TG, Gast RK. 2014. Integrated farm management to prevent Salmonella Enteritidis contamination of eggs. J. Appl. Poult. Res. 23:353–65
    [Google Scholar]
  187. Tran THT, Everaert N, Bindelle J. 2018. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J. Anim. Physiol. Anim. Nutr. 102:17–32
    [Google Scholar]
  188. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. 2007. The human microbiome project. Nature 449:804–10
    [Google Scholar]
  189. Uyeno Y, Shigemori S, Shimosato T 2015. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 30:2126–32
    [Google Scholar]
  190. Van Immerseel F, Russell J, Flythe M, Gantois I, Timbermont L et al. 2006. The use of organic acids to combat Salmonella in poultry: a mechanistic explanation of the efficacy. Avian Pathol. 35:182–88
    [Google Scholar]
  191. Vandenplas Y, Huys G, Daube G. 2015. Probiotics: an update. J. Pediatr. 91:6–21
    [Google Scholar]
  192. Vico JP, Mainar Jaime RC, Auseré M 2011. The addition of galacto-oligosaccharides on the feed for the control of salmonellosis in fattening pigs Paper presented at Ninth International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork Maastricht, Neth:.
    [Google Scholar]
  193. Wan MLY, Forsythe SJ, El-Nezami H. 2019. Probiotics interaction with foodborne pathogens: a potential alternative to antibiotics and future challenges. Crit. Rev. Food Sci. Nutr. 59:3320–33
    [Google Scholar]
  194. Wang Y, Sun J, Zhong H, Li N, Xu H et al. 2017. Effect of probiotics on the meat flavour and gut microbiota of chicken. Sci. Rep. 7:6400
    [Google Scholar]
  195. Wilkerson S, Broadway PR, Carroll JA, Burdick Sanchez NC, Tigue DA et al. 2020. Translocation of orally inoculated Salmonella following mild immunosuppression in Holstein calves and the presence of the Salmonella in ground beef samples. Foodborne Pathog. Dis. 17:533–40
    [Google Scholar]
  196. Williams-Nguyen J, Sallach JB, Bartelt-Hunt S, Boxall AB, Durso LM et al. 2016. Antibiotics and antibiotic resistance in agroecosystems: state of the science. J. Environ. Qual. 45:394–406
    [Google Scholar]
  197. Wisener L, Sargeant J, O'Connor A, Faires M, Glass-Kaastra S 2015. The use of direct-fed microbials to reduce shedding of Escherichia coli O157 in beef cattle: a systematic review and meta-analysis. Zoonoses Public Health 62:75–89
    [Google Scholar]
  198. Yaşar S, Okutan İ, Tosun R. 2017. Testing novel eubiotic additives: its health and performance effects in commercially raised farm animals. Iğdır Univ. J. Inst. Sci. Technol. 7:297–308
    [Google Scholar]
  199. Yörük M, Gül M, Hayirli A, Macit M. 2004. The effects of supplementation of humate and probiotic on egg production and quality parameters during the late laying period in hens. Poult. Sci. 83:84–88
    [Google Scholar]
  200. Young I, Rajić A, Wilhelm B, Waddell L, Parker S, McEwen S 2009. Comparison of the prevalence of bacterial enteropathogens, potentially zoonotic bacteria and bacterial resistance to antimicrobials in organic and conventional poultry, swine and beef production: a systematic review and meta-analysis. Epidemiol. Infect. 137:1217–32
    [Google Scholar]
  201. Young I, Wilhelm BJ, Cahill S, Nakagawa R, Desmarchelier P, Rajić A. 2016. A rapid systematic review and meta-analysis of the efficacy of slaughter and processing interventions to control nontyphoidal Salmonella in beef and pork. J. Food Prot. 79:2196–210
    [Google Scholar]
  202. Younts-Dahl SM, Osborn GD, Galyean ML, Rivera JD, Loneragan GH, Brashears MM. 2005. Reduction of Escherichia coli O157 in finishing beef cattle by various doses of Lactobacillus acidophilus in direct-fed microbials. J. Food Prot. 68:6–10
    [Google Scholar]
  203. Zhang Z-W, Cao Z-J, Wang Y-L, Wang Y-J, Yang H-J, Li S-L. 2018. Nitrocompounds as potential methanogenic inhibitors in ruminant animals: a review. Anim. Feed Sci. Technol. 236:107–14
    [Google Scholar]
/content/journals/10.1146/annurev-food-100121-050244
Loading
/content/journals/10.1146/annurev-food-100121-050244
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error